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ABSTRACT

Data sets are often modeled as samples from some probability

distribution lying in a very high dimensional space. In prac-

tice, they tend to exhibit low intrinsic dimensionality, which

enables both fast construction of efficient data representations

and solving statistical tasks such as regression of functions

on the data, or even estimation of the probability distribution

from which the data is generated. In this paper we introduce a

novel multiscale density estimator for high dimensional data

and apply it to the problem of detecting changes in the distri-

bution of dynamic data, or in a time series of data sets. We

also show that our data representations, which are not stan-

dard sparse linear expansions, are amenable to compressed

measurements. Finally, we test our algorithms on both syn-

thetic data and a real data set consisting of a times series of

hyperspectral images, and demonstrate their high accuracy in

the detection of anomalies.

Index Terms— High Dimensional Data Sets, Measure

Estimation, Anomaly Detection, Dictionary Learning, Hyper-

spectral Imaging, Compressive Sensing

1. INTRODUCTION

We study the geometry and distribution of high-dimensional

data sets, and the relationships between the two. Here we

model data as independent samples Xn = {x1, . . . , xn} from

a probability measure µ in R
D. We will assume that µ may be

well-approximated by a measure which has support on a set

of dimension d � D; this assumption is justified by many ob-

servations, empirical and, in some cases, theoretical (see [1]

and references therein). This setting has been considered in

much existing work on dimensionality reduction, where the

(high dimensional) ambient space is compressed to a lower

dimension, under a constraint of small distortion of the dis-

tances between data points, or in manifold learning research,

where one seeks a parametrization of the data with a small

number of parameters (ideally O(d), see [2]). Another ap-

proach is that of working directly in the high-dimensional
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space, while using appropriate constructions to exploit the

low intrinsic dimension [3].

The problems described above, and corresponding algo-

rithms, focus on approximating the data itself. In this pa-

per we take on the more ambitious task of approximating the

probability measure µ, aiming at bypassing the curse of di-

mensionality in R
D by employing the assumption that µ is

supported near a low-dimensional subset. However, the esti-

mators for µ that we propose are based on a geometry-driven

multiscale decomposition of the data and a data-driven dictio-

nary. The basic idea, inspired by multiscale regression meth-

ods (where the object to be estimated is a function on the

data), is that probability measures in the pieces of the geo-

metric multiscale decompositions are drawn from some sim-

ple family, in order to construct an estimator of the true un-

derlying probability distribution. We therefore fuse geometry,

multiscale analysis, dictionary learning, and measure estima-

tion. We introduce a multiscale procedure for producing an

estimator µ̂Xn
of µ, with respect to a Wasserstein metric be-

tween probability measures, with finite sample size guaran-

tees and a sample complexity that can take advantage of the

low intrinsic dimension assumption in a very controlled fash-

ion. We also exhibit fast, parallel algorithms for computing

such an estimator from sampled data. In fact, our results apply

to a wide class of estimators sharing a common multiscale-

geometric structure. We know of no existing results in the lit-

erature comparable to this, in terms of flexibility, finite sample

guarantees and computational speed.

We then consider the case where we have a time-varying

family of probability measures, {µt}t≥0, and we sample, for

each t, a set of i.i.d. samples X
(t)
n = {x

(t)
1 , . . . , x

(t)
n } from µt,

independently for different t. We may construct an estimator

µ̂(t) based on the sample X
(t)
n , and quantify the change of

such measures with respect to a distance between probability

measures, for example a Wasserstein distance. We can then

use our estimators µ̂(t) to detect changes in the distribution of

the data, for instance to monitor the development of anoma-

lies: we may suppose that for t in a certain range Tnorm, say

[0, ε], there are no anomalies in the data, and use the learned

measures {µ̂(t)}t∈Tnorm
to test whether the subsequent obser-

vations X
(t)
n contain anomalies, based on a likelihood test.



Lastly, we show that, while our dictionaries and data rep-

resentations do not quite fit into the standard setting of sparse

representations, compressed-sensing-like results exist in our

setting as well. This is because the fundamental paradigm that

the data has low intrinsic complexity still holds, which leads

to very fast algorithms (thanks to the multiscale organization

of the data) that do not require convex optimization.

We test our algorithms both on synthetic data - a time se-

ries of manifolds developing a singularity in the form of a

cusp at an unknown location, and on real world data - a se-

quence of hyperspectral images of a desert scene with a chem-

ical release at some moment. In both examples our algorithms

can both quickly and accurately locate the anomalies, as well

as determine the correct scale at which the anomalies occur.

