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Abstract—Compressive Phase Retrieval refers to the
problem of recovering an unknown sparse signal, upto
a global phase constant, given only a small number of
phaseless (or magnitude) measurements. This problem
occurs in several areas of science – such as optics, astron-
omy and X-ray crystallography – where the underlying
physics of the problem is such that we can only acquire
phaseless (or intensity) measurements, and where the
underlying signal is sparse (or sparse in an appropriate
transform domain). We present here an essentially linear-
in-sparsity– time compressive phase retrieval algorithm. We
show that it is possible to stably recover k-sparse signals
x ∈ Cn from O

(
k log4 k · logn

)
measurements in only

O
(
k log5 k · logn

)
–time. Numerical experiments show that

the method is not only fast, but also stable to measurement
noise.

I. INTRODUCTION

Let x ∈ Cn be a k-sparse signal, with k � n. Given
the squared magnitude measurements

y = |Mx|2 + n, (1)

where M ∈ Cm×n denotes a measurement matrix and
n ∈ Rm denotes measurement noise, the compressive
phase retrieval problem1 seeks to recover the unknown
signal x (upto some global phase offset) using only
m � n phaseless measurements, y ∈ Rm. These types
of measurements arise in several applications (includ-
ing optics [1], astronomy [2], quantum mechanics [3]
and speech signal processing [4]) on account of the
underlying physics. For example, in molecular imaging
applications such as X-ray crystallography, we acquire
intensity measurements of the diffraction pattern of the
underlying specimen [5]. It is possible to show that these
measurements correspond to the squared magnitude of
the Fourier transform of the underlying specimen or a
masked/windowed representation of the specimen. Ad-
ditionally, it is often the case that the underlying signal
x is sparse or well-approximated by a sparse signal in

1It is typical to assume that we are allowed to design both the
recovery algorithm AM : Rm → Cn, as well as the measurement
matrix, M.

some transform domain. The recovery of such signals is
the subject of this paper. In particular, we are interested
in fast (sub-linear–time) and efficient compressive phase
retrieval methods which use a near-optimal number of
phaseless measurements to stably recovery x.

A. Prior Work

Given the numerous practical applications, this prob-
lem has attracted the attention of researchers and prac-
titioners across diverse scientific disciplines. Conse-
quently, several computational methods have been pro-
posed for solving this problem. A popular approach
involves the extension of general non-sparse phase re-
trieval methods by incorporating sparsity constraints. For
example, imposing additional sparsity constraints in the
classical Fienup alternating projection algorithm [6] has
been explored in [7], while sparsity enforcing variants
of the PhaseLift semidefinite relaxation formulation [8]
were evaluated in [9]. Problem formulations designed
specifically for the compressive phase retrieval problem
exist too, such as [10] which is based on a fast local
greedy support search procedure, approximate message
passing methods such as [11], and combinatorial support
identification and estimation procedures such as [12]. In
addition, there are also two-stage algorithmic formula-
tions such as [13] and [14]. The results in this paper
are motivated, for example, by the construction in [13]
which first solves a (non-sparse) phase retrieval problem
to recover an intermediate compressed signal, followed
by the application of a compressed sensing recovery
method such as basis pursuit.

To the best of our knowledge, these and all exist-
ing algorithms are super-linear–time in the signal di-
mension n, which presents a significant computational
challenge for very large problems. In this paper, we
present theoretical and numerical results showing that
it is possible to accurately recover the signal x in only
O(k log5 k · log n)–time using a near-optimal (upto log
factors) O(k log4 k · log n) number of measurements.



B. Main Result

Theorem 1. (Fast Compressive Phase Retrieval) There
exists a deterministic algorithm AM : Rm → Cn for
which the following holds: Let ε ∈ (0, 1], x ∈ Cn with n
sufficiently large, and k ∈ {1, 2, . . . , n} ⊂ N. Then, one
can select a random measurement matrix M ∈ Cm×n
such that

min
θ∈[0,2π)

∥∥eiθx−AM (|Mx|2
)∥∥

2
≤
∥∥x− x opt

k

∥∥
2

+

22ε
∥∥∥x− xopt

(k/ε)

∥∥∥
1√

k

is true with probability at least 1− 1
C·log2(n)·log3(logn)

.2

Here, xopt
k denotes the best k-term approximation to

x and m can be chosen to be O
(
k
ε · log3(kε ) ·

log3
(
log k

ε

)
· log n

)
. Furthermore, the algorithm will

run in O
(
k
ε · log4(kε ) · log3

(
log k

ε

)
· log n

)
–time.3

This result shows that the runtime and sampling
complexities of the proposed algorithm are optimal (upto
log factors). Moreover, empirical results show that this
method is not only fast, but also stable to measurement
noise. The proposed algorithm employs a two-stage
construction by incorporating the measurement matrices
and recovery methods from: (i) a fast (essentially linear-
time) non-sparse phase retrieval algorithm, and (ii) a sub-
linear time compressive sensing recovery method.

