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Abstract

In this paper a deterministic sparse Fourier transform algorithm is presented which
breaks the quadratic-in-sparsity runtime bottleneck for a large class of periodic func-
tions exhibiting structured frequency support. These functions include, e.g., the
oft-considered set of block frequency sparse functions of the form

f(x) =

n∑
j=1

B−1∑
k=0

cωj+ke
i(ωj+k)x, {ω1, . . . , ωn} ⊂

(
−
⌈
N

2

⌉
,

⌊
N

2

⌋]
∩ Z

as a simple subclass. Theoretical error bounds in combination with numerical ex-
periments demonstrate that the newly proposed algorithms are both fast and robust
to noise. In particular, they outperform standard sparse Fourier transforms in the
rapid recovery of block frequency sparse functions of the type above.

AMS Subject Classification. 05-04, 42A10, 42A15, 42A16, 42A32, 65T40, 65T50,
68W25, 94A12

1 Introduction

In this paper we consider the problem of deterministically recovering a periodic function
f : [0, 2π]→ C as rapidly as absolutely possible via sampling. In particular, we focus on
a specific set of functions f whose dominant Fourier series coefficients are all associated
with frequencies contained in a small number, n, of unknown structured support sets
S1, . . . , Sn ⊂ (−dN/2e, bN/2c]∩Z, where N ∈ N is very large. In such cases the function
f will have the form

f(x) ≈
n∑
j=1

∑
ω∈Sj

cωe
iωx, (1)

where each unknown Sj has simplifying structure (e.g., has |x − y| < B � N for all
x, y ∈ Sj).
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The classical solution for this problem would be to compute the Discrete Fourier Trans-

form (DFT) of N equally spaced samples from f on [0, 2π],
(
f
(

2πj
N

))N−1

j=0
, in order to

obtain approximations of cω for all ω ∈ (−dN/2e, bN/2c]∩Z in O(N logN)-time. Herein,
we instead consider faster deterministic Sparse Fourier Transform (SFT) methods which
are guaranteed to recover such f using a number of samples and operations that scale at
most polynomially in both

∑n
j=1 |Sj | and log(N). Such algorithms will always be faster

than classical O(N log(N))-time methods whenever the cardinalities of the support sets,
|Sj |, are sufficiently small in comparison to N . The main contribution of this paper is the
development of the fastest known deterministic SFT methods to date for the recovery of
a large class of periodic functions of type (1). Such functions (1) will be referred to as
functions with structured frequency support below.

1.1 Related Work: Sparse Fourier Transforms

The vast majority of the work on sparse Fourier transform methods has focused on the
unstructured frequency sparse case where, e.g., each set Sj in (1) is just a singleton set.
In this case functions of the form (1) are simply n-sparse in the Fourier domain. The first
sub-linear time methods developed for rapidly computing the Fourier series coefficients
of such frequency sparse functions were randomized algorithms [2,13,15,30] which fail to
output good solutions with some constant (and usually tunable) probability. In exchange
for this slight unreliability in producing accurate output, the fastest of these randomized
techniques are able to compute the Fourier series of n-sparse f in just n logO(1)N -time.
The most efficient, numerically stable, and publicly available implementations of these
methods are based on random algorithms developed out of MIT [17, 19, 22], Michigan
[13, 15, 26], and Michigan State [10, 31, 41].1 We point the reader to a recent survey of
such algorithms, techniques, and implementations for more details [14].
Herein we are interested in deterministic SFT methods with no probability of failing

to recover the dominant Fourier series coefficients of f . As with randomized techniques,
most methods of this kind (see, e.g., [1, 23, 24, 37]) focus on the recovery of functions
f that are unstructured and (approximately) n-sparse in the Fourier domain. As one
might expect, these techniques are generally slower than their randomized counterparts,
and the fastest run in n2 logO(1)N time in the unstructured frequency sparse case.
Note the quadratic runtime of these deterministic methods in n. It is worth mention-

ing that reducing the quadratic runtime dependence on n for unstructured frequency
sparse signals necessitates a similar reduction in the sampling complexity of these deter-
ministic methods which (even when considered independently of the sub-linear runtimes
we demand herein) is known to be notoriously difficult (see, e.g., [7, 9, 12]). This makes
meaningful runtime reductions of these methods for periodic functions with unstruc-
tured sparsity quite unlikely to occur anytime soon. However, runtime reductions for
functions with structured frequency sparsity should be more tractable. In this paper
we demonstrate this fact by constructing deterministic algorithms which achieve sub-
linear runtimes that scale sub-quadratically in sparsity for a wide class of functions with
structured frequency support.