2. GEOMETRIC MEASURE ESTIMATION

We propose an algorithm for estimating a probability mea-

sure µ lying around a low dimensional set M embedded in a

high dimensional ambient space RD, based on a finite sample

Xn from µ. The estimation of µ proceeds in two steps: first,

an adaptive tree-based geometric decomposition of the data

set Xn is constructed; second, this tree is used to construct

a multiscale family of estimators of µ, and a scale optimally

balancing certain bias and variance terms is selected.

2.1. Review of Geometric Multi-Resolution Analysis

Our approach builds on the geometric multi-resolution anal-

ysis (GMRA) framework recently introduced by Allard et al.

[3], which aims to learn data-dependent dictionaries on gen-

eral point-cloud data. When the input data lies around a low

dimensional manifold, GMRA has guarantees on the dictio-

nary size and the sparsity of the representations for a given

approximation error, on the computational complexity of the

construction, and on the associated fast transforms mapping

data points to sparse coefficients and vice versa.

The construction of GMRA starts by a multiscale nested

decomposition of the data set Xn into a collection of subsets

{Cj,k}0≤j≤J,k∈Γj
, arranged in a tree structure T . Each node

of the tree is one subset in the collection, indexed by two in-

tegers (j, k), with j representing the depth (or scale) of the

node in T (the root of the tree has scale j = 0 by convention)

and k ∈ Γj indexing nodes of T at that scale. For any fixed j,

the collection {Cj,k}k∈Γj
provides a disjoint partition of Xn.

For j > 0 each Cj,k points to a unique parent node Cj−1,k′

containing Cj,k, and conversely any Cj,k ⊆ Cj−1,k′ is called

a child of Cj−1,k′ (a node without child is called a leaf node).

At every Cj,k with j > 0, one computes the following:

1. cj,k: the (empirical) mean of the points in Cj,k;

2. Φj,k: an orthogonal matrix whose columns are the top

principal components of the data in Cj,k. The hyper-

plane spanned by the column vectors of Φj,k and pass-

ing through cj,k is a local linear approximation to M;

3. wj,k: wavelet constant associated to Cj,k, defined as

wj,k = (I − Φj−1,k′ΦT
j−1,k′) · (cj,k − cj−1,k′), where

Cj−1,k′ is the parent of Cj,k;

4. Ψj,k: an orthogonal matrix whose column vectors form

a basis for the projection of span(Φj,k) onto the or-

thogonal complement of span(Φj−1,k′) in R
D. This

implies that span(Φj,k) ⊆ span([Φj−1,k′ Ψj,k]), with

Ψj,k containing fewest columns among those meeting

the same requirement.

At the root of the tree, only the mean cj,k and basis Φj,k are

computed. The columns of the orthogonal matrices Φj,k,Ψj,k

are called geometric scaling and wavelet bases, respectively.

Collectively, the four fields at all nodes of the tree comprise

the GMRA. For any x ∈ Cj,k, a coarse approximation of x at

the associated scale j is given by xj = Φj,kΦ
T
j,k(x− cj,k) +

cj,k. If j > 0 and Cj,k ⊆ Cj−1,k′ , the geometric wavelet

basis Ψj,k and constant wj,k provide a bridge between ap-

proximations of x at scales j and j − 1:

xj − xj−1 = (Φj−1,k′ Ψj,k)

(

εj,k
qj,k

)

+ wj,k, (1)

where qj,k is the so-called wavelet coefficient1

εj,k = ΦT
j−1,k′(x− xj) , qj,k = ΨT

j,k(xj − cj,k). (2)

Iterating (1) for j varying on the scales of the tree, one ob-

tains a multiscale transform of the point x, in terms of the

differences xj − xj−1. Though such differences are high di-

mensional, they are decomposed along low dimensional sub-

spaces (after subtracting constant terms). For more details we

refer the reader to [3]. This framework provides the founda-

tion for modeling high dimensional densities below.

2.2. Multiscale Measure Estimation

Since our target probability measure µ lives in R
D for D

large, in general it is not feasible to model it directly due to

the curse of dimensionality. However, if we assume that µ is

supported near a low dimensional subset M, we show in the

following that we may estimate it efficiently by enriching the

GMRA construction described in the previous section. Given

Xn as above, we are interested in fast algorithms yielding an

estimator µ̂Xn
of µ, which is a random probability measure

that we would like to be close, as a function of n and “regu-

larity” assumptions on µ and with high probability, to µ. We

need several ingredients, which we now detail.

