\#1. (16 pts) Find the following limits:
(a) (8 pts) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}+\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin 2 x}{x}$
(b) (8 pts) $\lim _{x \rightarrow 1^{-}}(8 x+3) \frac{|x-1|}{x-1}$.
(a)
$\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}+\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin 2 x}{x}=\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{2 x} \frac{2 x}{x}\right)+\frac{\sin \left(2 \cdot \frac{\pi}{4}\right)}{\frac{\pi}{4}}=\left(\lim _{y \rightarrow 0} \frac{\sin y}{y}\right) \cdot 2+\frac{4 \sin \left(\frac{\pi}{2}\right)}{\pi}=1 \cdot 2+\frac{4 \cdot 1}{\pi}=\frac{2 \pi+4}{\pi}$
(b) If $x<1$, then $x-1<0$ and so $|x-1|=-(x-1)$. Hence
$\lim _{x \rightarrow 1^{-}}(8 x+3) \frac{|x-1|}{x-1}=\lim _{x \rightarrow 1^{-}}(8 x+3) \frac{-(x-1)}{x-1}=\lim _{x \rightarrow 1^{-}}(8 x+3) \cdot(-1)=\lim _{x \rightarrow 1^{-}}-(8 x+3)=-(8 \cdot 1+3)=--11$
\#2. (24 pts) Find the derivative of the following functions (do not simplify):
(a) (8 pts) $f(x)=\sin ^{2} x+\sin \left(x^{2}\right)+(x+1) \cos x+\frac{\cos x}{x+1}$.
(b) (8 pts) $f(x)=\tan \left(\frac{1}{x}+\sqrt{1-\sqrt{x}}\right)$
(c) $(8 \mathrm{pts}) f(x)=\int_{x}^{x^{2}} \sqrt{1+t^{3}} d t+\int\left(x^{2008}+1\right)^{88} d x$
(a)

$$
\begin{array}{r}
\left(\sin ^{2} x+\sin \left(x^{2}\right)+(x+1) \cos x+\frac{\cos x}{x+1}\right)^{\prime} \\
=2 \sin x \cos x+\cos \left(x^{2}\right) \cdot 2 x+1 \cdot \cos x+(x+1)(-\sin x)+\frac{(-\sin x)(x+1)-\cos x \cdot 1}{(x+1)^{2}}
\end{array}
$$

(b)

$$
\left(\tan \left(\frac{1}{x}+\sqrt{1-\sqrt{x}}\right)\right)^{\prime}=\sec ^{2}\left(\frac{1}{x}+\sqrt{1-\sqrt{x}}\right)\left(-\frac{1}{x^{2}}+\frac{1}{2 \sqrt{1-\sqrt{x}}} \cdot-\frac{1}{2 \sqrt{x}}\right)
$$

(c)

$$
\left(\int_{x}^{x^{2}} \sqrt{1+t^{3}} d t+\int\left(x^{2008}+1\right)^{88} d x\right)^{\prime}=\sqrt{1+\left(x^{2}\right)^{3}} \cdot 2 x-\sqrt{1+x^{3}}+\left(x^{2008}+1\right)^{88}
$$

\#3. (12 pts) Use the definition of the derivative as a limit to calculate $f^{\prime}(x)$ for $f(x)=\frac{1}{x}$. (There will be no credit for other methods).

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x-(x+h)}{h(x+h) x} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(x+h) x} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(x+h) x} \\
& =\frac{-1}{(x+0) x} \\
& =-\frac{1}{x^{2}}
\end{aligned}
$$

\#4. (15 pts)
(a) (10 pts) Let y be the implicit function of x determined by $y^{2}-2 x-4 y-1=0$. Find $\frac{d y}{d x}$.
(b) (5 pts) Using part (a), find the equation of the line tangent to the curve $y^{2}-2 x-4 y-1=0$ at the point $P(-2,1)$.
(a)

$$
\begin{gathered}
\left(y^{2}-2 x-4 y-1\right)^{\prime}=0^{\prime} \\
2 y y^{\prime}-2-4 y^{\prime}=0 \\
2 y y^{\prime}-4 y^{\prime}=2 \\
2(y-2) y^{\prime}=2 \\
(y-2) y^{\prime}=1 \\
y^{\prime}=\frac{1}{y-2}
\end{gathered}
$$

(b) For $x=-2$ and $y=1$ we get

$$
y^{\prime}=\frac{1}{y-2}=\frac{1}{1-2}=\frac{1}{-1}=-1 .
$$

So the tangent line has slope one and goes through the point $P(-2,1)$. Hence the equation of the tangent line is

$$
\begin{gathered}
y-1=(-1)(x-(-2)) \\
y-1=-x-2 \\
y=-x-1
\end{gathered}
$$

\#5. (12 pts) When a circular plate of metal is heated in an oven, its radius increased at the rate of $0.01 \mathrm{~cm} / \mathrm{min}$. At what rate is the plate's area increasing when the radius is 10 cm ?