1The code for all of these implementations is freely available on the web [18,25].
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1.2 A General Class of Functions with Structured Frequency Support

Existing sparse Fourier transform techniques have been applied to many signal processing
problems including, e.g., GPS signal acquisition [16], analog-to-digital conversion [29,43],
and wideband communication/spectrum sensing [20, 42]. In all of these applications
the signals under consideration are generally manmade and, therefore, structured in
Fourier space. Herein we will in particular focus on periodic functions f whose dominant
Fourier series coefficients are all associated with integer frequencies belonging to sets
S1, . . . , Sn ⊂ (−dN/2e, bN/2c]∩Z, each of which is generated by an unknown degree ≤ d
polynomial Pj ∈ Z[x]. More specifically, we will assume that each set Sj is given by

Sj :=
{
Pj(k) : k = 1, . . . , B′j ∈ N

}
, (2)

where 0 < B′j ≤ B � N always holds for some support set cardinality upper bound
B ∈ N. Perhaps the simplest class of structured frequency sparse functions of this
type are the block frequency sparse functions for which each Pj(x) = x + aj for some
aj ∈ (−dN/2e, bN/2c −B] ∩ Z.
Though our main results will concern the relatively general setting where our fre-

quency support sets are given by (2), in what follows we will pay particular attention
to the simpler class of block frequency sparse functions. Related block Fourier sparse
structures appear in many signal processing contexts including, e.g., the reconstruction of
multiband signals via blind sub-Nyquist sampling [11,32–35]. This class of block Fourier
sparse functions also appears in related numerical methods for the rapid approximation
of functions which exhibit sparsity with respect to other orthonormal basis functions. For
example, one can rapidly approximate functions which are a sparse combination of high-
degree Legendre polynomials by computing the DFT of samples from a related periodic
function which is always guaranteed to be approximately block frequency sparse [21].
The importance of block frequency sparse functions has already led several authors to

consider deterministic sub-linear time Fourier transforms for this case. Examples include
several approaches which focus on the recovery of periodic functions whose frequency sup-
port is confined to just one block [4, 38, 39] or several blocks [8]. Herein we significantly
generalize these first block frequency sparse recovery results by developing new determin-
istic SFT methods which enjoy recovery guarantees for all structured frequency sparse
periodic functions f satisfying both (1) and (2). In particular, the methods proposed
herein can rapidly recover block frequency sparse functions whose frequency support
contains any given number of blocks.

1.3 Notation and Setup

We will always consider continuous 2π-periodic functions f : [0, 2π] → C with f(x) =∑n
j=1

∑
ω∈Sj cω(f)eiωx where the unknown support sets S1, . . . , Sn all satisfy (2). We

will denote the Fourier series coefficients of any such f by c(f) = (cω(f))ω∈Z with

cω(f) :=
1

2π

2π∫
0

f(x)e−iωxdx.

We will also consider perturbations of f by arbitrary 2π-periodic functions η ∈ L2([0, 2π])
whose Fourier series coefficients c(η) ∈ `1 and also satisfy ‖c(η)‖∞ ≤ ε for some ε > 0.
We will further denote by c(N) ∈ CN the restriction of the sequence c(f + η) to the
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frequencies contained in (−dN/2e, bN/2c] ∩ Z, and by c(N,Z) the embedding of c(N)
into CZ:

(c(N,Z))ω =

{
cω(f + η), ω ∈ (−dN/2e, bN/2c] ∩ Z,
0, otherwise.

A Fourier coefficient cω := cω(f + η) ∈ C will be called significantly large if |cω| > ε.
Similarly, a frequency ω ∈ Z is energetic if its corresponding Fourier coefficient cω is
significantly large.
For any vector x ∈ C|I| with index set I, and subset R ⊆ I, we define the vector

xR ∈ C|I| by

(xR)i =

{
xi, if i ∈ R,
0, otherwise

for all i ∈ I. Furthermore, we denote by 0M ∈ CM the vector consisting of M zeroes
and by 1M ∈ CM the vector consisting of M ones.

Finally, for any s < |I| we will let the subset Ropt
s ⊂ I be the, in lexicographical order,

first s-element subset such that |xj | ≥ |xk| for all j ∈ Ropt
s and k ∈ I\Ropt

s . Thus,
Ropt
s contains the indices of s entries of x with the largest magnitudes. While choosing

s entries with the largest magnitude might not be unique, Ropt
s is unique. To simplify

notation we set xopt
s := xRopt

s
. We will also say, e.g., that (c(N))opt

s = copt
s (N).

