INSTRUCTIONS: Present your solution to each problem in a clear and orderly fashion. You must show your work. An answer alone without supporting work will not receive full credit.

Calculators are not allowed on this exam.
\#1. (24 pts) Find the following limits:
(a) $(8 \mathrm{pts}) \lim _{x \rightarrow 0} \frac{\sin 2 x}{x}+\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin 2 x}{x}$
(b) (8 pts) $\lim _{x \rightarrow 1^{-}}(8 x+3) \frac{|x-1|}{x-1}$.
\#2. (24 pts) Find the derivative of the following functions (do not simplify):
(a) (8 pts) $f(x)=\sin ^{2} x+\sin \left(x^{2}\right)+(x+1) \cos x+\frac{\cos x}{x+1}$.
(b) $(8 \mathrm{pts}) f(x)=\tan \left(\frac{1}{x}+\sqrt{1-\sqrt{x}}\right)$
(c) (8 pts) $f(x)=\int_{x}^{x^{2}} \sqrt{1+t^{3}} d t+\int\left(x^{2008}+1\right)^{88} d x$
\#3. (12 pts) Use the definition of the derivative as a limit to calculate $f^{\prime}(x)$ for $f(x)=\frac{1}{x}$. (There will be no credit for other methods).
\#4. (15 pts)
(a) (10 pts) Let y be the implicit function of x determined by $y^{2}-2 x-4 y-1=0$. Find $\frac{d y}{d x}$.
(b) (5 pts) Using part (a), find the equation of the line tangent to the curve $y^{2}-2 x-4 y-1=0$ at the point $P(-2,1)$.
\#5. (12 pts) When a circular plate of metal is heated in an oven, its radius increased at the rate of $0.01 \mathrm{~cm} / \mathrm{min}$. At what rate is the plate's area increasing when the radius is 10 cm ?
\#6. (12 pts) A rock thrown vertically upward reaches a height of $s=24 t-0.8 t^{2}$ meters in t seconds. How long does it take the rock to reach the highest point? And how high does the rock go?
\#7. (32 pts) Evaluate the following integrals:
(a) $(8 \mathrm{pts}) \int_{1}^{4}\left(2 x-\frac{1}{\sqrt{x}}\right) d x$.
(b) $(8 \mathrm{pts}) \int_{0}^{\frac{\pi^{2}}{4}} \frac{\sin \sqrt{x} \cos \sqrt{x}}{2 \sqrt{x}} d x$
(c) $(8 \mathrm{pts}) \int_{0}^{\pi} \frac{1}{2}(\cos x+|\cos x|) d x$
(d) $(8 \mathrm{pts}) \int t^{-2} \sin \left(1+\frac{1}{t}\right) d t$
\#8. (10 pts) Find the linearization of the function $f(x)=\sqrt{x}$ at the point $a=25$. Then, using this linearization, estimate $\sqrt{25.2}$. (No credit will be given for any other methods.)
\#9. (10 pts) Consider $f(x)=x^{2}$ for $x \in[0,4]$. Sketch the rectangles associated with the upper sum of $f(x)$ over $[0,4]$ by dividing the interval into four sub-intervals with equal length, and find this upper sum.
\#10. (24 pts) Let $y=f(x)=\frac{x^{2}+3 x-3}{x-1}$.
(a) (2 pts) Given that we can write the function as $y=f(x)=x+4+\frac{1}{x-1}$. Indicate the vertical asymptote of $y=f(x)$, and the oblique asymptote of $y=f(x)$ as well. (No technical details are needed to justify your answer.)
(b) (6 pts) Find the intervals where $f(x)$ is increasing and the intervals where $f(x)$ is decreasing. Identify the points where $f(x)$ has a local maximum and the points where $f(x)$ has a local minimum. (It is helpful to use the form $y=f(x)=x+4+\frac{1}{x-1}$ to evaluate $f^{\prime}(x)$.)
(c) (10 pts) Find the intervals on which $f(x)$ is concave-up and the intervals on which $f(x)$ is concave-down.
(d) (6 pts) Sketch the graph $y=f(x)$ using the information from parts (a)-(c).
\#11. (15 pts) You are designing a rectangular poster to contain $50 \mathrm{in} .^{2}$ of printing with a 4 -in. margin at the top and bottom and a 2 -in. margin on each side. What overall dimension will minimize the amount of paper used. Give an argument to show that your answer does give a minimum value.
\#12. (10 pts) Find the area of the region enclosed by curve $y=x^{4}$ and the line $y=8 x$.