Metric in M1(RD), the space of Borel probability distribu-

tions in R
D. In order to measure distances between distribu-

tions in M1(RD), we shall use the p-Wasserstein distances

Wp(ν1, ν2) := inf
π∈C(ν1,ν2)

(
∫

RD×RD

||x− y||p
RDdπ(x, y)

)1/p

,

1The coefficient εj,k corresponds to a correction along span(Φj−1,k′).
In one variation of the GMRA, this coefficient can be removed [3, Sec. 6.2].



where C(ν1, ν2) is the set of couplings between ν1 and ν2, i.e.,

the set of measures π on R
D ×R

D such that the marginals of

π are, respectively, ν1 and ν2: π(A × R
D) = ν1(A) and

π(RD ×A) = ν2(A) for all measurable subsets A ⊆ R
D [4].

We use these distances as they allow for comparisons between

measures supported on sets of different dimensions, i.e. ν1
may be supported near (but not exactly on) a low-dimensional

set while ν2 is supported exactly on a low-dimensional set. In

our setting ν1 is the measure µ generating the data, which may

not have exactly low-dimensional support (e.g. due to model

error and/or high-dimensional noise), and ν2 is our estimator

µ̂Xn
, often supported exactly on a low-dimensional set.

Local model classes F ⊂ M1(RD). Our density estimation

procedure will work by partitioning the (effective) support of

µ in a treelike fashion. Each node of this tree will correspond

to a subset, I , of the support of µ, and will have a correspond-

ing local estimator for µ restricted to I . These local estimators

will all belong to the local model class F . For example, we

might choose F to be the set of all uniform distributions on

the unit cubes of the d-dimensional subspaces of RD, or the

set of all (truncated and rescaled) Gaussian distributions with

rank d covariance matrices:

Fd,U := {µ = U([0, 1])d · Φ, for any Φ ∈ R
d×D};

Fd,N := {µ = cΣ N (m,Σ)1{x:(x−m)TΣ(x−m)≤1},

with rank(Σ) = d and cΣ such that ||µ|| = 1}.

We think of F as a collection of simple measures, or “building

blocks”, with low-complexity (e.g., low dimensionality).

Geometric multiscale models. Note that F may contain only

simple measures. Thus, in general, all geometric information

is effectively supplied by a partition tree T . This allows us

to construct more interesting elements of M1(RD) by com-

bining probability measures that are locally, i.e. in nodes of

T , in our family of models while having significantly more

complicated global geometry.

For a partition Λ consisting of elements of T we define

PΛ,I(µ) =

{

µ|I if µ(I) = 0,

argminν∈F Wp

(

ν, µ|I
µ(I)

)

else

for each I ∈ Λ, where µ|I(A) = µ(A∩I) for all (measurable)

A ⊆ R
D. We then define PΛ(µ) =

∑

I∈Λ µ(I)PΛ,I(µ).
We consider here the case Λ = Λj for some j, where Λj =
{Cj,k}k is the GMRA partition at scale j.

Complexity constant for F . We also utilize a complexity

parameter ζ which bounds the number of samples required

for accurate approximation of a measure projected onto F ,

with high probability. More exactly, we require that a con-

centration inequality for empirical approximations holds for

F , i.e., that there exists a sample value ζ > 0, and con-

stants C1, C2, C3 > 0 such that the following holds for all

µ ∈ M1(RD) and samples Xn from µn. Let µXn
:=

1
n

∑n
i=1 δxi

be the (random) empirical measure based on Xn,

and nXn,I = |Xn ∩ I| for any I ⊂ R
D. We assume that

P

(

W2

(

PΛ(µXn
|I)

µXn
(I)

,
PΛ(µ|I)

µ(I)

)

>

√

ζ

nXn,I
t

)

≤ C1e
−C2t

2

for all t > 1, I ∈ Λ, and partitions Λ = Λj with j ≤ C3 lnn.

Approximation spaces. We define our uniform approxi-

mation spaces in M1(RD) as follows. We let Ej(µ) =
Wp(PΛj

(µ), µ). Our approximation space As consists of

those µ ∈ M1(RD) for which there is a constant C such

that Ej(µ) ≤ C (#Λj)
−s

for all j ≥ 0. The infimum C for

which this equation holds defines a seminorm |µ|As on As.

