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Chapter 1

Introduction

cintro
These lecture notes are devoted to the study of finite groups via their p-local subgroups.

Let p be a prime and G a finite group then a p-local subgroup of G is a subgroup of the form
NG(P ) where P is a non-trivial p-subgroup of G. Finite groups can often be characterized
in terms of their p-local subgroups.

In general given the task to identify a finite group one usually tries to find some object
the group is acting on in a reasonable nice way. These object are usually represented by
some proper subgroups of the group and looking at p-local subgroups is often the only way
or at least the most convenient way to locate proper subgroups of a group.

Before we start to investigate abstractly the p-local structure of finite groups we will have
a look at the p-locals of one particular class of groups, the general linear groups. Hopefully
this example will show that the p-local structure of a group carries a good amount of
information about the group.
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Chapter 2

The p-local structure of GLK(V )

cpgl
Let K be a finite field in characteristic p and V a finite dimensional vector space over

K. Let n = dimK V . The goal of this chapter is to recover the projective space associate
to V in terms of the maximal p-local subgroups of G = GLK(V ). Let P be a non-trivial
p-subgroup of G. Put W = CV (P ). The number of vectors in W is |K|dimW which is a
power of p and so is divisible by p. On th otherhand, as P is a p-group, the length of every
non-trivial orbit of P on W is divisible by p and so the number of fixed point of P on W
equals |W | modulo p. Thus P has to centralize a vector besides the zero vector and so W is
a proper subspace of V . Note that NG(P ) ≤ NG(W ). Let QW = CG(W )∩CG(V/W ). Then
Q is an elementary abelian subgroup normal subgroup of NG(W ). Since CV (QW ) = W ,
NG(QW ) ≤ NG(W ) and so

NG(P ) ≤ NG(QW ) = NG(W )

We conclude that the maximal p-locals of G are exactly the normalizers of proper sub-
spaces of V and so there exists a one to one correpondence between the maximal p-locals
of G and the proper subspaces of V . Recall (or just believe for now) that G is basically
the automorphism group of the projective space PV associated to V . PV consists of all the
proper subspaces of V together with the incidence relation given by inclusion.

Definition 2.1 d-flag

1. A flag F in PV is a chain V1 < V2 < . . . < Vr of proper subspaces of V .

2. The type of the flag V1 < V2 < . . . < Vr is the r-tuple (dimK V1, . . . ,dimk Vr)

Lemma 2.2 GLK(V ) acts transitively on the flags of given type in PV . glft

Proof: Let V1 < . . . < Vr and W1 < . . . < Wr be flags with the same type (t1, . . . , tr).
Let v1, . . . , vn be a basis for V so that v1, . . . , vti is a basis for Vi ( start with a basis for V1

and then extend to a basis for V2 and so on). Similarly let w1, . . . , wn be a basis for V so
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that w1, . . . , wti is a basis for Wi. Define g ∈ G by g : vi 7→ wi. Then V g
i = Wi and the

lemma is established.

Let us try to recover this incidence relation in terms of the maximal p-locals. For this
let X and Y be proper subspaces of V of dimension x and y respectively. The next couple of
lemmas are used to show that X and Y are incident if and only if NG(X)∩NG(Y ) contains
a Sylow p-subgroup of G.

Lemma 2.3 Let W be a proper subspace of V .qwis

(a) Let U be a QW -submodule of V . Then U ≤W or W ≤ U .

(b) W is the unique proper NG(W )-submodule in V .

(c) QW = Op(NG(W )).

Proof: (a) Let U be any QW -submodule of V and assume that U 6≤W . Pick u ∈ U \W .
Let v1, . . . , vn be a basis for V so that v1, . . . , vk is a basis for W and vn = u. Let j ≤ k
and t be the linear map defined by vn 7→ vn + vj and vi 7→ vi for all i 6= n. Then t ∈ QW .
Also ut = u+ vj . Since QW normalizes U we conclude vj = ut − u ∈ U . Hence W ≤ U .

(b) This follows from (a) as NG(W ) acts irreducibly on W and V/W .

(c) Let Q = Op(NG(W )). Then by (b), CV (Q) = W = [V,Q] and so Q ≤ QW .

Lemma 2.4 Let S be a Sylow p-subgroup of G and 0 = V0 < V1 < . . . < Vr = V be asylgl
composition series for S on V . Then:

(a) (V1, V2, . . . , Vr−1) is a maximal flag, dimVi = i and r = n = dimV .

(b) S = {g ∈ GLK(V ) | [Vi, g] ≤ Vi−1 for all 1 ≤ i < r}.

(c) For 0 ≤ i ≤ n, Vi is the unique i-dimensional S-submodule in V .

(d) Every flag in PV is normalized by a Sylow p-subgroup of G.

Proof: (a) Since S acts irredubibly on Vi/Vi−1 and CVi/Vi−1
(S) 6= 0, S centralizes

Vi/Vi−1. Therefore Vi/Vi−1 is 1-dimensional. Thus (a) holds.

(b) Let S∗ be the group on the right hand side of the equation. Then S ≤ S∗ and
S∗ consists of all lower triangular matrices with respect to the basis v1, . . . , vn. Thus

|S∗| = |K|
n(n−1)

2 and so S∗ is a p-group. As S is a Sylow p-subgroup, S = S∗.

(c) Let U be any i-dimensional S-submodule in V . By (b) QVi ≤ S and so by 2.3a,
U ≤ Vi or Vi ≤ U . In any case U = Vi as U and Vi have the same dimension.

(d) holds since by 2.2 every flag is conjugate to a subflag of V1 < . . . < Vr−1.

Lemma 2.5 Let X and Y be proper subspaces of V . Then X and Y are incident if andXYin
only if NG(X) ∩NG(Y ) contains a Sylow p-subgroup of G.
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Proof: Suppose first that X ≤ Y . Then by 2.4.d NG(X) ∩ NG(Y ) contains a Sylow
p-subgroup of G.

Conversely suppose that NG(X) ∩ NG(Y ) contains a Sylow p-subgroup S of G. Then
by 2.4.c, X = Vi and Y = Vj for some i and j. So X and Y are incident.

Definition 2.6 dig

1. An incidence geometry is a tuple (G, R, I, t) so that

(a) G and I are sets.

(b) R is a symmetric and reflexive relation on G, called the incidence relation.

(c) t is a function from G to I, called the type function.

(d) If a and b are incident and have the same type then a = b.

2. Morphism and isomorphism of incidence geometries are defined in an obvious way.
Also for incidence geometries over a given type set type preserving morphism and
isomorphism can be defined.

The projective space PV is an example of an incidence geometry with the type of a
subspace being its dimension. Let M be the set of maximal p-locals of G. Let the type of
a maximal p-local be its conjugacy class and define two maximal p-locals to be incidence if
they contain a common Sylow p-subgroup of G. Then we have proved thatM is isomorphic
PV .

Let H be an arbitrary group and p prime. Let M(p,H) be the set of maximal p-locals
of H and define two maximal p-locals to be incident if their intersection contains a Sylow
p-subgroup of H.

Lemma 2.7 M(p,H) is an incidence geometry if and only if NH(T ) ≤M for each M ∈ MpHig
M(p,H) and each T ∈ Sylp(M).

Proof: The incidence relation is clearly symmetric. It is reflexive if and only if each
maximal p-local contains a Sylow p-subgroup of H. Also if M is a maximal p-local and
T ≤∈ Sylp(M) with NH(T ) ≤M , then T is a Sylow p-subgroup of H. Indeed let T ≤ S ∈
Syl(H then T ≤ NS(T ) ≤M and so NS(T ) = T and S = T . So we may assume from now
on that each maximalp-local contains a Sylow p-subgroup of H.

Suppose now that NH(T ) 6≤M for some maximal p-local M and some Sylow p-subgroup
T of M . Let h ∈ NH(T ) \ M . If M = Mh then also Op(M) = Op(M)h and so h ∈
NH(Op(M)) ≤M , a contradiction. Thus M 6= Mh and since T ≤M ∩Mh, M and Mh are
incident and have the same type. Thus M(p,H) is not a incidence relation in this case.

