Standard Response Questions. Show all your work to receive credit. Please BOX your final answer.
\#1. (18 pts)
(a) (6 pts) Find the most general antiderivative of $f(x)=4 \cos x+8$.

Solution:

$$
4 \sin x+8 x+C
$$

(b) (6 pts) Evaluate $\int_{1}^{2} \frac{5-7 x^{6}}{x^{4}} \mathrm{~d} x$.

Solution:

$$
\begin{aligned}
\int_{1}^{2} \frac{5-7 x^{6}}{x^{4}} \mathrm{~d} x & =\int_{1}^{2} 5 x^{-4}-7 x^{2} \mathrm{~d} x \\
& =\left[-\frac{5}{3} x^{-3}-\frac{7}{3} x^{3}\right]_{1}^{2} \\
& =\left(-\frac{5}{3} 2^{-3}-\frac{7}{3} 2^{3}\right)-\left(-\frac{5}{3} 1^{-3}-\frac{7}{3} 1^{3}\right) \\
& =\left(-\frac{5}{24}-\frac{56}{3}\right)-\left(-\frac{5}{3}-\frac{7}{3}\right) \\
& =\frac{-5}{24}+\frac{-56+5+7}{3} \\
& =\frac{-5}{24}+\frac{-44}{3} \\
& =-\frac{5+8 \cdot 44}{24} \\
& =-\frac{5+352}{24} \\
& =-\frac{357}{24}
\end{aligned}
$$

(c) $(6 \mathrm{pts})$ Let $F(x)=\int_{x^{3}}^{1} \frac{1}{t^{2}+1} \mathrm{~d} x$. Find $F^{\prime}(x)$.

Solution:

$$
\begin{aligned}
F^{\prime}(x) & =\left(\int_{x^{3}}^{1} \frac{1}{t^{2}+1} \mathrm{~d} x\right)^{\prime} \\
& =\left(-\int_{1}^{x^{3}} \frac{1}{t^{2}+1} \mathrm{~d} x\right)^{\prime} \\
& =-\frac{1}{\left(x^{3}\right)^{2}+1} \cdot\left(x^{3}\right)^{\prime} \\
& =-\frac{3 x^{2}}{x^{6}+1}
\end{aligned}
$$

\#2. (18 pts)
(a) (8 pts) A particle is moving along a line with acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) given by $a(t)=4 t^{3}+2 \sin t$. Given that the initial velocity is $v(0)=5 \mathrm{~m} / \mathrm{s}$, find the velocity at the time $t=\pi$ seconds.

Solution: Since $v^{\prime}=a$, we know that v is an antiderivative of $4 t^{3}+2 \sin t$. Hence

$$
v=t^{4}-2 \cos t+C
$$

and so

$$
5=v(0)=0^{4}-2 \cos 0+C=-2+C
$$

and

$$
C=5+2=7
$$

Thus

$$
v=t^{4}-2 \cos t+7
$$

and

$$
v(\pi)=\pi^{4}-2 \cos \pi+7=\pi^{4}-2 \cdot(-1)+7=\left(\pi^{4}+9\right) \mathrm{m} / \mathrm{s}
$$

(b) (10 pts) Use a linearization to find a good approximation of $\sqrt{9.01}$.

Solution: Since we can compute $\sqrt{9}$ we use the linearization $L(x)$ of $f(x)=\sqrt{x}$ at $a=9$.

$$
\begin{aligned}
a & =9 \\
f(x) & =\sqrt{x} \\
f^{\prime}(x) & =\frac{1}{2 \sqrt{x}} \\
L(x) & =f(a)+f^{\prime}(a)(x-a) \\
& =\sqrt{9}+\frac{1}{2 \sqrt{9}}(x-9) \\
& =3+\frac{1}{6}(x-9)
\end{aligned}
$$

and so

$$
\sqrt{9.01} \approx L(9.01)=3+\frac{1}{6}(9.01-9)=3+\frac{0.01}{6}=3+\frac{1}{600}=3 \frac{1}{600}
$$

