Exam 2

Standard Response Questions. Show all your work to receive credit. Please BOX your final answer.

#1. (6 pts) Find the most general antiderivative of $f(x) = x^5 - \sec(c)\tan(x) + \frac{1}{2\sqrt{x}}$.

#2. (8 pts) Determine the value(s) of a such that

$$\int_{a}^{a+1} (2x+3) \,\mathrm{d}x = 10$$

#3. (14 pts)

A small region has the shape of a rectangle attached to a semicircle, so that the diameter of the semicircle is equal to the width of the rectangle. The perimeter is 2 m. What is the width of such a region which has the largest possible area? What is the largest possible area?. Use one of the techniques of MTH 132 to justify that your solution indeed maximizes the area.

#4. (7 pts) Given $f(x) = 5x^{2/3} - 2x^{5/3}$

- (a) (4 pts) Determine all its critical points.
- (b) (4 pts) Classify the critical points as local minima/maxima/neither.

#5. (7 pts) Determine the absolute extrema of the function $f(x) = x - 2\sin x$ on the interval $[0, \pi]$. $(\sqrt{3} \approx 1.73)$

#6. (6 pts) Compute $\lim_{x \to \infty} \left(\sqrt{4x^2 + 3x} - 2x \right)$.

#7. (8 pts) The acceleration of an object moving along the x-axis is $a(t) = 3 \sin t$. What are its velocity and position functions, v(t) and s(t), if v(0) = 1 and s(0) = 3?

- #8. (4 pts) Determine all values of c satisfying the Mean Value Theorem for the function $f(x) = x^3 4x$ on the interval $-1 \le x \le 3$.
 - A. $\left(\frac{7}{3}\right)^{1/2}$ B. $\pm\sqrt{\frac{7}{3}}$ C. 5 D. 3
- #9. (4 pts) If the length of a side of a cube is measured to be 5 cm with a maximum error of 0.1 cm, use differentials to estimate the maximum error in the surface area.
- A. 6 cm^2 B. 11.2 cm^2 C. 3 cm^2 D. 60 cm^2 E. 6 cm#10. (4 pts) Compute $\lim_{n \to \infty} \sum_{i=1}^n \frac{2i}{n^2}$. A. 0 B. 1 C. 2 D. DNE
- #11. (4 pts) Which function should you apply Newton's method to, in order to estimate $\sqrt{5}$?

A.
$$x^2 - 25$$
 B. $\sqrt{5} - x^2$ C. $x - 5$ D. $x^2 - 5$
#12. (4 pts) The derivative of $f(x) = \int_{1}^{2x^2} \frac{\sin t}{1 + t^2} dt$ is
A. $\frac{\sin x}{1 + x^2}$ B. $\frac{\sin(2x^2)}{1 + 4x^4}$ C. $\frac{4x \sin x}{1 + x^2}$ D. $\frac{4x \sin(x^2)}{1 + 4x^4}$

#13. (4 pts) Determine the value of $\int_{-5}^{0} |x+3| dx$. (*Hint: Draw a picture of the region the integral represents, and find the area using simple formulas form geometry.*)

A.
$$-6.5$$
 B. -5.5 C. 0.5 D. 5.5 E. 6.5

#14. (4 pts) Using linear approximation, what is the best estimate of $\sqrt{4.1}$?

A. $2 + \frac{1}{40}$ B. $2 + \frac{1}{20}$ C. $2 + \frac{1}{10}$ D. 2.

#15. (4 pts) Select the true statements about the function $f(x) = \frac{x^3 + 4x}{(x+2)(x-1)}$:

- A. The function has no vertical asymptotes and only one slant asymptote.
- B. The function has only one vertical asymptote and only one slant asymptote.
- C. The function has only two vertical asymptote and no slant asymptotes.
- D. The function has only two vertical asymptote and only one slant asymptote.
- #16. (4 pts) Estimate the area A under the graph y = x(x 2), between x = 0 and x = 4, using 4 rectangles of equal width, with heights of the rectangles determined by the height of the curve at the left endpoints and the right endpoints.
 - A. A = 1 using left endpoints; A = 8 using right endpoints.
 - B. A = -1 using left endpoints; A = 9 using right endpoints.
 - C. A = 10 using left endpoints; A = 2 using right endpoints.
 - D. A = 2 using left endpoints; A = 10 using right endpoints.

#17. (14 pts) The function f(x) has all of the following properties.

1. $\lim_{x \to 2^{-}} f(x) = -\infty$	7. $f(0) = 0.$
2. $\lim_{x \to \infty} f(x) = \infty$	8. $f'(x) > 0$ if $x < -2$ or $x > 5$.
$x \rightarrow 2^+$	9. $f'(x) < 0$ if $-2 < x < 2$ or $2 < x < 5$.
3. $f(2)$ DNE.	10. $f'(5) = 0.$
4. $\lim_{x \to -\infty} f(x) = 0.$	11. $f'(-2) = 0$
5. $f(-2) = 1$	12. $f''(x) > 0$ if $x < -3$ or $x > 2$.
6. $f(5) = 1$	13. $f''(x) < 0$ if $-3 < x < 2$.
Complete the following sentences:	
(a) The domain of the function is:	
(b) Such function must have vertical asymptote(s), with equation(s):	
(c) There must be a horizontal asymptote with equation	
(d) There must be a local maximum of	, and a local minimum of
(e) Such function must have inflection point(s) at $x = $	
(f) The function must be negative on	·

(g) Sketch the curve.