Suppose now that NH(T ) ≤M for each maximal p-local M and each Sylow p-subgroup
T of M . Let M1,M2 ∈ M(p,H) be incident and of the same type. Then there exists a
Sylow p-subgroup T of H and h ∈ H with T ≤ M1 ∩M2 and Mh

1 = M2. Then T and T h
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are both Sylow p-subgroups of M2 and so T = T hm for some m ∈ M2. Then Mhm
1 = M2

and hm ∈ NH(T ) ≤M1. Hence M1 = M2 and M(p,H) is an incidence geometry.

From the proof of the preceeding lemma we get

Lemma 2.8 Let H be a finite group, p a prime, S a Sylow p-subgroup of H and B =pig
NG(S). Let

B(p,H) = {P ≤ H | Bh ≤ P for some h ∈ H}.

Define two members of B(p,H) to be incident if their intersection is still in B(p,H) and
let the type of P ∈ B(H) be PH , the conjugacy class of P under H.

Then P(p,H) is an incidence geometry. More general, any subset of B(p,H) is an
incidence geometry.

The following lemma, which is an immediate consequence of 2.3a, c, gives a second group
theoretic interpretation of the incidence in M for G = GLK(V ).

Lemma 2.9 Let X and Y be proper subspaces of V . The X and Y are incident if andivqw
only if Op(NG(X)) ≤ NG(Y ).



Chapter 3

The p-local structure of Sym(Ω)

cpso

Let Ω be a finite set and p a prime. This chapter investigates the maximal p-locals of
G = Sym(Ω). For this let M be a maximal p-local subgroup of G, Q = QM = Op(M) and
X = XM = Ω1Z(QM ). Then X is an elementary abelian normal p-subgroup of M and by
the maximality of M , M = NG(X). Let Ω1, . . . ,Ωk be the orbits for X on Ω with |Ω1| > 1.
Since X is normal in M , each Ωi is a block for M and M acts on {Ω1, . . . ,Ωk}. Choose
notation so that {Ω1, . . . ,Ωr} is the orbit of Ω1 under M . For 1 ≤ i ≤ r, let Ai be the
image of X in Sym(Ωi) (viewed as a subgroup of Sym(Ω)). Let A = A1A2 . . . Ak. Then M
normalizes A and as A is a non-trivial p-group, M = NG(A) by the maximality of M . Put
Γ = Ω \

⋃r
i+1 Ωi and B = A1. Then B is an elementary abelian p-subgroup acting regularly

on Ω1. It is easy to compute that NSym(Ω1)(B) ∼= B o Aut(B) and

M = NG(A) ∼= (B o Aut(B)) o Sym(r)× Sym(Γ)

Note that M is up to conjugation in Sym(Ω) uniquely determined by |B| and r (and |Γ|).
We still need to check for which values of |B| and r the resulting M is actually maximal. If
not then M is properly contained in some maximal p-local M∗. Define Ω∗i , B

∗, A∗ and Γ∗

as above. Since M has only two orbits namely Γ and Ω \ Γ on Ω, M∗ either has the same
orbits or is transitive. This leads to the following three cases:

1. Γ = Γ∗

2. Γ = Ω \ Γ∗

3. Γ∗ = ∅ and Γ 6= ∅.

In the first case, Ω∗1 is block for M on Ω \ Γ. Also we may assume that Ω∗1 ∩ Ω1 6= ∅.
Since NM (B) acts primitively on Ω1 we conclude Ω1 ⊆ Ω∗1. As M is primitive on ΩM

1 ,
we conclude that Ω1 = Ω∗1 or Ω1 6= Ω∗1 = Ω \ Γ. The first possibility gives |M | = |M∗|
and M = M∗ a contradiction. The second possibility leads to B o Aut(B) ≤ GL(B∗) and
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B o Aut(B) fixes all but |B| vectors in B∗. But then |B∗| − |B| ≤ |B
∗|
p . Hence |B∗| = |4|

and |B| = 2. So (|B|, r) = (2, 2) in this case.
In the second case Sym(Γ) and Sym(Γ∗) are both contained in M∗ and so M∗ =

Sym(Γ)×Sym(Γ∗). This implies (|Γ|, p) ∈ {(2, 2), (3, 3), (4, 2)}. Also |Ω∗| 6= |Ω1| or |Ω1| > 4,
since otherwise M = M∗.

In the third case, we may assume that Γ ∩Ω∗1 6= ∅. Since Sym(Γ) ≤M ≤M∗ and Ω∗1 is
a block for M∗, we get Γ ⊆ Ω∗1. Hence B∗ o Aut(B∗) is a primitive subgroup of Sym(Γ∗)
containing a 2-cycle. Thus B∗ o Aut(B∗) = Sym(Γ∗) and |B∗| ∈ {2, 3, 4}. Since CM (Γ) is
transitive on Ω \ Γ and also normalizes Ω∗1 we either have Ω∗1 = Γ or Ω∗1 = Ω.

We conclude that M is a maximal p-local maximal unless (|Γ|, p) ∈ {(2, 2), (3, 3), (4, 2)}
or (|B|, r) = (2, 2). In the exceptionell cases, M is not maximal unless M = Sym(2) ×
Sym(4) in Sym(6).

It should be clear by now that the p-local structure of Sym(Ω) is not nearly as nice as
the one for GLK(V ) in the right characteristic. Here we just list a view differences:

1. Sym(Ω) usually has some maximal p-locals which do not contain a Sylow p-subgroup
of G.

2. In GLK(V ) all maximal p-locals are maximal subgroups, while this is usually not the
case for Sym(Ω).

3. Sym(Ω) often has maximal p-locals with components. But in PGLK(V ) the gener-
alized Fitting subgroup of a p-local is always a p-group.

It might be worthwhile to determine those maximal p-locals which contain a Sylow p-
subgroup. A necessary condition is that BAut(B) contains a Sylow p-subgroup of Sym(Ω1).
This is only the case for |B| = p or |B| = 4. Let |Ω| =

∑
tip

i with 0 ≤ ti < p. Then for
|B| = p, |Γ| must be of the form t0 +

∑
i>0 sip

i with si ≤ ti. For |B| = 4, |Γ| has to be of
the form t0 + 2t1 +

∑
i>1 sip

i, si ≤ ti.

We illustrate to above calculation by determining the maximal 2-local subgroups of
Sym(12):

1. Sym(2)× Sym(10) for |B| = 2 and r = 1,

2. Sym(4)× Sym(8) for |B| = 4 and r = 1, note that Sym(4) = 22GL2(2)

3. 23GL3(2)× Sym(4) for |B| = 8 and r = 1, which is not maximal as it is contained in
2.

4. Sym(2) o Sym(2) × Sym(8) for |B| = 2 and r = 2, which is not maximal since it is
contained in 2.

5. Sym(4) o Sym(2)× Sym(4) for |B| = 4, r = 2, not maximal as it is contained in 2.

6. Sym(2) o Sym(3)× Sym(6) for |B| = 2, r = 3.

7. Sym(4) o Sym(3) for |B| = 4, r = 3.
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8. Sym(2) o Sym(4)× Sym(4) for |B| = 2, r = 4, not maximal as it is contained in 2.

9. Sym(2) o Sym(5)× Sym(2) for |B| = 2, r = 5, not maximal as it is contained in 1.

10. Sym(2) o Sym(6) for |B| = 2, r = 6.

Of these 2-locals 2., 4., 7. 8. and 10. contain a Sylow 2-subgroup, which has order 210

while 1. 3. 5. 6. and 9. do not.
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Chapter 4

A first look at groups of
characteristic p-type

cfirstptype
In the proceeding chapters we investigated the p-local structure of GLn(pk) and Sym(Ω).

Our general goal in theses lecture notes is to introduce techniques currently used to classify
finite simple groups which are somewhat similar to GLn(pk) in their p-local structure. For
this purpose we define:

Definition 4.1 Let G be a finite group and p a prime. Then we say that G is of charac- dptype
teristic p-type provided that the generalized Fitting subgroup of each p-local subgroup of G
is a p-group.

It might be rather difficult to check whether a given group is of characteristic p-type,
since this is a statement about all p-local subgroups of G. But it actually turns out that
this can be verified just by looking at the maximal p-locals of G. Before we are able to
prove this we will prove a few fundamental lemmas about action of p-groups on p′-groups.