\#3. (18 pts) sx
(a) (10 pts) There are many curves $y=f(x)$ which satisfy the following conditions:

- f is continuous and the curve $y=f(x)$ has a slant (or oblique) asymptote given by $y=x$.
- $f^{\prime}(x)>0$ for $x \in(-\infty,-1) \cup(3, \infty)$ and $f^{\prime}(x)<0$ for $x \in(-1,3)$.
- $f^{\prime \prime}(x)>0$ for $x \in(-\infty,-3) \cup(1, \infty)$ and $f^{\prime \prime}(x)<0$ for $x \in(-3,1)$.

Sketch the graph of one such curve, making sure that all the above conditions are demonstrated by the curve you draw. Identify with a large dot \bullet the locations of any local max/min or points of inflections on your graph, and give the x-values of these points in the boxes below.

Fill in this information:

f has local minimums at these x-values:

$$
\begin{array}{|l|}
\hline x=3 \\
\hline
\end{array}
$$

f has local maximums at these x-values:

$$
x=-1
$$

f has inflection points at these x-values:

$$
x=-3 \quad \text { and } \quad x=1
$$

(b) (8 pts) Find the critical numbers (i.e., critical points) of the function $f(x)=x^{3 / 2}+\frac{6}{\sqrt{x}}$.

Solution: Observe first that the domain of f is $(0, \infty)$.

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{3 / 2}+\frac{6}{\sqrt{x}}\right)^{\prime} \\
& =\left(x^{3 / 2}+6 x^{-1 / 2}\right)^{\prime} \\
& =\frac{3}{2} x^{1 / 2}-\frac{1}{2} 6 x^{-3 / 2} \\
& =\frac{3 x^{1 / 2}}{2}-\frac{3}{x^{3 / 2}} \\
& =\frac{3 x^{1 / 2} x^{3 / 2}-3 \cdot 2}{2 x^{3 / 2}} \\
& =\frac{3}{2} \frac{x^{2}-2}{x^{3 / 2}}
\end{aligned}
$$

$f^{\prime}(x)=0$ when $x^{2}-2=0$ and so for $x= \pm \sqrt{2}$. Of these two only $\sqrt{2}$ is the domain of f.
$f^{\prime}(x)$ is not defined when $x^{3 / 2}=0$ and so at $x=0$. But 0 is not in the domain of f, so the only critical number is

$$
x=\sqrt{2}
$$

\#4. (18 pts) Suppose $f(x)=\frac{x}{x^{2}+1}, \quad f^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}, \quad f^{\prime \prime}(x)=\frac{2\left(x^{3}-3 x\right)}{\left(x^{2}+1\right)^{3}}$.
Answer the following questions or enter none in the case of no answer.
(a) (4 pts) Does f have symmetry about the y-axis (even function), symmetry about the origin (odd function), both, or neither? Justify your answer.

Solution:

$$
f(-x)=\frac{-x}{(-x)^{2}+1}=-\frac{x}{x^{2}+1}=-f(x) \neq f(x)
$$

Hence f is an odd function, but not an even function.
(b) (7 pts) Find the largest interval(s) where f is increasing and the largest interval(s) where f is decreasing. Express you answer using interval notation.

Solution: We know that $f^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}$.
Note that $1-x^{2}=0$ for $x= \pm 1$. Also $x^{2}+1 \geq 1$ and so $x^{2}+1$ is never 0 . Thus $f^{\prime}(x)$ is defined for all x, and $f^{\prime}(x)=0$ for $x= \pm 1$. We compute

	$(-\infty,-1)$	$(-1,1)$	$(1, \infty)$
$\left(x^{2}-1\right)$	+	-	+
$\left(x^{2}+1\right)^{2}$	+	+	+
f^{\prime}	+	-	+
f	\nearrow	\searrow	\nearrow

Since f is continuous we conclude that

$$
f(x) \text { is increasing on }(-\infty,-1] \text { and }[1, \infty)
$$

and

$$
\begin{array}{|l|}
\hline f(x) \text { is decreasing on }[-1,1] \\
\hline
\end{array}
$$

(c) (7 pts) Find the interval(s) where f is concave up and the largest interval(s) where f is concave down. Express you answer using interval notation.

