Exercises: (§6 and §7)

- 1. Let A and B be non-empty sets.
 - (a) Show that if B is not finite and $B \subset A$, then A is not finite.
 - (b) Prove that $A \times B$ is finite if and only if A and B are both finite.
 - (c) Show that $A \times B$ and $B \times A$ have the same cardinality.
 - (d) Let B^A denote the set of functions $f: A \to B$. Show that if A and B are finite, then so is B^A .
 - (e) Suppose B^A is finite and B has at least two elements. Show that A and B are finite.
- 2. Let $\{0,1\}^{\mathbb{N}}$ denote the set of functions $f \colon \mathbb{N} \to \{0,1\}$.
 - (a) Show that $\{0,1\}^{\mathbb{N}}$ and $\mathcal{P}(\mathbb{N})$ have the same cardinality.
 - (b) Let C be the collection of *countable* subsets of $\{0,1\}^{\mathbb{N}}$. Show that C and $\{0,1\}^{\mathbb{N}}$ have the same cardinality. [Hint: first construct an injection from C to $(\{0,1\}^{\mathbb{N}})^{\mathbb{N}}$, and then use Exercise 5 from Homework 1.]
- 3. Let $n \in \mathbb{N}$. In this problem we will prove that \mathbb{R}^n has the same cardinality as $(0,1) \subset \mathbb{R}$.
 - (a) Show that \mathbb{R} has the same cardinality as (0, 1).
 - (b) Show that $(0,1) \times (0,1)$ has the same cardinality as (0,1). Conclude that \mathbb{R}^2 has the same cardinality as \mathbb{R} as a result.
 - (c) Use, e.g., induction to prove that \mathbb{R}^n has the same cardinality as \mathbb{R} . Conclude that \mathbb{R}^n has the same cardinality as (0, 1) as a result.
- 4. Let $\epsilon > 0$. Prove that $(-\epsilon, \epsilon) \times \mathbb{N} \times \{0, 1\}$ has the same cardinality as $\mathbb{R}^{10^{1000}}$.