Lemma 4.2 (Witt’s Identity) Let a, b, c ∈ G then WittID

[a, b−1, c]b[b, c−1, a]c[c, a−1, b]a = 1

Proof: Just write out the left hand side and cancel.

Lemma 4.3 (Three Subgroup Lemma) Let X,Y, Z be subgroups of group and [X,Y, Z] =TSL
1 and [Y,Z,X] = 1, then [Z,X, Y ] = 1.

Proof: This follows immediately from Witt’s Identity.

Lemma 4.4 Let p be a prime, A be a finite group acting on the finite p-group Q. qcqqa

(a) If Q is abelian and A is a p′-group, then Q = CQ(A)× [Q,A].

15
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(b) If A is a p′-group, then Q = CQ(A)[Q,A] and [Q,A] = [Q,A,A].

(c) [Q,Op(A)] = [Q,Op(A)] = [Q,Op(A), k] for all k ≥ 2.

(c) If [Q,A, k] = 1 for some k ≤ 2, then [Q,Op(A)] = 1.

Proof: (a) Let a = |A| and x ∈ Q putm(x) =
∑

b∈A x
b. Thenm is anA-homomorphism

from Q to CQ(A). Moreover, m(x) = a ·x for all x ∈ CQ(A) and so m restricted to CQ(A) is
an isomorphism. Thus Q = CQ(A)⊕ kerm. From this ( or also directly from the defintion
of m) we have [Q,A] ≤ kerm. If m(x) = 0 we get −a ·x =

∑
a∈A(xa−x) and so x ∈ [Q,A].

Thus [Q,A] = kerm and (a) holds.
(b) Let Q̄ = Q/Φ(Q). Then Q̄ = CQ̄(A)[Q̄, A]. Let D be the inverse image of CQ̄(A) in

Q. Then Q = D[Q,A]. Suppose that D < Q. Then by induction D = CD(A)[D,A] and so
Q = CD(A)[D,A][Q,A] = CQ(A)[Q,A].

So we may assume that D = Q. Hence A acts trivially on Q̄. If Q̄ is cyclic, Q is cyclic
and so abelian. So (b) follows from (a) in this case. Therefore we may assume that Q̄ is
not cyclic. Thus Q̄ = D̄1D̄2 for some proper subgroups D̄i of Q̄. Let Di be the inverse
image of D̄i in Q. Since A acts trivially on Q̄, Di is A-invariant and so by induction,
Di = CDi(A)[Di, A]. Thus Q = D1D2 ≤ CQ(A)[Q,A] and the lemma is proved.

(c) Since Op(A) is generated by p′ groups, (c) follows from the second statement in (b).
(d) follows directly from (c).

Lemma 4.5 (Thompson’s A×B-Lemma) Let p be a prime, A a p-group and B a p′AxB
group. Suppose that A×B acts on the p-group Q such that B centralizes CQ(A). Then B
centralizes Q.

Proof: By induction on |Q|. Since [Q,A] < Q we get [Q,A,B] = 1. Since [A,B] = 1 the
”Three Subgroup Lemma” implies [Q,B,A] = 1. Thus [Q,B] ≤ CQ(A) and [Q,B,B] = 1.
As B is a p′-group, [Q,B] = 1 by4.4.

Lemma 4.6 Let M be a finite group and p a prime. Then F ∗(M) is a p-group if and onlyf8pcop
if F ∗(M) = Op(M) and if and only if CM (Op(M)) ≤ Op(M).

Proof: Note that Op(M) ≤ F (M) ≤ F ∗(M) and that F ∗(M) is a p-group if and only if
F ∗(M0 ≤ Op(M). Hence the first two statements are equivalent. Suppose that F ∗(M) =
Op(M). Since CG(F ∗(M)) ≤ F ∗(M) we conclude that CG(Op(M)) ≤ Op(M).

Suppose next that CM (Op(M)) ≤ Op(M). Since E(M) and Op′(M) both central-
ize Op(M) we conclude that E(M) = 1 = Op′(M). Thus F ∗(M) = F (M)E(M) =
Op(M)Op′(F (M)) = Op(M)

Definition 4.7 Let G be finite group and p a prime. A p-subgroup B of G is of p-type indgptype
G provided that F ∗(NG(B)) is a p-group.

We remark that a finite group G is of characteristic p-type if and only all its non-trivial
p-subgroups of p-type in G.
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Lemma 4.8 Let B be p-subgroup of G. Then the following statements are equivalent:easyp-type

(a) F ∗(CG(B)) is a p-group.

(b) CG(BOp(CG(B))) is a p-group.

(c) CG(Op(NG(B))) ≤ Op(NG(B)).

(d) F ∗(NG(B)) is a p-group, that is B is of p-type in G.

Proof: Put Q∗ = Op(NG(B)) and Q = Op(CG(B)). Suppose (a) holds. Then
F ∗(CG(B)) = Q, and as the generalized Fitting group contains its centralizer, CG(BQ) =
CCG(B)(Q) ≤ Q. Thus (b) holds.

Suppose that (b) holds. Since BQ ≤ Q∗, CG(Q∗) ≤ CG(BQ) and (c) holds by 4.6.

Also by 4.6 (c) implies (d).

Suppose that (d) holds. Let E = Op(CCG(B)(Q)). By 4.6 in order to show that (a)
holds, we need to verify that prove (a) we need to show that CCG(B)(Q) is a p-group. But
this is equivalent to showing that E = 1. Note that Q∗ normalizes E and E normalizes Q∗.
Thus [Q∗, E] ≤ Q∗∩E ≤ Op(E). Since Op(E) is a normal p-subgroup of CG(B), Op(E) ≤ Q
and so [Op(E), E] = 1 and [Q∗, E,E] = 1. Since E = Op(E), 4.4 implies [Q∗, E] = 1. By
(d) Q∗ = F ∗(NG(B)) and so E ≤ Q∗ and E = 1.

Lemma 4.9 Let B be p-subgroup of G and A ≤ B. If A is of p-type then B is of p-type. ptype

Proof: Put Q = Op(CG(A)) and T = Op(CG(B)). Without loss |B/A| = p and so B
normalizes A. Let x be a p′-element in G centralizing BT . By 4.8b it suffices to show that
x = 1. Since CG(B) ≤ CG(A), CQ(B) is a normal p-subgroup of CG(B) and so CQ(B) ≤ T .
Hence [CQ(B), x] = 1 and since B and x normalize Q, the A × B-Lemma (4.5) implies,
[Q, x] = 1. Since x centralizes A and A is of p-type, x = 1.

Lemma 4.10 Let M be a finite group with F ∗(M) = Op(M). Then M is of characteristic fpipt
p-type.

Proof: Since F ∗(M) = Op(M) the trivial group is of p-type. Hence by 4.9 all p-subgroups
are of p-type and so by 4.8d, F ∗(L) is a p-group for all p-locals L of G.

Corollary 4.11 Let G be a group of characterictic p-type. Then each of the following ploptpt
groups are also of characteristic p-type:

(a) p-local subgroups.

(b) Centralizers of non-trivial p-subgroups.

(c) Subgroups H of G such Op(H) 6= 1 and H contains a Sylow p-subgroup of G.
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Proof: (a) and (b) follow immediately from 4.10 and ??.
(c) Let M = NG(Op(H)) and S a Sylow p-subgroup of H. Then S ≤M and since S is

a Sylow p-subgroup of G and of M , Op(M) ≤ S. Thus Op(M) ≤ H and Op(H) = Op(M).
Since CG(Op(M) ≤ Op(M) we also have CH(Op(H)) ≤ Op(H). Thus (c) holds by ??.

Lemma 4.12 Let G be a finite group and p a prime. Then the following are equivalent: edtp

(a) G is of characteristic p-type.

(b) All non-trivial p-subgroups of G are of p-type.

(c) All elements of order p in G are of p-type.

(d) F ∗(M) = Op(M) for all maximal p-locals M of G.