Let A be the area of the plate and r the radius. We know that $\frac{\mathrm{d} r}{\mathrm{~d} t}=0.01$ and need to compute $\frac{\mathrm{d} A}{\mathrm{~d} t}$ when $r=10$.

$$
\begin{aligned}
A & =\pi r^{2} \\
\frac{\mathrm{~d} A}{\mathrm{~d} t} & =2 \pi r \frac{\mathrm{~d} r}{\mathrm{~d} t}
\end{aligned}
$$

With $r=10$ and $\frac{\mathrm{d} r}{\mathrm{~d} t}=0.01$ we get

$$
\frac{\mathrm{d} A}{\mathrm{~d} t}=2 \pi r \frac{\mathrm{~d} r}{\mathrm{~d} t}=2 \pi \cdot 10 \cdot 0.01=0.2 \pi \frac{\mathrm{~cm}^{2}}{\min }
$$

\#6. (12 pts) A rock thrown vertically upward reaches a height of $s=24 t-0.8 t^{2}$ meters in t seconds. How long does it take the rock to reach the highest point? And how high does the rock go?

$$
v=s^{\prime}=\left(24 t-0.8 t^{2}\right)^{\prime}=24-1.6 t
$$

The rock reaches maximum height when $v=0$:

$$
\begin{gathered}
0=24-1.6 t \\
t=\frac{24}{1.6}=\frac{240}{16}=\frac{60}{4}=15 \mathrm{sec}
\end{gathered}
$$

At $t=15$ the height is

$$
s=24 t-0.8 t^{2}=24 \cdot 15-0.8 \cdot 15^{2}=(24-0.8 \cdot 15) \cdot 15=(24-12) \cdot 15=12 \cdot 15=180 \mathrm{~m} .
$$

\#7. (32 pts) Evaluate the following integrals:
(a) $(8 \mathrm{pts}) \int_{1}^{4}\left(2 x-\frac{1}{\sqrt{x}}\right) \mathrm{d} x$.
(b) $(8 \mathrm{pts}) \int_{0}^{\frac{\pi^{2}}{4} \frac{\sin \sqrt{x} \cos \sqrt{x}}{2 \sqrt{x}} \mathrm{~d} x}$
(c) $(8 \mathrm{pts}) \int_{0}^{\pi} \frac{1}{2}(\cos x+|\cos x|) \mathrm{d} x$
(d) $(8 \mathrm{pts}) \int t^{-2} \sin \left(1+\frac{1}{t}\right) \mathrm{d} t$
(a)
$\int_{1}^{4}\left(2 x-\frac{1}{\sqrt{x}}\right) \mathrm{d} x=\left[x^{2}-2 \sqrt{x}\right]_{1}^{4}=\left(4^{2}-2 \sqrt{4}\right)-\left(1^{2}-2 \sqrt{1}\right)=(16-2 \cdot 2)-(1-2)=12-(-1)=13$
(b) $\int_{0}^{\frac{\pi^{2}}{4}} \frac{\sin \sqrt{x} \cos \sqrt{x}}{2 \sqrt{x}} \mathrm{~d} x=$?
$u=\sin (\sqrt{x})$
$\mathrm{d} u=(\sin (\sqrt{x}))^{\prime} \mathrm{d} x=\cos (\sqrt{x}) \frac{1}{2 \sqrt{x}} \mathrm{~d} x=\frac{\cos (\sqrt{x})}{2 \sqrt{x}}$
$x=\frac{\pi^{2}}{4}: u=\sin \left(\sqrt{\frac{\pi^{2}}{4}}\right)=\sin \left(\frac{\pi}{2}\right)=1$
$x=0: u=\sin (\sqrt{0})=\sin 0=0$.

$$
\begin{aligned}
\int_{0}^{\frac{\pi^{2}}{4}} \frac{\sin \sqrt{x} \cos \sqrt{x}}{2 \sqrt{x}} \mathrm{~d} x & =\int_{0}^{\frac{\pi^{2}}{4}} \sin \sqrt{x} \frac{\cos \sqrt{x}}{2 \sqrt{x}} \mathrm{~d} x \\
& =\int_{0}^{1} u \mathrm{~d} u \\
& =\left[\frac{1}{2} u^{2}\right]_{0}^{1} \\
& =\frac{1}{2} 1^{2}-\frac{1}{2} 0^{2} \\
& =\frac{1}{2}
\end{aligned}
$$

(c) If x is in $\left[0, \frac{\pi}{2}\right]$, then $\cos x \geq 0$ and so $|\cos x|=\cos x$.