Solution: We know that $f^{\prime \prime}(x)=\frac{2\left(x^{3}-3 x\right)}{\left(x^{2}+1\right)^{3}}$. Note that

$$
x^{3}-x=\left(x^{2}-3\right) x
$$

so $f^{\prime \prime}(x)=0$ at $x= \pm \sqrt{3}$ and at $x=0 . x^{2}+1$ is never zero, so $f^{\prime \prime}(x)$ is defined for all x.
We compute

	$(-\infty,-\sqrt{3})$	$(-\sqrt{3}, 0)$	$(0 \sqrt{3})$	$(\sqrt{3}, \infty)$
$x^{2}-3$	+	-	-	+
x	-	-	+	+
$\left(x^{2}+1\right)^{3}$	+	+	+	+
$f^{\prime \prime}$	-	+	-	+
f	\cap	\cup	\cap	\cup

Thus

$$
f(x) \text { is concave up on }(-\sqrt{3}, 0) \text { and }(\sqrt{3}, \infty)
$$

and

$$
f(x) \text { is concave down on }(-\infty,-\sqrt{3}) \text { and }(0, \sqrt{3})
$$

\#5. (18 pts)
(a) (8 pts) Consider the problem of finding the point (x, y) that lies on the curve $y=x^{2}+1$ in the first quadrant and which is closest to the point $(0,3)$.
Define a function f of x which, if minimized, will give the x-coordinate of the point on the curve closest to $(0,3)$. Also give the domain of this function which is appropriate for the minimization problem.

Solution: The distance from $(0,3)$ to (x, y) is

$$
d=\sqrt{(x-0)^{2}+(y-3)^{2}}=\sqrt{x^{2}+(y-3)^{2}}
$$

Since (x, y) is on the curve $y=x^{2}+1$, we get

$$
d=\sqrt{x^{2}+\left(x^{2}+1-3\right)^{2}}=\sqrt{x^{2}+\left(x^{2}-2\right)^{2}}
$$

So we can minimize the function

$$
d(x)=\sqrt{x^{2}+\left(x^{2}-2\right)^{2}}
$$

But for easier computation it would be better to minimize the function

$$
d^{2}(x)=x^{2}+\left(x^{2}-2\right)^{2}
$$

Both functions are defined for all real numbers x. But we are supposed to find a point in the first quadrant. Some people define the first quadrant by $x \geq 0$ and $y \geq 0$, but others as $x>0$ and $y>0$. So both

$$
[0, \infty) \text { and }(0, \infty)
$$

are acceptable answers for the domain of the function.
(b) (10 pts) Find the absolute maximum and the absolute minimum values of

$$
f(x)=x^{2}(2 x-8)
$$

on the interval $[-1,2]$.

Solution: Since f is continuous, we can use the closed interval method.

$$
f(x)=x^{2}(2 x-8)=2 x^{2}(x-4)=2\left(x^{3}-4 x^{2}\right)
$$

and so

$$
f^{\prime}(x)=2\left(x^{3}-4 x^{2}\right)^{\prime}=2\left(3 x^{2}-8 x\right)=2 x(3 x-8)
$$

Hence $f^{\prime}(x)$ is defined for all x. Also $f^{\prime}(x)=0$ for $x=0$ and $x=\frac{8}{3}=2 \frac{2}{3}$. Of these two only $x=0$ is in the interval $(-1,2)$. So we need to compute $f(x)$ for $x=-1,0$ and 2 . Using $f(x)=2 x^{2}(x-4)$ we compute

$$
\begin{aligned}
& f(-1)=2 \cdot(-1)^{2} \cdot(-1-4)=2 \cdot 1 \cdot(-5) \\
&=-10 \\
& f(0)=2 \cdot 0^{2} \cdot(0-4) \\
& f(2)=2 \cdot 2^{2} \cdot(2-4)=2 \cdot 4 \cdot(-2)=-16
\end{aligned}
$$

Of these three, 0 is the largest and -16 the smallest. Thus
0 is the absolute maximum value and -16 is the absolute minimum value of f on $[-1,2]$.