Proof: By defintion (a) implies (b). And obviously (b) implies (c). By 4.9 (c) implies
(d). So suppose that (d) holds and let B be a non-trivial p-subgroup of G. Put L = NG(B)
and let M be a maximal p-local subgroup of G containing L. Then L = NM (B) and so
F ∗(L) is a p-group by 4.10.

Lemma 4.13 Let G be a finite group and N a subnormal subgroup of G. Then F ∗(N) ≤F*NG
F ∗(G).

Proof: This follows immediately from the definition of the generalized Fitting subgroup.

Lemma 4.14 F ∗(G) = Op(G) if and only if G has no components and no non-trivialcpp
normal p′-subgroup.

Proof: Suppose first that F ∗(G) = Op(G) and let N be a non-trivial subnormal subgroup
of G. Then F ∗(N) ≤ F ∗(G) and so F ∗(N) is a p-group. Hence N can neither be a
component nor a p-group.

Conversely, if G has no components and no non-trivial normal p′-subgroups, then
Op′(F (G)) = 1, F (G) = Op(G) and E(G) = 1. Thus F ∗(G) = E(G).

Lemma 4.15 Let G be a group of characteristic p-type.ngpt

(a) If Op(G) 6= 1, then F ∗(N) = Op(N) for each normal subgroup N of G.

(b) If N �G, N is of characteristic p-type.

Proof: (a) By 4.13 F ∗(N) ≤ F ∗(G) = Op(G). Hence F ∗(N) is a p-group.
(b) Let D be a nontrivial p-subgroup of N . Then NN (D) �NG(D) and so (b) follows

from (a) and 4.11.

Theorem 4.16 (Thompson) Let G be a finite group which admits a fixed-point-free au-fpfa
tomorphism of prime order. Then G is nilpotent.
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Lemma 4.17 Let G be a group of characteristic p-type. Then one of the following holds:gsgp

1. F ∗(G) = Op(G).

2. Op(G) = 1, F ∗(G) = F (G) and all elements of order p in G act fixed-point-freely on
F (G).

3. F ∗(G) is simple and not a p′-group.

4. G is a p′-group.

Proof: Suppose first that Op(G) 6= 1. Then clearly G is a p-local of itself and F ∗(G) =
Op(G).

So suppose that Op(G) = 1. Assume that N is a non-trivial normal p′-subgroup of G
and let x be an element of order p in G. Then CN (x) is a normal p′-subgroup of CG(x)
and so by 4.14 and 4.11b, CN (x) = 1. Thus x acts fixed-point-freely on N and by 4.16 N
is nilpotent.

Suppose that F (G) 6= 1. Then F (G) is a p′-group. Let D = CG(F (G)). Suppose that
D is not a p′-group and let x be an element of order p in D. Then F (G) is a non-trivial
normal p′ subgroup of CG(x), a contradiction. Hence D is a p′-group and so D ≤ F (G).
Thus 2. holds in this case.

Suppose finally that F (G) = 1. Then also Op′(G) = 1 and so none of the components
of G are p′ groups. Let E be a component of G. Then Z(E) ≤ F (G) = 1 and E is simple.
Suppose that L is a component of G different from E. Let 1 6= x ∈ E with |x| = p. Then L
is a component of CG(x) a contradiction, since x is of p-type and by 4.14. Thus F ∗(G) = E.

Definition 4.18 Given a finite group G and a prime p. Then dmhl

(a) L is the set of p-locals of G.

(b) M is the set of maximal p-locals of G.

(c) H is the set of subgroups H of G with F ∗(H) = Op(H).

(d) Let T be a set of subgroups of G and H ≤ G. Then T (H) = {T ∈ T | H ≤ T} .
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Chapter 5

Amalgams

Definition 5.1 Let I be a set. Then an amalgam over I is a tuple damalgam

A = (PJ | J ⊂ I;αJ,K | J ⊂ K ⊂ I),

where PJ is a group and αJ,K : PJ 7→ PK is a group homomorphism such that for all
J ⊂ K ⊂ L ⊂ I, αJ,KαK,L = αJ,L.

The rank of the amalgam is the cardinality of I.

As an example let G a group and for i ∈ I let Pi be subgroup of G. Put PJ = 〈Pj | j ∈ J
and for J ⊂ K ⊂ I let αJ,K : PJ 7→ PK be the inclusion map.

For a second example let again G be a group and Gi, i ∈ I a subgroup of G. For J ⊆ I
let GJ =

⋃
j∈J GJ and PJ = GI\J . Again let αJ,K be the inclusion map.

Definition 5.2 Let A and A∗ be amalgams over I. Then a morphism φ : A 7→ A∗ of dmoram
amalgams over I is a tuple

(φJ | J ⊂ I

of group homomorphisms φJPJ 7→ PJ such that for all J ⊂ K ⊂ L ⊂ I the diagram

PJ

PK

6 6

P ∗J

P ∗K

-

-

αJ,K α∗J,K

φJ

φK

commmutes.

Definition 5.3 Let A = (PJ | J ⊂ I;αJ,K | J ⊂ K ⊂ I) be an amalgam of groups. dcomp
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(a) A completion of A is a tuple (G;φJ | I) where G is a group, and φJ : PJ 7→ G is a
homomorphism so that for all J ⊂ K ⊂ I the diagram

PJ

PK

6
G

��
��

��1

PPPPPPq
αJ,K

φJ

φK

commutes and so that G = 〈φJ(PJ) | J ⊂ I〉.

(b) The completion (G;φJ | I) of A is called faithful if each of the φJ is one to one.

(c) A completion (G;φJ | I) of A is called universal provided that given any completion
(G∗;φ∗J | I) of A there exists a unique homomorphism Φ : G 7→ G∗ so that the diagram

G

G∗

6
PJ �

��
��*

HHH
HHj

Φ

φJ

φ∗J

commutes.

Lemma 5.4 Let A be an amalgam. Then A has a ( up to ismorphism) unique universaleuc
completion.

Proof: Let G be the group with generators (g, J), where J ⊂ I and g ∈ PJ , and relations
(g, J)(h, J) = (gh, J), J ⊂ I, g, h ∈ J and (αJ,K(g),K) = (g, J) for all g ∈ PJ , J ⊂ K ⊂ I.
Define φJ(g) = (g, J). Then is easy to check that (G;φJ | I) is indeed a completion for A,
is universal and is unique up to isomorphism.

If |I| = 2 and the αJ are one to one, it is not to difficult to see that the universal
comletion is one to one. But for |I| = 3 the universal completion might be trivial as the
following example shows.

Let P1,2 = Sym(3), P2,3 = Alt(4), P1 = P3 = P1,3 = Alt(3) P2 = Sym(2) and P∅ = 1.
Choose the αJ,K arbitrary but one to one. Since P∅ = 1 all the diagrams are clearly
commutative and so this is indeed an amalgam. Let G be the universal completion and let
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GJ be the image of PJ in G. Then G1 = G3 = G1,3. Since G1,2 is a quotient of Sym(3),
[G1, G2] ia a three group. Since G2,3 is a quotient of Alt(4), [G1, G2] = [G3, G2] is a 2-group.
Thus [G1, G2] = 1. But in G1,2 we see that G1 ≤ [G1, G2] and in G2,3 that G2 ≤ [G2, G3].
Thus G1 = G2 = G3 = 1 and so also G1,2 = G2,3 = G1,3 = 1. But G is generated by the
GJ ’s and so G = 1.

For a more encouraging example we will now prove:

Lemma 5.5 Let K be a field, G∗ = GLK(V ) and V a n -dimensional vector space over spg
K where 4 ≤ n < ∞. Let V0 < V1 < . . . < Vn = V be a maximal flag in V and for
J ⊂ I = {1, . . . , n − 1} let G∗J =

⋂
j∈J NG∗(Vi). Then (G∗, φ∗J , J ⊂ I) is the universal

completion of the amalgam (G∗I\J | J ⊂ I, αJ,K | J ⊂ J ⊂ I}, where the φ∗J ’s and αJ,K are
the inclusion maps.

Proof: Let (G,φJ | J ⊂ I) be a universal completion of the amalgam and put GJ =
φJ(G∗J). By definition of universal, there exists a homomorphism Φ : G 7→ G∗ with Φ◦φJ =
φ∗J for all J ⊂ I. In particular φJ and Φ |GJ are one to one. For g ∈ G, let g∗ = Φ(g).