If x is in $\left[\frac{\pi}{2}, \pi\right]$, then $\cos x \leq 0$ and so $|\cos x|=-\cos x$. Thus

$$
\begin{aligned}
\int_{0}^{\pi} \frac{1}{2}(\cos x+|\cos x|) \mathrm{d} x & =\int_{0}^{\frac{\pi}{2}} \frac{1}{2}(\cos x+|\cos x|) \mathrm{d} x+\int_{\frac{\pi}{2}}^{\pi} \frac{1}{2}(\cos x+|\cos x|) \mathrm{d} x \\
& =\int_{0}^{\frac{\pi}{2}} \frac{1}{2}(\cos x+\cos x) \mathrm{d} x+\int_{\frac{\pi}{2}}^{\pi} \frac{1}{2}(\cos x-\cos x \mid) \mathrm{d} x \\
& =\int_{0}^{\frac{\pi}{2}} \cos x \mathrm{~d} x+\int_{\frac{\pi}{2}}^{\pi} 0 \mathrm{~d} x \\
& =[\sin x]_{0}^{\frac{\pi}{2}}+0 \\
& =\sin \left(\frac{\pi}{2}\right)-\sin 0 \\
& =1-0 \\
& =1
\end{aligned}
$$

\#8. (10 pts) Find the linearization of the function $f(x)=\sqrt{x}$ at the point $a=25$. Then, using this linearization, estimate $\sqrt{25.2}$. (No credit will be given for any other methods.) Recall that

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

We compute

$$
\begin{gathered}
f(a)=\sqrt{25}=5 \\
f^{\prime}(x)=(\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}} \\
f^{\prime}(a)=\frac{1}{2 \sqrt{25}}=\frac{1}{10}
\end{gathered}
$$

and so

$$
L(x)=f(a)+f^{\prime}(a)(x-a)=5+\frac{1}{10}(x-25)
$$

Thus

$$
\sqrt{25.2} \approx L(25.2)=5+\frac{1}{10}(25.2-25)=5+\frac{1}{10} \cdot 0.2=5+0.02=5.02
$$

\#9. (10 pts) Consider $f(x)=x^{2}$ for $x \in[0,4]$. Sketch the rectangles associated with the upper sum of $f(x)$ over $[0,4]$ by dividing the interval into four sub-intervals with equal length, and find this upper sum.

Upper sum $=1^{2} \cdot 1+2^{2} \cdot 1+3^{2} \cdot 1+4^{2} \cdot 1=1+4+9+16=5+25=30$
Alternatively, we could use the formula $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$:

$$
\text { Upper sum }=\sum_{i=1}^{4} i^{2} \cdot 1=\frac{4 \cdot(4+1) \cdot(2 \cdot 4+1)}{6}=\frac{4 \cdot 5 \cdot 9}{6}=2 \cdot 5 \cdot 3=30
$$

\#10. (24 pts) Let $y=f(x)=\frac{x^{2}+3 x-3}{x-1}$.
(a) (2 pts) Given that we can write the function as $y=f(x)=x+4+\frac{1}{x-1}$. Indicate the vertical asymptote of $y=f(x)$, and the oblique asymptote of $y=f(x)$ as well. (No technical details are needed to justify your answer.)
(b) (6 pts) Find the intervals where $f(x)$ is increasing and the intervals where $f(x)$ is decreasing. Identify the points where $f(x)$ has a local maximum and the points where $f(x)$ has a local minimum. (It is helpful to use the form $y=f(x)=x+4+\frac{1}{x-1}$ to evaluate $\left.f^{\prime}(x).\right)$
(c) (10 pts) Find the intervals on which $f(x)$ is concave-up and the intervals on which $f(x)$ is concave-down.
(d) (6 pts) Sketch the graph $y=f(x)$ using the information from parts (a)-(c).
(a) From $f(x)=x+4+\frac{1}{x-1}$ we see that $\mathrm{x}=1$ is a vertical asymptote and $\mathrm{y}=\mathrm{x}+4$ is an oblique asymptote.
(b)

$$
f^{\prime}(x)=\left(x+4+\frac{1}{x-1}\right)^{\prime}=1-\frac{1}{(x-1)^{2}}=\frac{(x-1)^{2}-1}{(x-1)^{2}}=\frac{x^{2}-2 x+1-1}{(x-1)^{2}}=\frac{x^{2}-2 x}{(x-1)^{2}}=\frac{x(x-2)}{(x-1)^{2}}
$$

Hence $f^{\prime}(x)=0$ for $x=0$ and $x=2$. Also $f^{\prime}(x)$ is not defined at $x=1$.