The rest of the paper is organized as follows: §II
describes the fast phase retrieval method, while §III
briefly summarizes relevant sub-linear time compressive
sensing results and methods. The proposed fast com-
pressive phase retrieval framework is then described in
§IV. Numerical results demonstrating the efficiency and
robustness are presented in §V, while some concluding
comments are offered in §VI.

II. FAST (NON-SPARSE) PHASE RETRIEVAL

We summarize below a recently introduced fast (es-
sentially linear-time) phase retrieval method employing
local correlation-based measurement matrices. For the
sake of brevity, we provide here an illustrative example
highlighting the measurement construction as well as
salient features of the recovery algorithm, while referring
the interested reader to [15] for further details. We start
by considering noiseless squared magnitude measure-
ments of the form

y = |Pz|2 , (2)

2Here C ∈ R+ is a fixed absolute constant.
3For the sake of simplicity, we assume k = Ω(logn) when stating

the measurement and runtime bounds above.

where y ∈ R12, P ∈ C12×4 denotes a measurement
matrix, and z ∈ C4 is the unknown signal we seek to
recover. Furthermore, let P be constructed as follows4:

P =

P1

P2

P3

 , Pi ∈ C4×4, i ∈ {1, 2, 3}, where

Pi =


(pi)

∗
1 (pi)

∗
2 0 0

0 (pi)
∗
1 (pi)

∗
2 0

0 0 (pi)
∗
1 (pi)

∗
2

(pi)
∗
2 0 0 (pi)

∗
1

 .

This corresponds to (squared magnitude) correlation
measurements of the unknown signal z ∈ C4 with three
local masks p1,p2,p3 ∈ C4, where (pi)` = 0 for
` > 2, i ∈ {1, 2, 3}. Writing out the correlation sum
explicitly and setting δ = 2, we obtain

(yi)` =

∣∣∣∣∣
δ∑

k=1

(pi)
∗
k · z`+k−1

∣∣∣∣∣
2

=

δ∑
j,k=1

(pi)j (pi)
∗
k z
∗
`+j−1 z`+k−1

:=

δ∑
j,k=1

(pi)j,k z
∗
`+j−1 z`+k−1,

where we have used the notation (pi)j,k := (pi)j(pi)
∗
k.

The resulting linear system of equations for the (scaled)
phase differences {z∗i zj} may be written as

ỹ = P ′b, (3)

where ỹ denotes the interleaved vector of measurements

[(y1)1(y2)1(y3)1 (y1)2(y2)2(y3)2 . . . (y1)4(y2)4(y3)4]
T
,

b denotes the vector of scaled phase differences[
|z1|2 z∗1z2 z∗2z1 |z2|2 z∗2z3 . . . z∗4z3 |z4|2 z∗4z1 z∗1z4

]T
,

and P ′ is the block circulant matrix

P ′ =


P ′1 P ′2 0 0
0 P ′1 P ′2 0
0 0 P ′1 P ′2
P ′2 0 0 P ′1

 , with

P ′1 =

(p1)1,1 (p1)1,2 (p1)2,1

(p2)1,1 (p2)1,2 (p2)2,1

(p3)1,1 (p3)1,2 (p3)2,1

, P ′2 =

(p1)2,2 0 0
(p2)2,2 0 0
(p3)2,2 0 0

 .
This block-circulant structure allows for efficient inver-
sion of P ′ using FFTs, as well as analysis of its condition

4The notation (pi)` denotes the `-th entry of the i-th mask and
(pi)

∗
` denotes the complex conjugate of (pi)`.
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number. For example, it is shown in [15] that choosing
the mask entries to be

(pi)k =

{
e
−k/a

4√2δ−1 · e
2πi·(k−1)·(i−1)

2δ−1 if k ≤ δ
0 if k > δ

(4)

guarantees that the condition number of P ′ grows no
worse than O(δ2). Since δ is typically small, this en-
sures well conditioned measurements, irrespective of the
problem dimension.

Note that by solving the linear system (3), the mag-
nitude of z is automatically recovered. In particular,

|z1|2 = b1, |z2|2 = b4, |z3|2 = b7, |z4|2 = b10.

Additionally, by normalizing (to unit magnitude) the
entries of b, one also recovers phase difference estimates
φi,j := arg(zj)−arg(zi), for i, j ∈ {1, 2, 3, 4} and |i− j
mod 4| = 1. For example, φ1,2 = arg(z2) − arg(z1) =
b2/|b2|. It is now possible to recover arg(z) by using a
greedy procedure. This is commonly referred to as the
angular synchronization problem [16].

