Standard Response Questions. Show all your work to receive credit. Please BOX your final answer.
\#1. (18 pts)
(a) (10 pts) Consider the curve $y^{2}+x y+x^{3}=3$. Find the slope of the curve at the point $(1,-2)$.
(b) (8 pts) If $f(x)=\sec \left(\sin \left(x^{2}+x\right)\right.$), what is $f^{\prime}(x)$? (Do not simplify your answer!).
\#2. (18 pts) Consider $f(x)=\sqrt{1-2 x}$.
(a) (12 pts) Use the definition of the derivative to find $f^{\prime}(x)$.
(b) (6 pts) Use part (a) to find an equation of the tangent line of $f(x)$ at $x=-4$.
\#3. (18 pts) A filter filled with liquid is in the shape of a vertex-down cone with a height of 8 inches and a diameter of 6 inches at its open (upper) end. If liquid drips out of the bottom of the filter at the constant rate of $7 \mathrm{in}^{3} / \mathrm{min}$, how fast is the level of the liquid dropping when the liquid is 5 inches deep?
\#4. (18 pts) A particle moves according to the law of motion $s=t^{3}-6 t^{2}+5 t, t \geq 0$, where t is measured in seconds and s in feet.
(a) (3 pts) Find the average velocity over the interval $[0,2]$.
(b) (4 pts) Find the velocity at the time t.
(c) (3 pts) Whats is the acceleration after 6 seconds?
(d) (3 pts) What is the speed of the particle when the acceleration is zero?
(e) (5 pts) For $t \geq 0$, when is the particle moving in the positive direction?
\#5. (18 pts)
(a) (10 pts) Use the Intermediate Value Theorem to show that there is a solution to the equation $\cos x=\sqrt{x}$. (Make sure to justify why you can apply the IVT).
(b) (8 pts) Consider the function $f(x)=\frac{x+2}{\cos (x)}$.

Where is the function continuous on $[0,2 \pi]$? (Express your answer in interval notation)

Multiple Choice Circle the best answer. No work needed. No partial credit given.
\#6. (7 pts) For which real number c does $\lim _{x \rightarrow 2} \frac{c x^{2}+4}{x-2}$ exist and is finite?
A. $c=-2$,
B. $c=-1$,
C. $c=0$,
D. $c=1$
E. $c=2$.
\#7. $(7 \mathrm{pts})$ Compute $\lim _{x \rightarrow-2^{-}} \frac{\left|x^{2}-4\right|}{x+2}$.
A. $-\infty$,
B. -4 ,
C. 0 ,
D. 4 E. ∞.
\#8. (7 pts) Compute the limit: $\lim _{x \rightarrow-3^{+}} \frac{x-2}{x^{2}(x+3)}$.
A. $-\infty$,
B. -3 ,
C. -1 ,
D. 1 E. ∞.
\#9. (7 pts) For what value of k will $f(x)$ be continuous for all values of x ?

$$
f(x)= \begin{cases}\frac{x^{2}-3 k}{x-3} & \text { if } x \leq 2 \\ 8 x-k & \text { if } x>2\end{cases}
$$

A. $k=2$,
B. $k=3$,
C. $k=4$,
D. $k=5$
E. No value of k.
\#10. (7 pts) Given the graph $y=g(x)$ below, find the limit $\lim _{h \rightarrow 0} \frac{g(1+h)-g(1)}{h}$.

A. 0 ,
B. 1 ,
C. 2 ,
D. -1
E. Does not exist.
\#11. (7 pts) Let $h(x)=\frac{2 G(x)}{1+F(x)}$. Calculate $h^{\prime}(2)$ if $F(2)=-3, G(2)=5, F^{\prime}(2)=2$ and $G^{\prime}(2)=6$.
A. 6 ,
B. 4 ,
C. $44 / 9$,
D. 22 E. -11 .
\#12. (7 pts) If $T(x)=2 \sqrt{x}-\frac{1}{2 \sqrt{x}}$, then $T^{\prime}(x)=$
A. $x+\frac{1}{x^{\frac{3}{2}}}$,
B. $\frac{1}{x^{\frac{1}{2}}}+\frac{1}{x^{\frac{3}{2}}}$,
C. $\frac{1}{x^{\frac{1}{2}}}+\frac{1}{4 x^{\frac{3}{2}}}$,
D. $\frac{4 x-1}{4 x^{\frac{3}{2}}}$
E. $\frac{4}{x^{\frac{1}{2}}}+\frac{1}{x^{\frac{3}{2}}}$
\#13. (7 pts) Find $y^{\prime \prime}$ if $y=\sin \left(x^{2}\right)$.
A. $2 \cos \left(x^{2}\right)-4 x^{2} \sin \left(x^{2}\right)$,
B. $\cos \left(x^{2}\right)-\sin \left(x^{2}\right)$
C. $2 x \cos \left(x^{2}\right)-4 x^{2} \sin \left(x^{2}\right)$
D. $2 x \cos \left(x^{2}\right)+2 x \sin \left(x^{2}\right)$,
E. $-\sin \left(x^{2}\right)$.
\#14. (7 pts) Find the limit $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}+6 x\right)}{x}$.
A. 0 ,
B. 1 ,
C. -1 ,
D. 6
E. Does not exist.