	$(-\infty, 0)$	$(0,1)$	$(1,2)$	$(2, \infty)$
x	-	+	+	+
$x-2$	-	-	-	+
$(x-1)^{2}$	+	+	+	+
f^{\prime}	+	-	-	+
f	\nearrow	\searrow	\searrow	\nearrow

Hence f is increasing on $(\infty, 0]$ and on $[2, \infty)$; and f is decreasing on $[0,1)$ and on $(1,2]$.
Moreover f has a local maximum at $x=0$ (with $\left.f(0)=\frac{-3}{-1}=3\right)$ and at $x=2\left(\right.$ with $f(2)=2+4+\frac{1}{2-1}=$ $6+1=7$.
(c)

$$
\begin{gathered}
f^{\prime \prime}(x)=\left(1-\frac{1}{(x-1)^{2}}\right)^{\prime}=0-(-2) \frac{1}{(x-1)^{3}}=\frac{2}{(x-1)^{3}} \\
\begin{array}{c|cc}
& (-\infty, 1) & (1, \infty) \\
\hline(x-1)^{3} & - & + \\
\hline f^{\prime \prime} & - & + \\
f & \cap & \cup
\end{array}
\end{gathered}
$$

Thus f is concave up on $(1, \infty)$ and concave down on $(-\infty, 1)$.

\#11. (15 pts) You are designing a rectangular poster to contain 50 in. ${ }^{2}$ of printing with a 4 -in. margin at the top and bottom and a 2-in. margin on each side. What overall dimension will minimize the amount of paper used. Give an argument to show that your answer does give a minimum value.

We need to minimize the amount of paper $A=(x+4)(y+8)$.
We know that $50=$ Area of the printing $=x y$. So $y=\frac{50}{x}$ and

$$
A=(x+4)\left(\frac{50}{x}+8\right)=50+\frac{200}{x}+8 x+32=\frac{200}{x}+8 x+82 .
$$

The domain for x is $(0, \infty)$. We compute

$$
A^{\prime}=\left(\frac{200}{x}+8 x+82\right)^{\prime}=-\frac{200}{x^{2}}+8=\frac{8 x^{2}-200}{x^{2}}=8 \frac{x^{2}-25}{x^{2}}
$$

A^{\prime} is defined for all x in the domain of $(0, \infty)$ of $x . A^{\prime}=0$ at $x=5$ (note that -5 is not in the domain).

	$(0,5)$	$(5, \infty)$
$x^{2}-25$	-	+
x^{2}	+	+
f^{\prime}	-	+
f	\searrow	\nearrow

Hence A is decreasing on $(0,5)$ and increasing on $(5, \infty)$. Thus A has an absolute minimum at $x=5$. If $x=5$, then $y=\frac{50}{x}=10$ and the dimensions of the paper are

$$
(5+4) \times(10+8)=9 \text { in } \times 18 \text { in }
$$

\#12. (10 pts) Find the area of the region enclosed by the curve $y=x^{4}$ and the line $y=8 x$.
We will first sketch the graph of the two curves:

To find the intersection points:

$$
\begin{gathered}
x^{4}=8 x \\
x^{4}-8 x=0 \\
x\left(x^{3}-8\right)=0
\end{gathered}
$$

So the intersection points are at $x=0$ and $x=2$. From the picture we see that the larger function on the interval $(0,2)$ is $8 x$. Thus

$$
\begin{aligned}
\text { Area } & =\int_{0}^{2}\left(8 x-x^{4}\right) \mathrm{d} x \\
& =\left[4 x^{2}-\frac{1}{5} x^{5}\right]_{0}^{2} \\
& =\left[\frac{20 x^{2}-x^{5}}{5}\right]_{0}^{2} \\
& =\frac{20 \cdot 2^{2}-2^{5}}{5}-0 \\
& =\frac{80-32}{5} \\
& =\frac{48}{5}
\end{aligned}
$$