The measure estimator µ̂Xn
will essentially be PΛj

(µXn
)

for an appropriately chosen j. As j increases our model space

becomes larger (albeit not necessarily in a monotonic fashion)

and therefore it contains elements closer to µ. However, both

the model complexity and variance of µ̂Xn
grow with this in-

creased flexibility. A bias-variance tradeoff balancing these

two components allows us to pick an optimal scale j at which

estimation should occur. Under a few additional technical as-

sumptions one can prove the following result [4].

Theorem 2.1. Let T be a fixed partition tree of M ⊂ R
D, µ

a probability measure with µ(M) = 1, and F a model class,

as above. Assume that µ ∈ As, and let ζ be the complexity

constant for F . Then for any β > 0, there exists a constant

CF,β such that if j is the smallest index with

#Λj ≥ CF,β

(

n

ζ · diam(M)4 · lnn

)
1

4s+1

,

then the estimator µ̂Xn
:= PΛj

(µXn
) satisfies

W2(µ̂Xn
, µ) ≤ C(1 + |µ|As)

(

ζ · diam(M)4 · lnn

n

)

s
4s+1

with probability at least 1− n−β .

In other words, given n samples from µ and a partition

tree T , if the measure µ is in the regularity class As with re-

spect to T , then the optimal scale j is such that the estimator

µ̂Xn
constructed by “locally projecting” the empirical mea-

sure µXn
onto F has, with high probability, nearly the best

possible (at that scale) approximation to µ. In practice we do

not have the partition tree T ; we may pick the GMRA tree

constructed from a separate set of µ-samples. We also do not

know s. Thus, we estimate the best level j for our estimator

via cross-validation (see Section 4).

3. ALGORITHMS

Given a finite sample Xn from µ, our first step is to con-

struct the GMRA. At any node Cj,k of the GMRA tree, we

consider the low-dimensional subspace span([Φj−1,k′ Ψj,k]):
the multiscale transform of a point x at this scale is encoded,



via (1), by the coefficients εj,k and qj,k defined in (2). This

step is a significant reduction in the dimensionality, appropri-

ate for the local portion of the data. We estimate the den-

sity of the coefficients (εj,k, qj,k) of the local data, using a

density estimator in F . In our examples we let F include

mixtures of (truncated) Gaussians, and use the kernel den-

sity estimator (KDE) toolbox [5] (mainly due to its simplic-

ity and fast implementation). Let µ̂j,k be the estimated den-

sity for (εj,k, qj,k) at Cj,k. Since Xn = ∪k∈Γj
Cj,k, we ob-

tain a model for the underlying measure µ per scale, namely

µ̂j := 1
n

∑

k∈Γj
|Cj,k| [Φj−1,k′ Ψj,k] µ̂j,k. The collection

{µ̂j}j≥0 provide a family of density estimates for the measure

µ, at multiple scales. Algorithm 1 summarizes these steps.

Algorithm 1 Multiscale-transform based Density Estimation

Input: Data set Xn

Output: Multiscale densities {µ̂j,k}j≥0,k∈Γj

1: Apply GMRA to the training data to obtain a multiscale

dictionary {cj,k,Φj,k, wj,k,Ψj,k}j≥0,k∈Γj

2: For each j > 0, k ∈ Γj , apply the transform in (1) to the

data in Cj,k and obtain low dimensional coefficients

3: Apply a density estimator (e.g. KDE) to the above co-

efficients corresponding to each Cj,k, and obtain density

estimates µ̂j,k

Computational considerations. These algorithms are ex-

tremely fast: If d is the intrinsic dimension of data, n the

sample size, and D the ambient dimension, the complexity is

O(cdnD), for some small universal constant c < 4, for con-

structing a multiscale partition of the data (via cover trees [6]),

plus O(nD(log(n)+d2)) for constructing a low-dimensional

geometric approximation, plus the cost of computing a den-

sity estimator in d dimensions. Most of the steps in the con-

structions of GMRA and the measure estimator are trivially

parallelizable thanks to the tree structure, and greedy updates

for new incoming data are trivial as well provided the tree T
is only grown or pruned.

4. APPLICATION, EXAMPLES AND EXTENSION

Application in Anomaly Detection. Given a sequence of

data sets {X
(t)
n }t≥0, each of which is a random realization of

the underlying measure possibly accompanied by anomalies

at unknown time and location, we want to determine when

and where such anomalies occur.

