1 Preliminaries

A signal or data point will always be a vector $\vec{x} \in \mathbb{R}^D$, where D is usually large!

2 Overview

In this lecture we introduce the technique of Compressive Sensing, and motivate it by means of concrete examples.

We will focus on two problems:

1. Given a huge set of data points $X = \{\vec{x}_1, \ldots, \vec{x}_N\} \subseteq \mathbb{R}^D$, where N and D are very large, how can we accurately and efficiently summarize X?

 By summarizing we generally mean approximating by some fit model. In simple cases, this could be regression, interpolation by a smooth function, or a manifold model. This problem is very related to data compression.

2. Given a manifold model - possibly some model from (1) we learned from a training set - how can we efficiently and accurately project a given vector $\vec{x} \in \mathbb{R}^D$ onto the model, using “reduced information”?

Here’s an example for the second problem.

Example 1. Suppose we can gather only a small number, m, of inner products of $\vec{x} \in \mathbb{R}^D$, where $m \ll D$. That is, for fixed measurement vectors $\vec{a}_1, \ldots, \vec{a}_m \in \mathbb{R}^D$, we get to see only

 $\langle \vec{a}_1, \vec{x} \rangle, \ldots, \langle \vec{a}_m, \vec{x} \rangle$.

How well can we possibly approximate \vec{x} given that it sits on a given manifold model? In other words, given the information $\{\langle \vec{a}_i, \vec{x} \rangle\}_{i=1}^m$, find a point on the manifold model which best approximates \vec{x}.

This is a slight generalization of compressive sensing!

3 Manifold Models: from Simple to more Complex

3.1 Affine linear subspace of \mathbb{R}^D of dimension d

The goal is to find an affine linear subspace $\vec{a} + S$, given a set of data points X, then use it find a representation of a new point not in X. In more details,
1. Find S, the “best fit” d-dimensional subspace, S, for $X = \frac{1}{N} \sum_{j=1}^{N} \vec{x}_j$, then let
\[
\vec{a} = \Pi_{S^\perp} \left(\frac{1}{N} \sum_{j=1}^{N} \vec{x}_j \right),
\]
where Π_K is the operator that projects onto the subset K. (Here $\vec{a} \in \mathbb{R}^D \cap S^\perp$ is a shift.)

2. Projection problem: given $\vec{y} \in \mathbb{R}^D$, not in X, we project it onto $\vec{a} + S$ by
\[
\Pi_S (\vec{y} - \vec{a}) + \vec{a}.
\]

3.2 Smooth d-dimensional submanifold of \mathbb{R}^D

Again, this is a two-step process: manifold learning, and finding an efficient way to project a vector \vec{x} onto the manifold.

3.3 Sparsity

Denote $[D] := \{1, 2, \ldots, D\}$. For a given set $S \subseteq [D]$, with cardinality $|S| = d$, let
\[
A_S = \text{Span}\{\vec{e}_j | j \in S\},
\]
where \vec{e}_j is a canonical basis vector. Thus a vector in the subspace A_S has at most d nonzero entries, indexed by S. Now let
\[
\mathcal{M} = \bigcup_{S \subseteq [D], |S| = d} A_S \subseteq \mathbb{R}^D
\]
The set \mathcal{M}, which contains $\binom{D}{d}$ d-dimensional subspaces, is the set of all possible vectors with at most d nonzero entries.

The compressive sensing problem is to determine how to project \vec{x} onto the manifold \mathcal{M}, given a few inner products. This naively exponentially hard problem can be remarkably be solved in only polynomial time.

Example 2. Sparse Interpolation of a periodic function

Suppose
\[
f(x) = \sum_{w \in S} C_w \cdot e^{iwx}
\]
for some subset $S \subseteq [D]$ and large D, where $|S| = d \ll D$. The small number d could correspond to the number of transmitters. Here $C_w \in \mathbb{C}$.

How many samples, or function evaluations $f(x_1), \ldots, f(x_m)$ do we need to learn f? Surely, we would like to use as few samples as possible. It turns out we can use radically fewer samples than D, and still learn f.

It is clear that we learn f if and only if we learn all C_w’s, and $S \subseteq [D]$. Every function evaluation $f(x_j)$ is a linear combination of the constants C_w. Say
\[
f(x_j) = \langle \vec{C}, \vec{F}_{x_j} \rangle
\]
where $\vec{C} \in \mathbb{C}^D$ has d nonzero entries equal to the C_w's, in positions indexed by $S \subseteq D$, and F_{x_j} is the x_j^{th} column of an inverse Fourier transform matrix.

We get linear samples of $\vec{C} \in \mathbb{C}^D$ (by sampling), and we know that $\vec{C} \in \mathcal{M}$. The compressive sensing problem, in this noiseless setting, is to project \vec{C} onto \mathcal{M}.

We will learn a lower bound on the number of samples needed to learn f. Moreover, we will learn how to deal with noise; that is, when

$$f(x) = \sum_{w \in S} C_w \cdot e^{iwx} + g(x),$$

where $g(x)$ is small in comparison to $f(x)$.

Example 3. Sales Model (Heavy Hitters)

Imagine we collect global sales information from all Walmart stores, and get updates such as

$$(-2 \text{ bubble gums}, -1 \text{ sodas}, \ldots)$$

when two bubble gums and one soda bottle are sold, and other updates such as

$$(+2000 \text{ bubble gums}, \ldots)$$

when a new shipment is received from a supplier to one of our many warehouses.

Let D be the number of all products sold in any store, anywhere. D is obviously large. Let $\vec{x} \in \mathbb{Z}_+^D$ represent the sum of all updates, sent to corporate headquarters, on a minute-by-minute basis.

Goal: In the first five seconds of each minute, we would like to identify the top one hundred selling items, and then raise their price by 1 cent. It is clear that we need to identify these one hundred items very fast!

In other words, we need to project \vec{x} onto \mathcal{M} quickly. In general, it is too slow, if D is large enough, to update all of \vec{x} and then use it to project onto \mathcal{M} in a trivial way (for physical reasons, such as slowly spinning hard disks, etc., etc...).

To overcome this problem, we design a linear map $M \in \mathbb{R}^{m \times D}$, where $d < m \ll D$, and only store $M\vec{x} \in \mathbb{R}^m$. Then,

$$M(\vec{x} \text{ + update}) = M\vec{x} + M(\text{update}) \in \mathbb{R}^m.$$

We can use $M\vec{x}$ (as inner products) to project onto \mathcal{M}. For efficiency, we design M so that $M(\text{update})$ is computed fast, and so that $M\vec{x}$ supports super fast projections onto \mathcal{M}, our manifold of all 100 sparse vectors.