1. GJ ∩GK = GJ ∩ Φ−1(GK) = GJ∪K spg-1

Note first that G∗J ∩G∗K = G∗J∩K and so

GJ∩K = φJ∩K(G∗J ∩G∗K) = φJ(G∗J ∩G∗K) ≤ φJ(GJ)∗ = GJ

So

GJ∩K ≤ GJ ∩GK ≤ GJ ∩ Φ−1(GK).

On the otherhand,

Φ(GJ ∩ Φ−1(G∗K)) ≤ Φ(GJ) ∩ Φ(Φ1(G∗K)) ≤ G∗J ∩G∗K = G∗J∪K = Φ(GJ∪K)

Thus Φ(GJ ∩GK) = Φ(GJ ∩Φ−1(GK)) = Φ(GJ∩K) and as Φ is one on GJ , 1. is proved.

2. Let h ∈ GK with G∗J ∩G∗h
∗

J ≤ G∗K . Then beginitemize spg-2

(a) GJ ∩GhJ = GJ∪K ∩GhJ∪K .

(b) Φ maps GJ ∩GhJ isomorphicly onto G∗J ∩G∗h
∗

J .

Since Φ(GJ ∩GhJ) ≤ G∗J ∩G∗h
∗

J ≤ G∗K we conclude that

GJ ∩GhJ = GJ ∩GhJ ∩ Φ−1(GK) = (GJ ∩ Φ−1(GK)) ∩ (GJ ∩ Φ−1(GK))h

So by 1.

GJ ∩GhJ = GJ∪K) ∩GJ∪K)h.
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Thus (a) holds. (b) follows from (a) since Φ restricted to GJ .

Let v1, v2 . . . vn be a basis for V with vi ∈ Vi \Vn. Let 1 ≤ i < j ≤ n and define h∗ij ∈ G∗
by vi 7→ vj , vj 7→ vi and vk 7→ vk for k 6= i, j. Then h∗ij ∈ G∗k for all k 6= i and hij 6 G∗i . Put
hij = φI−j(h

∗
ij . Then by 1.

3. hij ∈ Gk for all k 6= i, hij 6∈ Gi and h2
ij = 1.spg-3

Let h = h12, Γ = G/G1 and view Γ has a graph with edges {(G1g,G1hg)g |∈ G}. Also
note that G acts on Γ by right multiplication. The main goal now is to show that Γ is a
complete graph, i.e that any two distint vertices are adjacent. This amounts to showing
that Γ is connected and that every neighbor of G1 (other than G1h ) is also a neighbor of
G1h. For this the will investigate paths of length 1 and 2 in Γ

4. Γ is undirected and connected.spg-4

Since h2 = 1, (G1h,G1) = (G1h,G1hh) is an edge. Also any other edge is conjugate
to (G1, G1h) and so (x, y) is an edge if and only if (y, x) is an edge. Next let Γ0 be the
connected component of Γ containg G1. Then Γ0 is a block for G on Γ. As G1 fixes G1 ∈ Γ0.
G1 normalizes Γ0. Also both G1 and G1h are in Γ0 and thus h fixes Γ0.

Let i > 1. Since G∗i acts doubly transitively on the 1-spaces in Vi, G
∗
1i = G∗1 ∩ G∗i is a

maximal subgroup of G∗i . Hence also G1i is a maximal subgroup of Gi. Also h ∈ Gi \ G1i

and so Gi = 〈G1i, h〉. Thus Gi normalizes Γ0. Since G is a completion, G = 〈Gi | i ∈ I〉.
Therefore G normalize Γ0. But G acts transitively on Γ, and so Γ = Γ0.

5. Let ∆(G1) be the set of neighbors of G1 in Γ.spg-5

(a) ∆1 = {G1hg | g ∈ G1}.

(b) G1 acts transitively on ∆1.

(c) Via Φ the action of G1 on ∆1 is isomorphic to the action of G∗1 on the 1-spaces in
V \ V1.

Let G1x ∈ Γ so that G1x is adjacent to G1. Then (G1, G1x) = (G1g,G1hg) for some
g ∈ G and so g ∈ G1 and G1x = G1xg. Since V2 = V1 + V h∗

1 , G∗1 ∩ G∗h
∗

1 ≤ G∗2. Henc (a)
and (b) hold.

Note that G1h ∈ ∆(G1) and the stabilzer of G1h in G1 is G1 ∩Gh1 . By 2. Φ(G1 ∩Gh1) =
G∗1∩G∗h

∗
1 . Now G∗1∩G∗h

∗
1 is the stabilzer of the 1-space V h∗

1 in G∗1 and so also (c) is proved.

6. G has three orbits on paths of length two in Γ. Representatives can by chosen asspg-6
follows:

1. (G1h,G1, G1h)

2. (G1h,G1, G1t) where t ∈ GI\1 with t∗ : v1 7→ v1 + v2 and vi 7→ vi for all i ≥ 2.
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3. (G1h,G1, G1h13).

Let (a, b, c) be a path of length two. Since G is transitive on the edges we may assume
that a = G1h and b = G1. Hence there is a one to one correspondce between G orbits of
paths of length two and orbits of G1 ∩Gh1 on ∆(G1). And so by 5.c, we need to determine
the orbits of G∗1∩G∗h

∗
1 on the 1-spaces in V \V1. But these orbits clearly consist of V h∗

1 , the
1-spaces in V2 \{V1, V

h∗
1 } and the 1-spaces. Representatives are given by V h∗

1 = Kv2, V
t∗

1 =
K(v1 + v2) and V h13

1 = Kv3. Thus 6. holds.

7. Let Λ = {G1g | g ∈ G3} viewed as a subgraph of Γ. Then Λ is complete. spg-7

Clearly G3 acts transitively on Λ. The stablizer of the vertex G1 in G3 is G1 ∩G3. By
1. we conclude that via Φ the action of G3 on Λ is isomomorphic to the action of G∗3 and
G∗3/G

∗
1 ∩G8

3, which in turn is just the action of G∗3 on the 1-spaces in V3. This latter action
is double transitive. So Λ is either complete or has no edges. Since (G1, G1h) is an edge in
Λ, Λ is complete.

8. Γ is complete. spg-8

Since Γ is connected, it suffices to prove that for any path (a, b, c) in Γ with a 6= c we have
that a and c are adjacent. By 6. we just need to show that G1h is adjacent to G1t and
G1h13. But h, t, h13 are all in G3 and so G1h,G1t, G1h13 are in Λ. So they are adjacent by
7..

9. G = G1 ∪G1hG1. spg-9

By 8. Γ = {G1} ∪∆(G1). So 9. follows from 5.a.

We are now able to finish the proof of 5.5 by showing that Φ is an isomorphism. Since
G∗ is generated by the G∗i = Φ(Gi), Φ is onto. Let g ∈ G with Φ(g) = 1. If g ∈ G1 then
g = 1, since Φ restricted to G1 is one to one. If g 6∈ G1, then by 9., g = xhy for some
x, y ∈ G1. Hence 1 = Φ(x)h∗Φ(y) and h∗12 = h∗ = Φ(x)−1Φ(y)−1 ∈ G∗1, a contradiction to
3..
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Chapter 6

The Amalgam Method

cam

Definition 6.1 Let G be a finite group, T ≤ G and p a prime. dpclosed

(a) G is p-closed provided that G has a unique Sylow p-subgroup.

(b) G is T -minimal if T 6 �G and T lies in a unique maximal subgroup of G.

(c) G is T -connected if T 6 �G and for each normal subgroup N of H either N ∩ T is
normal in H or H = NT .

(d) G is p-minimal if G is S-minimal for some Sylow p-subgroup S of G, i.e. G is not
p-closed and a Sylow p-subgroup of G lies in a unique maximal subgroup of G.

(e) G is p-connected if G is S-connected for some Sylow p-subgroup S of G, i.e. G is
not p-closed and if N is a normal subgroup of G, then either N is p-closed or G/N is
a p-group.

We remark that G is p-closed if and only if Op(G) is a Sylow p-subgroup of G and if
and only if G/Op(G) is p′-group.