With the multiscale GMRA dictionary and density esti-

mates learned on a training data set Xn, for example Xn =

X
(0)
n , this may be performed as follows. We obtain a mul-

tiscale partition of the data X
(t)
n by assigning points to the

nearest leaf node centers cj,k in the tree corresponding to the

training data. At coarser scales, the partitions are uniquely

determined by the leaf nodes. Denote this new multiscale de-

composition of X
(t)
n by {C

(t)
j,k}. We apply the transform in
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points

s
c
a

le
s

 

 

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

2

4

6

8

10

12

−500

−400

−300

−200

−100

0

log likelihood

points

s
c
a

le
s

 

 

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

2

4

6

8

10

12

−600

−500

−400

−300

−200

−100

0

0 2 4 6 8 10 12
−20

−15

−10

−5

0

5

10

15

20

Scale

lo
g

L

mean extreme logL

0 2 4 6 8 10 12
−120

−100

−80

−60

−40

−20

0

20

Scale

lo
g

L

mean extreme logL

Fig. 2. Top row: two hyperspectral cubes shown in top three prin-

cipal dimensions: chemical-free (left) and with chemical release

(right). They are the two frames in the first column of Fig. 3. Second

row: multiscale log likelihoods. Bottom row: mean values of 1%

extreme log likelihoods.

(1) to the data in each node C
(t)
j,k to obtain joint coefficients,

and then compute the likelihoods of these coefficients relative

to our model µ̂j,k at Cj,k. When anomalies occur, they will

be captured by the extreme (i.e. small) likelihoods at proper

location and scale.

We propose the following strategy for automatic selection

of the scale at which anomalies can be detected. We know

that anomalies tend to yield extreme likelihoods at correct

scale(s), but otherwise generate comparable likelihoods with

normal parts of the data. If we are given a lower bound α
for the percentage of points that can be anomalies, we may

compute, at every scale, a mean value of the α smallest like-

lihoods. The scale at which such mean values attain a local

minimum is identified as the optimal scale.

Anomaly Detection on Synthetic Data. We gener-

ate a uniform probability distribution supported on a two-

dimensional swissroll manifold, embedded in R
50, and sam-

ple 2000 points i.i.d. from this distribution as training data.

We now draw another sample of 2000 points and grow a cusp

singularity at a randomly chosen location of the swissroll. We

produce four data sets, the first having no anomaly and the

next three having increasingly larger singularities at that fixed

location. We report the results by our algorithms in Fig. 1.

Anomaly Detection in Hyperspectral Imaging. We ap-

ply our algorithms to hyperspectral imaging data for chemical

detection. In a hyperspectral image (HSI), each “pixel” is a
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Fig. 1. Top row: multiscale likelihoods (in log scale) computed relative to the multiscale measures learned on training data. For each data

set, the likelihoods are arranged into a matrix whose rows correspond to coarse (top) to fine (bottom) scales and whose columns represent the

data points. Middle row: mean values of 1% extreme likelihoods at all scales. In each plot, the location of the local minimum determines an

optimal scale at which the anomalies are revealed. Observe also that as the singularity grows, anomalies can be identified at coarser scales.

Last row: the four data sets colored by their likelihoods at the optimal scales.

vector whose entries correspond to hundreds of narrow spec-

tral bands, and thus the HSI is represented by a 3-D cube. The

HSI data addressed in this paper contains chemical plumes

that need to be detected from a desert background. Each 3-D

HSI cube contains of 256×320 pixel arrays in 129 bands. The

first frame in the HSI sequence is chemical-free and will be

used as training data. Our goal is to identify when and where

chemical plume is present in the atmosphere.

We assume that the background pixels have a manifold

structure. Indeed, principal component analysis applied to

these 129 dimensional vectors shows that they concentrate

along a low dimensional manifold (see Fig. 2). Before the

chemical is released, the hyperspectral cubes are just differ-

ent observations of the background, which might vary slowly

over time (e.g. due to weather changes). Anomaly will be

present in the manifold when the chemical is released in the

air. We display in Fig. 2 the multiscale likelihoods of two

representative hyperspectral cubes, one without anomaly and

the other having anomaly. Clearly, there is a block of ex-

treme likelihoods corresponding to the anomaly frame, and

the optimal scale is three. It is also interesting to note that the

likelihoods of the anomalies increase rapidly after that scale,

indicating considerable overfitting of the data at finer scales.

In contrast, for the normal frame, the mean values are approx-

imately constant, though slowly decreasing.

Finally, we display in Fig. 3 eight hyperspectral cubes

from the dataset as two-dimensional images whose pixel in-

tensities are the likelihoods at automatically selected scales.

Connection to Compressive Sensing. Very recently it has

been demonstrated that the GMRA dictionaries can facilitate

signal approximation via compressive measurements [7]. In

this section we show that the HSI data can be accurately re-

covered using significantly fewer than 129, the ambient di-

mension, linear measurements.