Assume, without loss of generality, that |z1| ≥
|zi|, i ∈ {2, 3, 4}. Start by setting arg(z1) = 0.5 It is
now possible to set the phase of z2 and z4 using the
estimated phase differences φ1,2 and φ1,4 respectively;
i.e.,

arg(z2) = arg(z1) + φ1,2 = φ1,2,

arg(z4) = arg(z1) + φ1,4 = φ1,4.

Similarly, one can set arg(z3) = arg(z2) +φ2,3, thereby
recovering all of the entries’ unknown phases. Note that
the computational cost of this procedure is essentially
linear in the dimension of z.

The above discussion assumes that z is “flat”; i.e.,
it does not contain a long string of zeros or entries
of very small magnitude. In this case, the network of
phase differences is broken, thereby causing the angular
synchronization method to fail. Nevertheless, for recov-
ering such vectors (and, in general, arbitrary vectors z),
the measurement matrix P may be modified by mul-
tiplication with a fast (FFT-time) Johnson-Lindentrauss
transform matrix [15] to “flatten” z and ensure it does
not contain a long string of zeros or small entries. While
we refer the reader to [15] for more details, we conclude
with a noiseless recovery guarantee.

Theorem 2. (Fast Phase Retrieval) Let z ∈ Cd with
d sufficiently large. Then, one can select a random
measurement matrix P ∈ Cm×d such that the following

5Recall that we can only recover z up to an unknown global phase
factor which, in this case, will be the true phase of z1.

holds with probability at least 1 − 1
c·log2(d)·log3(log d)

:
The above fast phase retrieval method will recover an
z̃ ∈ Cd with

min
θ∈[0,2π)

∥∥z− eiθz̃∥∥
2

= 0

when given the noiseless magnitude measurements
|Px|2 ∈ Rm. Here m can be chosen to be O(d ·
log2(d) · log3 (log d)). Furthermore, the algorithm will
run in O(d · log3(d) · log3 (log d))-time in that case.

III. SUB-LINEAR TIME COMPRESSIVE SENSING

In the last few years, several low-complexity recovery
algorithms for recovering a k-sparse vector x from
d � n compressed measurements Cx ∈ Cd have been
proposed (see, for example [17] and [18]). For the results
in this paper, we use the measurement constructions
and recovery methods from [19]. Here, the compressed
sensing matrix C ∈ Cd×n is a random sparse binary
matrix obtained by randomly sub-sampling the rows
of another suitably well-chosen incoherent matrix (for
example, the adjacency matrix of certain unbalanced
expander graphs). It can be shown that the resulting
matrices satisfy certain strong combinatorial properties
which permit the use of low complexity (sub-linear in the
problem size) compressed sensing recovery algorithms.

The recovery algorithm then proceeds in two phases:
1) Identify the k largest magnitude entries of x using

standard bit-testing techniques.
2) Estimate these k largest entries using median

estimates and techniques from computer science
streaming literature.

The sampling and runtime complexities of this method
are both O(k ·log k ·log n). While we refer the interested
reader to [19] for further details, we list below the main
result from [19] of relevance to our discussion.

Theorem 3. (Sub-Linear Time Compressive Recov-
ery) Let ε ∈ (0, 1], σ ∈ [2/3, 1), x ∈ Cn, and
k ∈ {1, 2, . . . , n}. With probability at least σ the
deterministic compressive sensing algorithm from [19]
will output a vector x̃ ∈ Cn satisfying

‖x− x̃‖2 ≤
∥∥x− x opt

k

∥∥
2

+
22ε
∥∥∥x− xopt

(k/ε)

∥∥∥
1√

k
(5)

when executed with random linear input measure-
ments Cx ∈ Cd. Here d = O

(
k
ε · log

(
k/ε
1−σ

)
log n

)
suffices. The required runtime of the algorithm is
O
(
k
ε · log

(
k/ε
1−σ

)
log
(

n
1−σ

))
in this case.6

6For the sake of simplicity, we assume k = Ω(logn) when stating
the measurement and runtime bounds above.
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IV. FAST COMPRESSIVE PHASE RETRIEVAL

We now present a simple two-stage formulation for
our fast compressive phase retrieval algorithm. Let P ∈
Cm×d denote a phase retrieval matrix associated with
the phase retrieval method ∆P , and let C ∈ Cd×n
denote a compressive sensing matrix associated with the
sub–linear time compressive sensing algorithm ∆C . Let
the measurement matrix M for the compressive phase
retrieval problem (1) be constructed as M = PC. Then,
we can show that ∆C ◦ ∆P : Rm → Cn recovers the
unknown signal x upto a global phase factor stably and
accurately. For results presented in this paper, we choose
∆P to be the fast (FFT–time) phase retrieval method
described in §II. For ∆C , we use the sub–linear time
recovery methods proposed in [19], and summarized in
§III.