Lemma 6.2 Let G be a finite group, p a prime and suppose that G is p-minimal. Let pmpc
S ∈ Sylp(G), let M be the unique maximal subgroup of G containing S and E = CoreM (G)
and L = Op(G) Then

(a) G is p-connected.

(b) E is p-closed.

(c) LE/E is the unique minimal normal subgroup of G/E.

(d) E/Op(G) = Φ(G/E) is nilpotent.

(e) Suppose that G is solvable. Then

27
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(a) LE/E is an elementary abelian q-group for some prime q 6= p.

(b) L/Op(L) is a q-group .

(c) G is a {p, q}-group.

(d) S acts irreducible on LE/E.

Proof: (a) Let N �G. Then G = NG(S ∩N)N . Hence not both NG(S ∩N) and NS can
be contained in M . Hence S ∩N �G or G = NS.

(b) Since ES ≤M , ES 6= M and so since G is p-connected E is p-closed.
(c) Let R/E be a non-trivial normal subgroup of G/E. Then R�G and so R 6≤M and

G = RS. Thus L ≤ R.
(d) Let R/Op(G) be a maximal subgroup of G/Op(G) and suppose that E 6≤ R. Then

G = ER. Then |G/R| = |ER/R| = |E/E ∩ R| divides E/Op(E) and so R contains a Sy-
low p-subgroup of G. Thus Sg ≤ R for some g and so R ≤ Mg and G = ER ≤ Mg,
a contradiction. Hence R/E is contained in all the maximal subgroups of G/E and
so R/Op(G) ≤ Φ(G/Op(G). Conversely M/E is a maximal subgroup of G/E and so
Φ(G/Op(G)) ≤M/Op(G). As Φ(G/Op(G)) �G/Op(G), Φ(G/Op(G) ≤ E/Op(G).

(e) Since G is solvable, (d) implies that LE/E is an elementary abelian q-group for
some prime q. As L = Op(L), q 6= p. So (ea) holds. Let R/Op(L) be a Sylow q-subgroup
of L/Op(L). Then G = NG(R)L and LE = RE. Thus G = NG(R)E. Note also that
[Op(G), R] ≤ [Op(G), L] ≤ Op(G) ∩ L ≤ Op(L) ≤ R and so Op(G) ≤ NG(R). Thus by
(d) NG(R)/Op(G) = G/Op(G). Hence RS is a normal subgroup of G and as R 6≤ M ,
G = RS. Thus L ≤ R and L = R and (eb) holds. Inparticular, L and so also G = LS are
{p, q} groups and (ec) is proved. For (ed) let T/E be an non-trivial S invariant subgroup of
LE/E. Since LE/E is abelian, T/E is normal in LE/E. Since G = LS we conclude that
T/E is normal in G/E and so by (c), T/E = LE/E.

Of particular importance to us will be certain kind of rank 2 amalgams with given
faithful completion G.

Definition 6.3 Let p be a prime. An amalgam of p-type is a tuple (G,G1, G2, B) suchdapt
that

(a) G is a group, G1 and G2 are finite subgroups of G, B = G1 ∩G2 and G = 〈G1, G2〉

(b) F ∗(Gi) = Op(Gi) for i = 1, 2.

(c) No non-trivial subgroup of B is normal in both G1 and G2.

(d) Op(Gi) ≤ B for i = 1, 2.

(e) Let S ∈ Sylp(B) and put Zi = 〈Ω1Z(S)Gi〉. Then for each i ∈ {1, 2} one of the
following holds.

1. CGi(Zi) is p-closed

2. Put Vi = 〈ZGi3−i). Then Ω1Z(S) �Gi and CGi(Vi) is p-closed.
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Example 6.4 Let G be a group of characteristic p-type and S a Sylow p-subgroup ofbapt
G. Suppose that S lies in at least two different maximal p-locals of G. Then there exists
M∗, L ∈ H(S) so that (〈M∗, L〉,M∗, L,M∗ ∩ L〉) is an amalgam of p-type.

Proof:

1. Let S ≤ H ≤ G with Op(H) 6= 1. Then F ∗(H) = Op(H). bapt-1

Put L = NG(Op(H)). Then S ∈ Sylp(L) and so Op(L) ≤ S ≤ H. Thus Op(L) ≤ Op(H)
and so Op(H) = Op(L). Since G is of characteristic p-type, CH(Op(H)) ≤ CG(Op(L) ≤
Op(L). Thus 1. holds.

Let H ∈ H and define ZH = 〈Ω1Z(T ) | T ∈ Sylp(H)〉 and CH = CH(ZH).

2. 1 6= ZH ≤ Ω1Z(Op(H)). bapt-2

Let T ∈ Sylp(H). Then Op(H) ≤ T and so Z(T ) ≤ CH(Op(H)) ≤ Op(H). Thus
Z(T ) ≤ Z(Op(H)). This immediately implies 2.

Note that for H ∈ H(S), ZH = 〈Ω1Z(S)H〉. Pick M ∈ M(S) with ZM maximal and
put M∗ = NM (S ∩ CM ).

3. bapt-3

(a) ZM∗ = ZM

(b) Op(M
∗) = S ∩M

(c) CM∗ is p-closed.

(d) M(M∗) = {M}, that is M is the unique maximal p-local of G containg M∗.

By Frattini, M = CMM
∗ and so

ZM = 〈Ω1Z(S)M 〉 = 〈Ω1Z(S)CMM
∗〉 = 〈Ω1Z(S)M

∗〉 = ZM∗

Thus (a) holds. By (a) CM∗ = CM ∩M∗. Since S ∩ CM ≤ CM ∩M∗ and S ∩ CM is a
Sylow p-subgroup of CM , S∩CM is a Sylow p-subgroup of CM ∩M∗ = CM∗ . Also S∩CM is
normal in M∗ and so (c) holds. By 2., Op(M

∗) ≤ C∗M and so Op(M
∗) = Op(CM∗) = S∩CM .

Hence (b) holds.
For (d) let M∗ ≤ H ∈M. Then

ZM = ZM∗ = 〈Ω1Z(S)M
∗〉 ≤ 〈Ω1Z(S)H〉 == ZH .

So ZM ≤ ZH and the maximality of ZM implies ZM = ZH . Thus H ≤ NG(ZM ) = M
and H = M

By assumptions there exists maximal p-local containing S whic is different from M . In
particular, there exists L ∈ H(S) with L 6≤ M . Choose such an L which is minimal with
respect to inclusion.
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4. Let D ≤M∗ ∩ L so that D is normal in M∗ and L. Then D = 1. bapt-4

Suppose that Op(D) 6= 1. Then M∗ ≤ NG(Op(D))) and so by 3.d, NG(Op(D)) ≤ M , a
contradiction since L normalizes Op(D)). Thus Op(D) = 1. Since D �M and F ∗(M) =
Op(M), 4.13 implies F ∗(D) = Op(D) = 1. Thus D = 1.

5. M ∩L is the unique maximal subgroup of L containg S. In particular, L is p-minimalbapt-5
or p-closed.

Let S ≤ P < H. Then Op(L) ≤ S ≤ P and so by 1. P ∈ H(S). Hence by minimality of
L, P ≤M and 4. is established.

6. One of the following holdsbapt-6

1. CL is p-closed.

2. Ω1(Z(S) ≤ Z(L) and CL(V ) is p-closed, where V = 〈ZLM 〉

We may assume that CL is not p-closed. Since subgroups of p-closed groups are p-closed,
L is not p-closed. So by 5. L is p-minimal. Thus by 6.2 L = CLS. Thus Ω1(Z(S) ≤ Z(L).
Suppose that CL(V ) is not p-closed. Then L = CL(V )S and so ZM is normalized by
L = CLS. Hence L ≤ NG(ZM ) ≤ ZM . This proves 6..

Its now readily verified that (〈M∗, L〉,M∗, L,M∗∩L) meets all the parts of the definiton
of an amalgam of p-type.

Definition 6.5 Let G be a group and {Gi, i ∈ I) a non-empty tuple of subgroups.cdg

(a) The coset graph Γ(G;Gi, i ∈ I) of G with respect to Gi, i ∈ I is the graph with
vertices {(K, i) | i ∈ I,K ∈ G/Gi} (that is the disjoint union of the G/Gi, i ∈ I) and
two vertices (K, i) and (L, j) are adjacent if and only if i 6= j and K ∩ L 6= ∅.

