Exercises:

\$17, 18

- 1. Prove each of the following topological spaces is Hausdorff.
 - (a) A set X with an order relation < and the order topology.
 - (b) A product $X \times Y$ with the product topology where X and Y are Hausdorff spaces.
 - (c) A subspace $Y \subset X$ with the subspace topology where X is a Hausdorff space.
- 2. Let X be a topological space. Show that X is Hausdorff if and only if the **diagonal**

$$\Delta := \{ (x, x) \mid x \in X \}$$

is a closed subset of $X \times X$ with the product topology.

- 3. Consider the collection $\mathcal{T} = \{ U \subset \mathbb{R} \mid \mathbb{R} \setminus U \text{ is finite} \} \cup \{ \emptyset \}.$
 - (a) Show that \mathcal{T} is a topology on \mathbb{R} . We call this the **finite complement topology**.
 - (b) Show that the finite complement topology is T_1 : given distinct points $x, y \in \mathbb{R}$ there exists open sets U and V with $x \in U \not\ni y$ and $x \notin V \ni y$.
 - (c) Show that the finite complement topology is not Hausdorff.
 - (d) Find all the points that the sequence $(\frac{1}{n})_{n \in \mathbb{N}}$ converges to in the finite complement topology.
- 4. Let X be a set with two topologies \mathcal{T} and \mathcal{T}' and let $i: X \to X$ be the identity function: i(x) = x for all $x \in X$. Equip the domain copy of X with the topology \mathcal{T} and the range copy of X with the topology \mathcal{T}' .
 - (a) Show that i is continuous if and only if \mathcal{T} is finer than \mathcal{T}' .
 - (b) Show that i is a homeomorphism if and only if $\mathcal{T} = \mathcal{T}'$.
- 5. Consider the functions $f, g: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = x + y$$
 and $g(x,y) = x - y$.

- (a) Show that if \mathbb{R} and \mathbb{R}^2 are given the standard topologies, then f and g are continuous.
- (b) Suppose \mathbb{R} is given the lower limit topology and $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ is given the corresponding product topology. Determine and prove the continuity or discontinuity of f and g.
- 6^{*}. In this exercise you will establish a homeomorphism between the following two subspaces of \mathbb{R}^2 :

$$X := \mathbb{R}^2 \setminus \{(0,0)\} \text{ and } Y := \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 > 1\}$$

Throughout, \mathbb{R}^2 will have the standard topology and X and Y will have their subspace topologies.

- (a) Define a function $\|\cdot\| \colon \mathbb{R}^2 \to [0, +\infty)$ by $\|(x, y)\| = (x^2 + y^2)^{1/2}$. Show that this function is continuous when $[0, +\infty) \subset \mathbb{R}$ is given the subspace topology. [**Hint:** think geometrically.]
- (b) Show that $X = \{(x, y) \in \mathbb{R}^2 \mid ||(x, y)|| > 0\}$ and $Y = \{(x, y) \in \mathbb{R}^2 \mid ||(x, y)|| > 1\}.$
- (c) Show that $f: X \to \mathbb{R}^2$ defined by $f(x, y) = \frac{1}{\|(x, y)\|}(x, y)$ is continuous.
- (d) Find continuous functions $g: X \to Y$ and $h: Y \to X$ satisfying $g \circ h(x, y) = (x, y)$ and $h \circ g(x, y) = (x, y)$, and deduce that X and Y are homeomorphic.
- * Challenge Problem!