Throughout the remainder of this paper we will always consider samples to be taken
from f + η so that we are recovering a function which is potentially both non-sparse
in Fourier domain and unstructured in its dominant frequency support. However, if, for
example, the nonzero Fourier coefficients of f all satisfy |cω(f)| > 2ε, then the structured
frequency sparsity of f guarantees that

{ω : |cω(f + η)| > ε} ∩Ropt
Bn(f + η) ⊆ S :=

n⋃
j=1

Sj .

It is exactly this type of consideration which will allow us to obtain near-optimal best
Bn-term approximation guarantees for f + η via our deterministic SFT methods below.

1.4 Results

As previously mentioned, we will confine our reconstruction results to the class of periodic
functions, f , with structured frequency support satisfying both (1) and (2) above. Mo-
mentarily ignoring the structure of the support sets, Sj , given in (2) one can see that each
such f is approximately Bn-sparse. As a result, it can be recovered in B2n2 logO(1)N -
time using the best deterministic SFTs for unstructured sparsity [23, 24]. Herein we
obtain the following improved deterministic recovery result by taking the structure of
the support sets (2) into account. It is a simplified corollary of Theorem 3.12 in §3.

Theorem 1.1
Let f, η ∈ L2([0, 2π]) be as in §1.3. In addition, assume for simplicity that cω(f +
η) = 0 for all ω /∈ (−dN/2e, bN/2c] ∩ Z, and that B > n logN where n is the number
of polynomials of degree at most d which are evaluated at most B times to obtain the
energetic frequencies in S1, . . . , Sn. In this case Algorithm 1 below is guaranteed to always
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return a sparse N -length vector xR of Fourier coefficient estimates that satisfies

‖c(N)− xR‖2 ≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥

2
+
√
B

(
ε+

3

d
√
n

∥∥∥c(N)− copt
2Bn(N)

∥∥∥
1

)
(3)

when given access to

O
(
Bd2n3 log5N

logB log2(dn)

)
samples from f + η on [0, 2π]. Furthermore, the runtime of Algorithm 1 is always

O
(
Bd2n3 log5N

log2(dn)

)
.

Note that algorithm mentioned in Theorem 1.1 will outperform existing deterministic
SFTs with respect to runtime on functions with structured frequency support whenever
B � d2n logN . Most importantly, it does so while still maintaining a (slightly weakened)
`2/`1 error guarantee (3) of the same type as the error guarantees of many compressive
sensing methods [12].
Of course nothing comes for free. The error guarantee (3) is only really meaningful

in the setting where the function with structured frequency support, f , dominates the
arbitrary noise η in f + η. If, for example, |cω(f)| < 2ε for all ω ∈ S =

⋃n
j=1 Sj ,

then f + η might not be approximated well by a function with structured frequency
sparsity anymore. In such cases the runtime of Algorithm 1 in Theorem 1.1 will still be
fast, but at the expense of the right hand side of (3) being relatively large (due to the
ε-term). As a consequence, one can see that Theorem 1.1 only provides a meaningful
computational improvement over standard deterministic SFTs in the case where, e.g.,
both B � d2n logN and

ε := ‖c(η)‖∞ .
1

d
√
n

∥∥∥c(N)− copt
Bn(N)

∥∥∥
1
≤ 1

d
√
n

∑
ω/∈S

|cω(η)|

are true.
If one focuses on the more restrictive case of block frequency sparse functions, where

all support sets Sj in (2) are generated by evaluating n linear, monic polynomials at B
consecutive points, the methods developed herein also provide the following simplified
result. It is a corollary of Theorem 4.1 in §4.

Theorem 1.2
Let f, η ∈ L2([0, 2π]) be as in §1.3 and let further f be block frequency sparse. In addition,
assume for simplicity that cω(f+η) = 0 for all ω /∈ (−dN/2e, bN/2c]∩Z. In this case the
variant of Algorithm 1 presented in §4 is guaranteed to always return a sparse N -length
vector xR of Fourier coefficient estimates that satisfies

‖c(N)− xR‖1 ≤ 4
∥∥∥c(N)− copt

Bn(N)
∥∥∥

1
+ 2Bnε

when given access to

O
(
Bn2 log4N

log2 n

)
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samples from f + η on [0, 2π]. Furthermore, the runtime of the algorithm is always

O
(
Bn2 logB log4N

log2 n

)
.

Inspecting Theorem 1.2 above one can see that it always provides a theoretical runtime
improvement over existing B2n2 logO(1)N -time methods for unstructured sparsity when
applied to block frequency sparse functions. Moreover, a (slightly weakened) `1/`1 sparse
approximation error guarantee is obtained. As above, we note that this result represents
a significant improvement over existing techniques for this class of periodic functions as
long as ε is sufficiently small (i.e., as long as f + η is sufficiently well approximated by a
block frequency sparse function).