Multiple Choice Circle the best answer. No work needed.
No partial credit available. No credit will be given for choices not clearly marked.
\#6. (7 pts) If the Mean Value Theorem is applied to the function $f(x)=x^{2}-2 x$ on the interval [1,4] which of the following values of c satisfy the conclusion of the Mean Value Theorem in this case?
A. $c=1$
B. $c=\frac{3}{2}$
C. $c=2$
D. $c=\frac{5}{2}$
E. $c=3$

Solution: We need to find c in $(1,4)$ with

$$
f^{\prime}(c)=\frac{f(4)-f(1)}{4-1}=\frac{\left(4^{2}-2 \cdot 4\right)-\left(1^{2}-2 \cdot 1\right)}{3}=\frac{(16-8)-(-1)}{3}=\frac{9}{3}=3
$$

Note that

$$
f^{\prime}(x)=\left(x^{2}-2 x\right)^{\prime}=2 x-1
$$

So

$$
\begin{gathered}
2 c-1=3 \\
2 c=3+1=4 \\
c=2
\end{gathered}
$$

Thus C. is the correct answer.
\#7. (7 pts) Using three equally-spaced rectangles of equal width, find the upper sum approximation of the area between the curve $y=x^{2}$ and the x-axis from $x=-2$ to $x=4$.
A. 8
B. 16
C. 24
D. 40
E. 48

Solution:

Each interval has length 2 . So the upper sum approximation is

$$
2^{2} \cdot 2+2^{2} \cdot 2+4^{2} \cdot 2=8+8+32=48
$$

So the correct answer is E .
\#8. (7 pts) Evaluate $\int_{0}^{3} \sqrt{9-x^{2}}$. (Hint: A definite integral represents an area.)
A. $\frac{3 \pi}{4}$
B. $\frac{3 \pi}{2}$
C. $\frac{9 \pi}{4}$
D. $\frac{9 \pi}{2}$
E. 9π

Solution:

The definite integral is the area of the region between $y=0$ and $y=\sqrt{9-x^{2}}$ from $x=0$ to $x=3$. This region is exactly one quarter of a circle of radius $r=3$. The area of a circle of radius r is πr^{2}. Thus

$$
\int_{0}^{3} \sqrt{9-x^{2}} \mathrm{~d} x=\frac{1}{4} \pi 3^{2}=\frac{9}{4}
$$

Hence C. is the correct answer.

\#9. (7 pts) Which of the following is the equation for the horizontal asymptote for the curve $y=\frac{9 x-2}{5-2 x}$?
A. $y=\frac{9}{2}$
B. $y=-\frac{9}{2}$
C. $y=0$
D. $y=-\frac{5}{2}$
E. $y=\frac{5}{2}$

Solution:

$$
\lim _{x \rightarrow \pm \infty} \frac{9 x-2}{5-2 x}=\lim _{x \rightarrow \pm \infty} \frac{x\left(9-\frac{2}{x}\right)}{x\left(\frac{5}{x}-2\right)}=\lim _{x \rightarrow \pm \infty} \frac{9-\frac{2}{x}}{\frac{5}{x}-2}=\frac{9-0}{0-2}=-\frac{9}{2}
$$

So B. is the correct answer.
\#10. (7 pts) $\int_{0}^{4}|3-x| \mathrm{d} x=$?
A. 6
B. 5
C. 4
D. 3
E. 2

Solution 1:

The definite integral is the area of the region between $y=0$ and $y=|3-x|$ from $x=0$ to $x=4$. This region consists of two triangles: One of height 3 and base 3 and one of height 1 and base 1 . The area of a triangle with height h and base b is $\frac{1}{2} h b$. So

$$
\int_{0}^{4}|3-x| \mathrm{d} x=\frac{1}{2} \cdot 3 \cdot 3+\frac{1}{2} \cdot 1 \cdot 1=\frac{9+1}{2}=\frac{10}{2}=5
$$

Hence B. is the correct answer.

