Exercises: (§9, §10, and §11)

- 1. Let $f: A \to B$ be a function.
 - (a) Use the axiom of choice to show that if f is surjective, then there exists $g: B \to A$ with $f \circ g(b) = b$ for all $b \in B$.
 - (b) Without using the axiom of choice show that if f is injective, then there exists $h: B \to A$ with $h \circ f(a) = a$ for all $a \in A$.
- 2. Show that the well-ordering theorem implies the axiom of choice.
- 3. Let S_{Ω} be the minimal uncountable well-ordered set from §10.
 - (a) Show that S_{Ω} has no largest element.
 - (b) Show that for every $x \in S_{\Omega}$, the subset $\{y \in S_{\Omega} \mid x < y\}$ is uncountable.
 - (c) Consider the subset

 $X := \{ x \in S_{\Omega} \mid \text{ the open interval } (a, x) \neq \emptyset \text{ for all } a < x \}.$

Show that X is uncountable. [Hint: proceed by contradiction and use the fact that for any $y \in S_{\Omega}$ there exists $z \in S_{\Omega}$ with the open interval $(y, z) = \emptyset$.]

- 4. In this exercise you will use Zorn's lemma to prove the following fact from linear algebra: every vector space V has a basis. For a subset $A \subset V$, recall: the **span** of A is the set of all finite linear combinations of vectors in A; A is said to be **independent** if the only way to write the zero vector as a linear combination of elements in A is via the trivial linear combination with all zero scalar coefficients; and A is said to be a **basis** for V if it is independent and its span is all of V.
 - (a) Suppose $A \subset V$ is independent. Show that if v is not in the span of A, then $A \cup \{v\}$ is independent.
 - (b) Show that the collection of independent subsets of V, ordered by inclusion, has a maximal element.
 - (c) Show that V has a basis.