Exercises: (§12 and §13)

- 1. Let X be a topological space and let $A \subset X$ be a subset. Suppose that for all $x \in A$, there exists an open set U satisfying $x \in U \subset A$. Show that A is open.
- 2. Equip \mathbb{R} with the standard topology. Show that a set $U \subset \mathbb{R}$ is open if and only if for all $x \in U$ there exists $\epsilon > 0$ such that $(x \epsilon, x + \epsilon) \subset U$.
- 3. Show that the collection $\mathcal{B} = \{(a, b) : a, b \in \mathbb{Q}\}$ is a basis for the standard topology on \mathbb{R} . Conclude that standard topology on \mathbb{R} therefore has a countable basis.
- 4. Let X be a space.
 - (a) Let $\{\mathcal{T}_i \mid i \in I\}$ be a non-empty collection topologies on X (indexed by some set I). Show that $\bigcap_{i \in I} \mathcal{T}_i$ is a topology on X.
 - (b) Let \mathcal{B} be a basis for a topology \mathcal{T} on X. Show that \mathcal{T} is the intersection of all topologies on X that contain \mathcal{B} .
 - (c) Let S be a subbasis for a topology T on a space X. Suppose T' is another topology on X that contains S. Show that T is coarser than T'.
 - (d) Let S and T be as in the previous part. Show that T is the intersection of all topologies on X that contain S.