(b) G acts Γ by (K, i)g = (Kg, i).

When working with coset graphs we will usually abuse notation and just write K for
(K, i)

Lemma 6.6 Let G be a group and Gi, i ∈ I subgroups of G. Put Γ = Γ(G;Gi, i ∈ I)ccg

(a) The orbits of G on Γ are exactly the G/Gi’s for i ∈ I.

(b) Each edge in Γ is conjugate to edge of the form (Gi, Gj), i 6= j ∈ I.

(c) Let H = 〈Gi |∈ I. Let Λ be the connected component of Γ containing one ( and so all)
of the G′is. Then H = NG(Λ) and Λ = Γ(H;Gi, i ∈ I. In particular, Γ is connected
if and only if G = 〈Gi | i ∈ I〉.

(d) CG(Γ) is exactly the largest normal subgroup of G contained in all the Gi, i ∈ I.
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Proof: (a) Note that |Λ is block for G on Γ. Since Gi fixes the vertex Gi of Γ.
(b) Let (Gig,Gjh) be an edge. Then there exists k ∈ Gig ∩ Gjh and so (Gig,Gjh) =

(Gik,Gjk)(Gi, Gj)
k. As Gik and Gjk are distinct in Γ, i 6= j. So (b) holds.

(c) Clear each Gi normalizes Λ and so H ≤ NG(Λ). Let Ξ = Γ(H;Gi, i ∈ I). Then each
vertex in Ξ is conjugate under H to some Gi and so Ξ ⊂ Λ.

Let Gig ∈ Γ so that Gig is adjacent to some Gjh ∈ Ξ. The there exists k ∈ Gig ∩Gjh.
Hence k ∈ Gjh ⊆ H and so Gig = Gik ∈ Ξ. It follows that Ξ is a union of connected
components of Γ and so Ξ = Λ.

Let g ∈ NG(Λ), then Gig ∈ Λ = Ξ and so g ∈ H and (a) is established.
(d) This is readily verified.

Hypothesis 6.7 (G,G1, G2, B) is an amalgam of p-type and Γ = Γ(G;G1, G2).

Lemma 6.8 edtr

(a) Γ is connected.

(b) G acts faithfully on Γ.

(c) Each edge in Γ is conjugate to (G1, G2).

(d) Each vertex in Γ is conjugate to exactly on of G1 and G2.

Proof: (a) By part (a) of the definition 6.3, G = 〈G1, G2〉. So Γ is connected by 6.6a.
(b) Let N = CG(Γ). Then N � G and N ≤ G1 ∩ G2 = B. Thus by part (c) of the

defintion of an amalgam of p-type, N = 1.
(c) and (d) follow immediately from 6.4a,b.
The amalgam method uses the graph Γ to define normal subgrous of the Gi and

then tries to derive information of the actions of Gi on these normal subgroup. The next
definition gives names to the most frequently used normal subgroups.

Definition 6.9 Let γ, δ ∈ Γ be adjacent vertices in Γ and i a non-negative integer. dsam

(a) Gδ is the stabilizer of δ in G and so Gδ = Ggi if δ = Gig.

(b) If Λ is a subset of Γ then GΛ =
⋂
λ∈ΛGλ .

(c) d(γ, δ) is the length of a shortest path from γ to δ in Γ.

(d) 4i(δ) = {γ ∈ Γ | d(γ, δ) ≤ i} . 4(δ) = 41(δ) \ {δ} is the set of neigbors of δ in Γ

(e) Giδ = G4i(δ)

(f) Qδ = Op(Gδ) .

(g) Zδγ = 〈Ω1Z(T ) | T ∈ Sylp(Gδγ)〉 .



32 CHAPTER 6. THE AMALGAM METHOD

(h) Zδ = 〈Zδγ | γ ∈ 4(δ)〉 .

(i) Xδ = Ω1Z(Qδ) .

(j) V i
δ = 〈Zγ | γ ∈ 4i(δ)〉 , Vδ = V 1

δ and Wδ = V 2
δ .

We remark the ZGi defined in example 6.4 is the same has the ZGi defined here.

The parameter b defined in the next lemma is of fundamental importance to the amalgam
method:

Definition 6.10db

(a) For δ ∈ Γ let bδ = min{d(δ, ρ) | ρ ∈ Γ, Zδ 6∈ G1
ρ}

(b) b = minδ∈Γ = min{bG1 , bG2}

(c) A critical pair is a pair of vertices (α, α′) in Γ with Zα 6≤ G1
α′ and d(α, α′) = b.

From now an (α, α′) will always denoted a critical pair, (δ, γ) is an arbitrary edges in Γ,

(α, α+ 1, α+ 2, . . . , α+ b− 1, α+ b) = (α′ − b, α′ − b+ 1, . . . , α′ − 1, α′)

is a shortest path from α to α′ and β = α+ 1 .

Lemma 6.11bza

(a) F ∗(Gδ) = Qδ.

(b) Zδ ≤ Xδ ≤ Qδ ≤ G1
δ ≤ Gγ.

(c) b is a positive integer.

(d) Let ρ ∈ Γ with d(δ, ρ) ≤ bδ. Then Zδ ≤ Gρ.

(e) Zα ≤ Gα,α+1,α+2,...,α′−1,α′

(f) Qδ ∩G1
ρ ≤ Qγ.

(g) Let ρ ∈ Γ with d(δ, ρ) < bδ. Then Zδ ≤ Qρ.

(h) One of the following holds:

1. CGδ(Zδ) is p-closed with Qδ its unique Sylow p-subgroup.

2. Zδ = Zδγ ≤ Zγ and CGδ(Vδ) is p-closed with its Sylow p-subgroup contained in
Qδ.

Moreover, if 2. holds for δ, then 1. holds for γ.
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Proof: (a) Since Gδ is conjugate to G1 or G2 this follows from part (a) of the definition
6.3.

(b) Using (a), Zδ ≤ Qδ is proved just as in 2.. By part (d) of the definition 6.3. and
since {δ, γ} is conjugate to {G1, G2}, Qδ ≤ Gδγ . Since γ is an arbitrary neighbor of δ,
Qδ ≤ G1

δ . G
1
δ ≤ Gγ holds by the definition of G1

δ .
(c) The first statement in (b) just says that bδ 6= 0. If b =∞, then since Γ is connected,

Zδ fixes all the vertices in Γ, a contradiction to the faithful action of G on Γ.
(d) Let λ be a neighbor of ρ with d(δ, λ) < d(δ, ρ). Then d(δ, ρ) < bδ and so Zδ ≤ G1

λ ≤
Gρ.

(e) follows from (d)
(f) Since G1

γ ≤ Gδ, G
1
γ normalizes Qδ ∩ G1

g. Hence Oδ ∩ G1
g is a normal p-subgroup of

G1
g. Thus Qd ∩G1

γ ≤ Op(G1
γ) ≤ Op(Gγ) = Qγ .

(g) By induction on d(δ, ρ). If δ = ρ this holds by (b). So pick λ as in (d). Then by
induction, Zδ ≤ Qλ. By definition of bδ, Zδ ≤ G1

ρ. Hence by (f) Zδ ≤ Qλ ∩G1
ρ ≤ Qρ.

(h) Suppose that CGδ(Zδ) is not p-closed. Then by part (e) of 6.3, Ω1Z(S) � Gδ and
CGδ(Vδ) is p-closed, where S is a Sylow p-subgroup of Gγδ. Hence Zδ = Ω1Z(S) = Zδγ ≤ Zγ .
So 2. holds. If 2. holds for both δ and γ, then Zδ = Zγδ = Zγ is normal in Gγ and Gδ, a
contradiction to 6.3c.

Definition 6.12 Let G be finite group, p a prime and V a GF (p)G-module. dff

(a) V is called an ”Failure of Factorization-module ( or FF-module ) for G provided
that there exists an subgroup A of G so that

(a) A is an elementary abelain p-group with [V,A] 6= 1.

(b) |V/CV (A)| ≤ |A|.

