## Exercises: (§6 and §7)

1. Let $A$ and $B$ be non-empty sets.
(a) Show that if $B$ is not finite and $B \subset A$, then $A$ is not finite.
(b) Prove that $A \times B$ is finite if and only if $A$ and $B$ are both finite.
(c) Show that $A \times B$ and $B \times A$ have the same cardinality.
(d) Let $B^{A}$ denote the set of functions $f: A \rightarrow B$. Show that if $A$ and $B$ are finite, then so is $B^{A}$.
(e) Suppose $B^{A}$ is finite and $B$ has at least two elements. Show that $A$ and $B$ are finite.
2. Let $\{0,1\}^{\mathbb{N}}$ denote the set of functions $f: \mathbb{N} \rightarrow\{0,1\}$.
(a) Show that $\{0,1\}^{\mathbb{N}}$ and $\mathcal{P}(\mathbb{N})$ have the same cardinality.
(b) Let $\mathcal{C}$ be the collection of countable subsets of $\{0,1\}^{\mathbb{N}}$. Show that $\mathcal{C}$ and $\{0,1\}^{\mathbb{N}}$ have the same cardinality. [Hint: first construct an injection from $\mathcal{C}$ to $\left(\{0,1\}^{\mathbb{N}}\right)^{\mathbb{N}}$, and then use Exercise 5 from Homework 1.]
3. Let $n \in \mathbb{N}$. In this problem we will prove that $\mathbb{R}^{n}$ has the same cardinality as $(0,1) \subset \mathbb{R}$.
(a) Show that $\mathbb{R}$ has the same cardinality as $(0,1)$.
(b) Show that $(0,1) \times(0,1)$ has the same cardinality as $(0,1)$. Conclude that $\mathbb{R}^{2}$ has the same cardinality as $\mathbb{R}$ as a result.
(c) Use, e.g., induction to prove that $\mathbb{R}^{n}$ has the same cardinality as $\mathbb{R}$. Conclude that $\mathbb{R}^{n}$ has the same cardinality as $(0,1)$ as a result.
4. Let $\epsilon>0$. Prove that $(-\epsilon, \epsilon) \times \mathbb{N} \times\{0,1\}$ has the same cardinality as $\mathbb{R}^{10^{1000}}$.
