Exercises: (§17)

- 1. Let $A \subset X$ where X is a topological space. Prove that
 - (a) $A = A^{\circ}$ if and only if A is open in X, and that
 - (b) $A = \overline{A}$ if and only if A is closed in X.
- 2. Let X be a topological space with subset $S \subset X$. Recall that \overline{S} denotes the closure of S and S° denotes the interior of S. We will also denote by $S^c := X \setminus S$ the complement of S.
 - (a) Show that $\overline{S} = ((S^c)^\circ)^c$ for all $S \subset X$.
 - (b) Show that $S^{\circ} = (\overline{S^c})^c$ for all $S \subset X$.
- 3. Let X be a topological space and let $A, B \subset X$ be subsets.
 - (a) Show that $A \subset B$ implies $\overline{A} \subset \overline{B}$ and $A^{\circ} \subset B^{\circ}$.
 - (b) For $A, B \subset X$, show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (c) For $A, B \subset X$, show that $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.
 - (d) Let \mathbb{R} have the standard topology. Find examples of subsets $A, B \subset \mathbb{R}$ such that $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$ and $(A \cup B)^{\circ} \neq A^{\circ} \cup B^{\circ}$.
- 4. Let X be a topological space. We say a subset $S \subset X$ is **dense** in X if for every $x \in X$ and every neighborhood U of x one has $U \cap S \neq \emptyset$. Show the following are equivalent:
 - (i) S is dense in X.
 - (ii) $(S^c)^\circ = \emptyset$.
 - (iii) $\overline{S} = X$.

5. If $A \subset X$, we define the **boundary** of A by $\operatorname{Bd} A := \overline{A} \cap \overline{X \setminus A}$.

- (i) Show that A° and BdA are disjoint.
- (ii) Show that $\overline{A} = A^{\circ} \cup BdA$.
- (iii) Show that $\operatorname{Bd} A = \overline{A} \setminus A^{\circ}$ also always holds.
- (iv) Show that $BdA = \emptyset$ if and only if A is both open and closed.
- (v) Show that A is open if and only if $BdA = \overline{A} \setminus A$.