(b) Let A be as in (a). Then we say that A is offending on V or that A is an offender
on V .

Lemma 6.13 (a) Zα ≤ Gα′ and Zα′ ≤ Gα.

(b) CGα(Zα) is p-closed.

(c) Suppose that [Zα, Zα′ ] 6= 1. Then Zα is offending on Zα′ or Zα′ is offending on Zα.
Moreover, (α′, α) is a critical pair.

(d) Suppose that [Zα, Zα′ ] = 1. Then CGβ (Zβ) is not p-closed, b is odd, Zβ = Zαβ ≤ Zα
and (α′, α) is not a critical pair.

(e) One of the following holds:

1. b is even, [Zα, Zα′ ] 6= 1 and Zα is an FF -module for Gα.

2. b is odd, [Zα, Zα′ ] 6= 1 and one of Zα and Zβ is an FF -module for Gα and Gβ,
respectively.



34 CHAPTER 6. THE AMALGAM METHOD

3. b is odd, [Zα, Zα′ ] = 1 and Zβ = Zαβ ≤ Zα.

Proof: (a) This follows from 6.11d.
(b) Otherwise 6.11 implies that Zα ≤ Zβ. But then Zβ 6≤ G1

α′ , a contradiction the the
minimality of b.

(c) Note that either |Zα/CZα(Zα′)| ≤ |Zα′/CZα′ (Zα)| or |Zα′/CZα′ (Zα)| ≤ |Zα/CZα(Zα′)|.
In the first case Zα is an offender on Zα′ and in the second Zα′ is an offender on Zα. Suppose
that Zα′ ≤ G1

α. Then by 6.11f, Zα′ ≤ Qβ ∩G1
α ≤ Qα 6.11, [Zα, Zα′ ] = 1, a contradiction.

(d) Suppose that CGα′ (Zα′) is p-closed. Then as Zα is a p-group centralizing Zα′ ,
Zα ≤ Qα′ ≤ G1

α′ , a contradiction. Therefore CGα′ (Zα′) is not p-closed. Thus by (b) α and
α′ are not conjugate in Γ and so b is odd. In particular, β is conjugate to α′ and so the
remaining parts of (d) follow from 6.11(h).

(e) This just rephrases (c) and (d).
We next lemma illustrate that the restricted nature of FF -modules.

Lemma 6.14 Let p = 2 and V be a faithful FF -module for H = Sym(3). Then V =FFS3
[V,G]⊕ CV (G) and |[V,H]| = 4.

Proof: Let A ≤ H so that A meets the definition of an FF -module. Then |A| = 2 and
so 1 6= V/CV (A) ≤ |A| = 2. Thus |V/CV (A)| = 2. Let B be a conjugate of A with B 6= A.
Then H = 〈A,B〉 and so

CV (A) ∩ CV (B) = CV (H)

Since both CV (A) and CV (B) have index 2 in V , we conclude that |V/CV (A)| ≤ 4.
Note that H ′ = Alt(3) ∼= C3. By Maschke, V = CV (H ′) ⊕ [V,H ′]. Also |[V,H ′]| ≥ 4 and
[V,H ′ ∩CV (H) = 0. We conclude that V = [V,H ′]⊕CV (H) and [V,H ′] = [V,H] has order
4.

Lemma 6.15 G acts faithfully on δG.fodg

Proof: Let D = CG(δG). Then D is a normal subgroup of Gδ and so F ∗(D) = Op(D) ≤
Op(Gδ) ≤ Gγ . Hence F ∗(D) is a normal subgroup of G contained in Gδγ and so F ∗(D) = 1.
Therefore also D = 1.

Lemma 6.16 For ρ ∈ {δ, γ} let Hρ ≤ Gρ so that Hρ acts transitively on 4(ρ). Then notrans
non-trivial subgroup of Gδ is normalized by Hδ and Hγ.

Proof: Let H = 〈Hδ, Hγ . The Hρ ≤ H ∩Gρ and H ∩Gρ acts transitively on 4(ρ). Let
Λ = δH ∪ γH . We claim that Λ = Γ. For this let ν ∈ Γ be adjacent to λ ∈ Λ. Since λ is
conjugate to δ or γ under H, H ∩Gλ acts transitively on 4(λ) and some neighbor say µ of
λ lies in Λ. Thus ν ∈ µH∩Gλ ⊆ Λ. As Γ is connected, Λ = Γ.

Let D ≤ Gδ so that D is normalized by Hδ and Hγ . Then H normalizes G and so D
acts trivially on δH = δG. Thus by 6.15, D = 1.



Chapter 7

(Sym(3),Sym(3))-Amalgams

cs3s3

As an introduction to some of the arguments used in the amalgam method we will now
investigate amalgams of 2-type such that G0/O2(Gi) ∼= Sym(3) for i = 1, 2. Such amalgam
had been first considered by D. Goldschmid [Go] and indeed it was that article there the
amalgam method had been introduced. Since then the amalgam methode had been refined
and modified, most notable by B. Stellmacher for example in [DGS]. The arguments given
here basicly follow [DGS], allthough our treatment is less elegant since I deliberately avoided
the use of the parameter s, where s is roughly the smallest postive integer so the G acts
transitively on paths of length s with conjugate starting points. This make the proof less
geometric, but has the advantage that the arguments apply to a broader class of groups.

Hypothesis 7.1 hs3s3

(a) (G,G1, G2, B) is an amalgam of 2-type.

(b) For both i = 1 and i = 2, Gi/O2(Gi) ∼= Sym(3) or Alt(3).

We also will use the notation introduced in chapter 6.

Lemma 7.2 gabtg

(a) Gδγ is a 2-group.

(b) If Qδ 6≤ Qγ, then Gδγ = Qδ Qγ is a Sylow 2-subgroup of Gγ and Gγ/Qγ ∼= Sym(3)

(c) Qβ 6≤ Qα, Gαβ = Qα Qβ is a Sylow 2-subgroup of Gα and Gα/Qα ∼= Sym(3).

(d) 1. Gαβ = QαQβ is a Sylow 2-subgroup of Gα and Gβ and both Gα/Qα and Gβ/Gβ
are isomorphic to Sym(3)

2. Qα ≤ Qβ = Gαβ, Qβ is a Sylow 2-subgroup of Gα, Gα/Qα ∼= Sym(3) and b is
even.
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Proof: (a) Suppose that Gδγ is not a 2-group. Since Qδ ≤ Gδγ and |Gδ/Qδ| divides
six, |Gδ/Gδγ | ≤ 2. Thus Gδγ is normal in Gδ and Gγ . We conclude that Gδγ = 1, a
contradiction. Hence the first statement holds.

(b) Suppose that Qδ 6≤ Qγ . Since |Gδγ/Qγ | ≤ 2, we conclude that this number is two
and Gδγ = Qδ Qγ . So (b) holds.

(c) Suppose that Qβ ≤ Qα. Then Qβ < Qa ≤ Gαβ. Thus Qα = Gαβ and so Zα ≤ Xα =
Ω1Z(Gαβ) ≤ Zβ. But then Zβ 6≤ G1

α′ , a contradiction to the minimality of b.
(d) If Qα 6≤ Qβ, then (d1) holds by (a) and (b)
Suppose that Qα ≤ Qβ. Then Qα < Qβ ≤ Gαβ and so Qβ = Gαβ and |Gαβ/Qα| = 2. If

b is odd, then (α′ − 1, α′) is conjugate to (α, β) and so Zα ≤ Qα′−1 ≤ Qα′ , a contradiction.
Thus (d2) holds in this case.

Lemma 7.3 Suppose that [Zα, Zα′ ] 6= 1. ThenRn1s3

(a) ZαQα′ = Gα′α′−1.

(b) Both Zα and Zα′ are FF -modules for Gα and Gα′ respectively.

Proof: (a) This follows from |Gα′−1α′/Qα′ | = 2, Zα ≤ Gα′−1α′ and Zα 6≤ Qα′ .
(b) This follows since

|Zα/CZa(Zα′)| ≤ |Zα/Zα ∩Qα′ | = |ZαQα′/Qα′ | ≤ |Gα′−1α′/Qα′ | = 2 ≤ |Zα′/CZα(Zα)|.
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