Solution 2: If $x<3$, then $3-x>0$ and so $|3-x|=3-x$. If $x>3$, then $3-x<0$ and so $|3-x|=$ $-(3-x)=x-3$. Thus

$$
\begin{aligned}
\int_{0}^{4}|3-x| \mathrm{d} x & =\int_{0}^{3}|3-x| \mathrm{d} x+\int_{3}^{4}|3-x| \mathrm{d} x \\
& =\int_{0}^{3} 3-x \mathrm{~d} x+\int_{3}^{4} x-3 \mathrm{~d} x \\
& =\left[3 x-\frac{1}{2} x^{2}\right]_{0}^{3}+\left[\frac{1}{2} x^{2}-3 x\right]_{3}^{4} \\
& =\left(3 \cdot 3-\frac{1}{2} 3^{2}\right)-\left(3 \cdot 0-\frac{1}{2} 0^{2}\right)+\left(\frac{1}{2} 4^{2}-3 \cdot 4\right)-\left(\frac{1}{2} 3^{2}-3 \cdot 3\right) \\
& =\left(9-\frac{9}{2}\right)-0+(8-12)-\left(\frac{9}{2}-9\right) \\
& =\frac{9}{2}-4+\frac{9}{2} \\
& =9-4 \\
& =5
\end{aligned}
$$

So B. is the correct answer.
\#11. (7 pts) The graph of the first derivative $f^{\prime}(x)$ of a function $f(x)$ is shown. At what value of x does f have a local maximum?
A. $x=a$
B. $x=b$
C. $x=c$
D. $x=d$
E. $x=e$

Solution: We use the first derivative test: f has a local maximum at $x=a$ if f changes from increasing to decreasing, and so if f^{\prime} changes from positive to negative. According to the graph of $f^{\prime}(x)$ this happens only at $x=a$. So A. is the correct answer.
\#12. (7 pts) Which of the following definite integrals is equivalent to the following limit of Riemann sums?

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{8+\frac{5 i}{n}} \cdot \frac{5}{n}
$$

A. $\int_{8}^{13} \sqrt{8+5 x} \mathrm{~d} x$
B. $\int_{0}^{5} \sqrt{8+x} \mathrm{~d} x$
C. $\int_{0}^{1} \sqrt{8+5 x} \mathrm{~d} x$
D. $\int_{0}^{5} 5 \sqrt{8+x} \mathrm{~d} x$
E. none of the above

Solution: According to the Right End Point Rule

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$. So we need to find f, a and b such that

$$
f(a+i \Delta x) \cdot \Delta x=\sqrt{8+\frac{5 i}{n} \cdot \frac{5}{n}}
$$

To identify the various terms better it is best to isolate the coefficient of i :

$$
\begin{aligned}
& f(a+i \Delta x) \cdot \Delta x \\
= & \sqrt{8+i \frac{5}{n}} \cdot \frac{5}{n}
\end{aligned}
$$

So we can choose $f(x)=\sqrt{x}, a=8$ and $\Delta x=\frac{5}{n}$. It remains to compute b. From $\Delta x=\frac{b-a}{n}$ we see that

$$
b=a+n \Delta x=8+n \frac{5}{n}=8+5=13
$$

Thus the limit of Rieman sums is equal to

$$
\int_{8}^{13} \sqrt{x} d x
$$

Unfortunately this is not one of the answers. Lets get back to the equation to solve

$$
\begin{aligned}
& f(a+i \Delta) \cdot \Delta x \\
= & \sqrt{8+i \frac{5}{n}} \cdot \frac{5}{n}
\end{aligned}
$$

and see whether we can find a different solution. If we look at the possible answers, a is either 8 or 0 . We tried $a=8$, but it did not work. To try $a=0$ we write the equation as

$$
\begin{aligned}
& f(a+i \Delta) \cdot \Delta x \\
= & \sqrt{8+\left(0+i \frac{5}{n}\right)} \cdot \frac{5}{n}
\end{aligned}
$$