The recovery algorithm proceeds in the following two
stages:

1) First, apply the fast phase retrieval method, ∆P :
Rm → Cd, to the phaseless measurements y
and recover an intermediate compressed signal
z ∈ Cd. From §II and Theorem 2, we known
that m = O(dpolylog d) phaseless measurements
suffice for accurate recovery of the intermediate
compressed signal z. Further, we also know that it
is possible to design ∆P to run in O(dpolylog d)–
time. Additionally, from §III and Theorem 3, we
known that the dimension of the intermediate
compressed signal is d = O (k log k · log n).

2) Next, we use a sub–linear time compressive sens-
ing algorithm, ∆C : Cd → Cn, to recover the
unknown signal x (upto a global phase factor).
From §III and Theorem 3, we know that x can
be recovered in O (k log k · log n)–time.

We also note that the proof of the main result, Theorem
1, follows directly from Theorem 2 and Theorem 3.

V. REPRESENTATIVE NUMERICAL SIMULATIONS

We now present some representative numerical results
demonstrating the efficiency of the proposed method.
In each case, the test signals were generated to have
i.i.d complex Gaussian non-zero entries, with non-zero
index locations chosen by k-permutations. Simulations
were performed on a laptop computer with an Intelr

CoreTMi3-3120M processor, 6GB RAM and Matlab
R2015b. Open source Matlab code7 used to generate
these numerical results can be found at [22].

7This code uses a fast (sub-linear time) compressive recovery
method detailed in [20] and implemented in [21].

Fig. 1 plots the computational time (in seconds, av-
eraged over 100 trials) taken to solve the compressive
phase retrieval problem as a function of the signal
sparsity k for different problem sizes. The recovery is
deemed to be successful if min

θ∈[0,2π)
‖eiθx−x̂‖2 ≤ 10−10,

where x̂ denotes the recovered signal. Observe that the
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Fig. 1. Computational Efficiency of the Proposed Compressive Phase
Retrieval Algorithm

overall execution time is sub-linear in the problem size n
and (poly) log-linear in the sparsity k. For example, a 20-
sparse million-length complex vector can be recovered
in about 10 seconds. For completeness, the (average,
over 100 trials) number of measurements acquired and
the intermediate signal dimension for the simulation run
with signal size n = 220 is tabulated in Table I. We
remark that the sub-linear compressive recovery software
implementation [21] used to generate these results is
not optimized; we expect improved performance (and
fewer total measurements) when using more refined and
optimized software implementations.

Finally, we present empirical evidence of the robust-
ness of the proposed method to additive measurement
noise. Fig. 2 plots the reconstruction error (in dB,
averaged over 100 trials) as a function of the added
noise level (in dB) for recovering a n = 220-length
signal with sparsities k = 5 and k = 25. Additive i.i.d.
Gaussian noise at the prescribed SNRs were added to the
test signals prior to reconstruction. We observe that the
recovery algorithm displays graceful degradation with
the noise level, although it is possible to improve this
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k 5 10 15 20 25
m 7, 371 20, 475 38, 304 53, 550 75, 411

(%) (0.70) (1.95) (3.65) (5.11) (7.19)
d 2, 457 6, 825 12, 768 17, 850 25, 137

TABLE I
NUMBER OF MEASUREMENTS REQUIRED FOR COMPRESSIVE

PHASE RETRIEVAL (SIGNAL LENGTH, n = 220 = 1, 048, 576).
HERE, k IS THE SIGNAL SPARSITY, m IS THE NUMBER OF

MEASUREMENTS ACQUIRED, % DENOTES THE NUMBER OF
MEASUREMENTS AS A PERCENTAGE OF THE SIGNAL SIZE n, AND d

IS THE INTERMEDIATE COMPRESSED SIGNAL DIMENSION.

performance through use of more robust phase retrieval
and compressive recovery methods.
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Fig. 2. Robustness of the Proposed Compressive Phase Retrieval
Algorithm to Additive Measurement Noise

VI. CONCLUDING REMARKS

We have presented an essentially linear-in-sparsity–
time phase retrieval algorithm which is capable of recov-
ering k-sparse signals x ∈ Cn from O(k log4 k · log n)
measurements in only O(k log5 k · log n)–time. Rep-
resentative numerical results demonstrate the computa-
tional efficiency of the method. Future research direc-
tions include obtaining robust recovery guarantees for
the algorithm in the presence of measurement noise
as well as a comprehensive comparison against other
compressive phase retrieval methods.
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