In these experiments we constructed the GMRA using a

3-D HSI cube. We then evaluated the compressed sensing

method from [7] on 10, 000 pixels independently and uni-

formly sampled from a second HSI cube. We obtain our com-

pressive measurements using a different fixed random (with

respect to Haar measure) orthogonal projections for each of

the 12 different scale partitions of the HSI data produced

by GMRA. The range of the projection, Mj,m, has dimen-

sion mdj at scale j, where m is an oversampling factor with

a value from {1, 2, 4, 6}, and dj is the maximum range di-

mension over all affine projectors associated with a jth-scale

GMRA partition. This intrinsic dimension dj of the HSI cube

is 1 for scales 1 through 7. The intrinsic dimension increases

adaptively for scales 8 through 12 thereafter, as described in

[3]. The actual dimension values are reported in Figure 4,
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Fig. 3. Log-likelihoods of selected hyperspectral cubes in the HSI sequence relative to the training frame.

where we plot the following approximation error,

MRE(j,m) := max
1≤i≤10,000

‖xi −A(Mj,mxi)‖2/‖xi‖2,

in which the xi are the data points used for evaluation, j de-

notes the GMRA scale, and A : Rmdj → R
129 is the com-

pressed sensing recovery algorithm proposed in [7]. Fig. 4

also plots the maximum relative error between each point and

its GMRA approximation with no compression.

2 4 6 8 10 12
10

−2

10
−1

10
0

10
1

10
2

Scale

M
ax

im
um

 R
el

at
iv

e 
E

rr
or

 

 

m = 1

m = 2

m = 4

m = 6

No Compression

Fig. 4. Hyperspectral data reconstruction errors incurred during re-

construction with compressive measurements. The intrinsic dimen-

sion, dj , is 1 for scales j = 1− 7. Thereafter intrinsic dimension is:

d8 = 8, d9 = 32, d10 = 50, d11 = 57, and, d12 = 58.

We can see that a relatively modest number of random

linear measurements suffice to approximately recover all the

tested pixels nearly as accurately as GMRA with no com-

pression. For example, six linear measurements at scales 1

to 7 (see the curve for m = 6) appear to perform nearly as

well as recovery in the ambient 129-dimensional space. The

computational complexity of the recovery algorithm at scale

j is dominated by the time required to find an (approximate)

nearest neighbor for each evaluation point from the set of all

scale-j GMRA centers, cj,k. In practice, the method has been

demonstrated to be several orders of magnitude faster than

other sparse reconstruction algorithms (see [7] for details).

5. SUMMARY

We introduced a novel framework for estimating measures in

high dimensions that are supported near intrinsically low di-

mensional sets. The construction of our estimators is based

on a geometric multiscale decomposition of the given data

and performing best local fits, while controlling the overall

model complexity. We proved strong finite sample perfor-

mance bounds, essentially dependent only on the intrinsic

complexity of the data and not on the ambient dimension,

for a large variety of models and target probability measures.

The algorithms implementing this construction are fast and

parallelizable, and produced accurate results when applied to

synthetic and real data for anomaly detection. Finally, we

showed that this framework is compatible with a generalized

compressive sensing procedure.

6. REFERENCES

[1] A.V. Little, M. Maggioni, and L. Rosasco, “Multiscale geomet-

ric methods for data sets I: Multiscale covariances, noise and

curvature,” submitted, 2012.

[2] P.W. Jones, M. Maggioni, and R. Schul, “Manifold parametriza-

tions by eigenfunctions of the Laplacian and heat kernels,”

PNAS, 105(6):1803–1808, Feb. 2008.

[3] W.K. Allard, G. Chen, and M. Maggioni, “Multiscale geometric

methods for data sets II: Geometric multiresolution analysis,”

ACHA, 32(3): 435-462, May 2012. Available online Sep. 2011.

[4] G. Chen, M.Iwen, and M.Maggioni, “Fast geometric multiscale

approximation of measures in high dimensions,” in preparation.

[5] A. Ihler and M. Mandel, “Kernel density estimation toolbox,”

Available at http://www.ics.uci.edu/ ihler/code/kde.html, 2003.

[6] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for

nearest neighbor,” in Proc. ICML, 2006.

[7] M. Iwen and M. Maggioni, “Approximation of points on low-

dimensional manifolds via random linear projections,” submit-

ted, 2012. Preprint available on arXiv:1204.3337v1.