So we can choose $f(x)=\sqrt{8+x}, a=0$ and $\Delta x=\frac{5}{n}$. Thus $b=a+n \Delta x=0+n \frac{5}{n}=5$ and so the limit of Riemann sums is equal to

$$
\int_{0}^{5} \sqrt{8+x} \mathrm{~d} x
$$

Thus B. is the correct answer.
\#13. (7 pts) A farmer wants to build a rectangular pen which will be bounded on one side by a river and on the other three sides by a wire fence. If the farmer has 60 m of wire to use, what is the largest area the farmer can enclose.

A. $200 \mathrm{~m}^{2}$
B. $400 \mathrm{~m}^{2}$
C. $450 \mathrm{~m}^{2}$
D. $600 \mathrm{~m}^{2}$
E. $900 \mathrm{~m}^{2}$

Solution: We are trying to maximize the area

$$
A=x y
$$

The farmer has 60 m of wire so

$$
x+2 y=60
$$

It is easier to solve for x than for y. So I choose y as the independent variable.

$$
x=60-2 y \quad \text { and } \quad A=x y=(60-2 y) y=60 y-2 y^{2}
$$

Both x and y can not be negative. So $60-2 y=x \geq 0$ and $y \geq 0$. Hence $0 \leq y \leq 30$.
We compute

$$
\frac{\mathrm{d} A}{\mathrm{~d} y}=\frac{\mathrm{d}}{\mathrm{~d} y}\left(60 y-2 y^{2}\right)=60-4 y=4 \cdot(15-y)
$$

Hence $\frac{\mathrm{d} A}{\mathrm{~d} y}$ is defined for all y, and $\frac{\mathrm{d} A}{\mathrm{~d} y}=0$ for $y=15$.
To justify that maximum value occurs at $y=15$. one can use the closed interval method. If $y=0$, then $A=x y=0$. If $y=15$, then $x=60-2 \cdot 15=30$ and $A=x y=15 \cdot 30=450$. If $y=30$ then $x=0$ and $A=x y=0.450$ is the largest of these three numbers, so the maximal area is $450 \mathrm{~m}^{2}$. Thus C. is the correct answer.
(One also could have use the First Derivative Test for Extreme Values: Since $\frac{\mathrm{d} A}{\mathrm{~d} y}=4 \cdot(15-y)$ we see that $\frac{\mathrm{d} A}{\mathrm{~d} y}>0$ for $y<15$, and $\frac{\mathrm{d} A}{\mathrm{~d} y}<0$ for $y>15$. Hence A has a maximum value at $y=15$.)
\#14. (7 pts) Suppose $\int_{2}^{5} f(x) \mathrm{d} x=3$ and $\int_{2}^{3} f(x) \mathrm{d} x=-4$. Find $\int_{3}^{5} 2 f(x) \mathrm{d} x$.
A. -1
B. 7
C. -2
D. 14
E. 28

Solution: We have

$$
3=\int_{2}^{5} f(x) \mathrm{d} x=\int_{2}^{3} f(x) \mathrm{d} x+\int_{3}^{5} f(x) \mathrm{d} x=-4+\int_{3}^{5} f(x) \mathrm{d} x
$$

and so

$$
\int_{3}^{5} f(x) \mathrm{d} x=3-(-4)=7
$$

and

$$
\int_{3}^{5} 2 f(x) \mathrm{d} x=2 \int_{3}^{5} f(x) \mathrm{d} x=2 \cdot 7=14
$$

Thus D. is the correct answer.

