Quiz 1 / Solutions

Each answer needs to be a real number, $+\infty,-\infty$ or DNE)

1. $\lim _{x \rightarrow 0^{-}}-\frac{1}{x^{2}}$

If x is a small negative number, then x^{2} is a small positive number. So $\frac{1}{x^{2}}$ is a large positive number and $-\frac{1}{x^{2}}$ is a large negative number. Thus

$$
\lim _{x \rightarrow 0^{-}}-\frac{1}{x^{2}}=-\infty .
$$

2. Let

$$
f(x)=\left\{\begin{array}{ccc}
x^{3} & \text { if } & x<0 \\
1 & \text { if } & x=0 \\
\sin \left(\frac{1}{x}\right) & \text { if } & x>0
\end{array}\right.
$$

(a) $\lim _{x \rightarrow 0^{+}} f(x)$

If $x>0$, then $f(x)=\sin \left(\frac{1}{x}\right)$. So

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \sin \left(\frac{1}{x}\right) .
$$

As x approaches 0 from the right, $\frac{1}{x}$ approaches $+\infty$. Note that $\sin t$ oscillates infinitely often between -1 and 1 as t approaches $+\infty$. So, as x approaches 0 from the right, $\sin \left(\frac{1}{x}\right)$ oscillates infinitely often between -1 and 1 . Thus $\lim _{x \rightarrow 0+} \sin \left(\frac{1}{x}\right)$ does not exist. So

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \sin \left(\frac{1}{x}\right)=\mathrm{DNE}
$$

(b) $\lim _{x \rightarrow 0^{-}} f(x)$

If $x<0$, then $f(x)=x^{3}$. So

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x^{3}=0^{3}=0
$$

3. $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-x-2}$

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-x-2}=\lim _{x \rightarrow 2} \frac{x-2}{(x-2)(x+1)}=\lim _{x \rightarrow 2} \frac{1}{x+1}=\lim _{x \rightarrow 2} \frac{1}{2+1}=\frac{1}{3} .
$$

4. $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$

$$
\begin{aligned}
\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9} & =\lim _{x \rightarrow 9} \frac{(\sqrt{x}-3)(\sqrt{x}+3)}{(x-9)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{(\sqrt{x})^{3}-3^{2}}{(x-9)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{x-9}{(x-9)(\sqrt{x}+3)} \\
& =\lim _{x \rightarrow 9} \frac{1}{\sqrt{x}+3}=\frac{1}{\sqrt{9}+3}=\frac{1}{3+3}=\frac{1}{6} .
\end{aligned}
$$

