## Exercises:

§19,20

1. Let $\left(a_{n}\right)_{n \in \mathbb{N}},\left(b_{n}\right)_{\in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ with $a_{n}>0$ for all $n \in \mathbb{N}$. Define a map $h: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ by

$$
h\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=\left(a_{n} x_{n}+b_{n}\right)_{n \in \mathbb{N}} .
$$

(a) Show that $h$ is a bijection.
(b) Show that if $\mathbb{R}^{\mathbb{N}}$ is given the product topology, then $h$ is a homeomorphism.
(c) Prove whether or not $h$ is a homeomorphism when $\mathbb{R}^{\mathbb{N}}$ is given the box topology.
2. For $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, define

$$
d_{1}(\mathbf{x}, \mathbf{y}):=\sum_{j=1}^{n}\left|x_{j}-y_{j}\right| .
$$

(a) Show that $d_{1}$ is a metric on $\mathbb{R}^{n}$.
(b) Show that the topology induced by $d_{1}$ equals the product topology on $\mathbb{R}^{n}$.
(c) For $n=2$ and $\mathbf{0}=(0,0) \in \mathbb{R}^{2}$, draw a picture of $B_{d_{1}}(\mathbf{0}, 1)$.
3. Let $X$ be a metric space with metric $d$. For $x \in X$ and $\epsilon>0$, show that $\{y \in X \mid d(x, y) \leq \epsilon\}$ is a closed set.
4. Let $X$ be a metric space with metric $d$. Show that $d: X \times X \rightarrow \mathbb{R}$ is continuous.
5. For $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$ define

$$
\begin{aligned}
\mathbf{x}+\mathbf{y} & :=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right), \\
c \mathbf{x} & :=\left(c x_{1}, \ldots, c x_{n}\right), \\
\mathbf{x} \cdot \mathbf{y} & :=x_{1} y_{1}+\cdots+x_{n} y_{n}, \\
\|\mathbf{x}\| & :=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2} .
\end{aligned}
$$

(a) For $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}$ and $a, b \in \mathbb{R}$, prove the following formulas

$$
\begin{aligned}
\|\mathbf{x}\|^{2} & =\mathbf{x} \cdot \mathbf{x} \\
(a \mathbf{x}) \cdot(b \mathbf{y}) & =(a b)(\mathbf{x} \cdot \mathbf{y}) \\
\mathbf{x} \cdot \mathbf{y} & =\mathbf{y} \cdot \mathbf{x} \\
\mathbf{x} \cdot(\mathbf{y}+\mathbf{z}) & =\mathbf{x} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{z}
\end{aligned}
$$

(b) Show that $|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$. [Hint: for $\mathbf{x}, \mathbf{y} \neq 0$ let $a=\frac{1}{\|\mathbf{x}\|}$ and $b=\frac{1}{\|\mathbf{y}\|}$ and use the fact that $\|a \mathbf{x} \pm b \mathbf{y}\|^{2} \geq 0$.]
(c) Show that $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.
(d) Prove that the euclidean metric $d(\mathbf{x}, \mathbf{y}):=\|\mathbf{x}-\mathbf{y}\|$ is indeed a metric.
$6^{*}$. For $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $1 \leq p<\infty$, define

$$
\|\mathbf{x}\|_{p}:=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p},
$$

and for $p=\infty$ define

$$
\|\mathbf{x}\|_{\infty}:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\} .
$$

In this exercise you will show $d_{p}(\mathbf{x}, \mathbf{y}):=\|\mathbf{x}-\mathbf{y}\|_{p}$ defines a metric for each $1 \leq p \leq \infty$. Observe that $p=1,2, \infty$ yield the metric from Exercise 2, the euclidean metric, and the square metric, respectively.
(a) For $1<p<\infty$, show that if $q>0$ satisfies $\frac{1}{p}+\frac{1}{q}=1$ then $1<q<\infty$. We call $q$ the conjugate exponent to $p$.
(b) For $a, b \geq 0$ and $0<\lambda<1$, show that $a^{\lambda} b^{1-\lambda} \leq \lambda a+(1-\lambda) b$.
(c) Prove Hölder's Inequality: for $1<p<\infty$ with conjugate exponent $q$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ show that

$$
\left|x_{1} y_{1}\right|+\cdots+\left|x_{n} y_{n}\right| \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}
$$

(d) Prove Minkowski's Inequality: for $1<p<\infty$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ show that

$$
\|\mathbf{x}+\mathbf{y}\|_{p} \leq\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}
$$

[Hint: use $\left.\left|x_{j}+y_{j}\right|^{p} \leq\left(\left|x_{j}\right|+\left|y_{j}\right|\right)\left|x_{j}+y_{j}\right|^{p-1}.\right]$
(e) Show that $d_{p}$ is a metric for $1<p<\infty$.
(f) Show that the topology induced by $d_{p}$ equals the product topology on $\mathbb{R}^{n}$ for $1<p<\infty$, where $\mathbb{R}$ has the standard topology. [Hint: show that $\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{p} \leq\|\mathbf{x}\|_{1}$.]

* Challenge Problem!