1.5 Techniques and Overview

The deterministic SFT algorithms introduced in [23] implicitly construct compressive
sensing matrices M ∈ {0, 1}m×N with m � N which have several useful properties,
including (i) the restricted isometry property, (ii) they are the adjacency matrices of
highly unbalanced expander graphs, and (iii) they are d-disjunct group testing matrices.2

In addition to these properties, the matricesM also interact well with the Fourier basis
in the following sense. Let F ∈ CN×N be a discrete Fourier transform matrix. Then,
the matrix productMF is guaranteed to be highly sparse, with fewer than m columns
containing nonzero entries.
It is precisely this collection of properties of M which ultimately allows for the de-

velopment of the improved deterministic SFT algorithms presented in [24]. To get some
intuition for how this works, one can consider the recovery of the approximately sparse
Fourier coefficients c(N) ∈ CN using only the measurementsM (c(N)) ∈ Cm. The prop-
erties of M make it clear that such recovery is possible via, e.g., standard compressive
sensing methods [12]. In fact, with more work one can show that the special properties
ofM allow for the recovery of c(N) in just m logO(1)m-time, and without compromising
the error guarantees one generally expects from compressive sensing algorithms such as
Basis Pursuit. In addition, only a small number of samples from f +η are required, since
MF is highly sparse, and

Mc(N) = (MF)
(
F−1c(N)

)
= (MF)x

where x has xj = (f + η)
(

2πj
N

)
. Thus, just a few entries of x have to be observed in

order to obtain the necessary measurementsM (c(N)).
In this paper we build on [23, 24] by augmenting the number theoretic constructions

of the matricesM above in a way which allows us to benefit from structured frequency
support while simultaneously preserving all the of properties of M needed in order to
maintain extremely fast (i.e., sub-linear) runtimes. Intuitively, this is accomplished by
augmenting a well chosen measurement matrix M from [24] with a set of several addi-
tional vectors (uj)

M
j=1 ⊂ {0, 1}N as follows. Let ◦ denote the Hadamard product and

~ the row-wise Hadamard product, where the first κ rows of A ~ B are given as the
Hadamard product of all rows of A with the first row of B, the second κ rows as the
Hadamard product of all rows of A with the second row of B and so forth. Below
we will utilize a set of new measurement matrices M ~ u1, . . . ,M ~ uM ∈ {0, 1}m×N .

2See [3] for additional details about these matrices and all of their remarkable properties.
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Collectively, these new matrices are then shown to still allow all of the measurements
(M~ u1) (c(N)) , . . . , (M~ uM ) (c(N)) ∈ Cm to be computed using just a few samples
from f + η. Furthermore, when f + η is structured frequency sparse, it is shown that
uj ◦ c(N) will be guaranteed to be significantly more sparse than c(N) for most of the
values of j = 1, . . . ,M . Hence, the deterministic SFT methods from [23, 24] will allow
each such uj ◦ c(N) to be recovered using the measurements

(M~ uj) (c(N)) =M (uj ◦ c(N))

much faster than one can deterministically recover c(N) all at once using the same
techniques.
Finally, the structure of the vectors (uj)

M
j=1 ⊂ {0, 1}N is then used to rapidly and

accurately reconstruct c(N) from the set of its partial reconstructions of (uj ◦ c(N))Mj=1.
Here it becomes crucial to deal with the fact that the partial reconstructions of uj ◦c(N)
are incorrect for some values of j. Thankfully, median arguments adapted from earlier
SFT algorithms [13, 15] allow this to be handled easily by simply using enough vectors
(uj)

M
j=1 in order to guarantee that the majority of the values of j provide good results.

It then just remains to modify the reconstruction procedure from [24] in order to rapidly
recover c(N) from the partial reconstructions of (uj ◦ c(N))Mj=1.
The remainder of the paper is organized as follows: In §2 the vectors (uj)

M
j=1 discussed

above are constructed, and it is proven that uj ◦ c(N) will be approximately sparse for
the majority of the uj whenever f + η exhibits sufficiently structured frequency support.
Next, a deterministic reconstruction algorithm is developed for functions with structured
frequency support in §3, and Theorem 1.1 is proven. These results are then improved
for the simpler class of block frequency sparse signals in §4, and Theorem 1.2 is proven.
Finally, the methods developed for block frequency sparse functions are empirically eval-
uated in §5. The paper then concludes with a short discussion of future work in §6.

2 Preliminaries

First, we formally define the notion of polynomially structured sparsity that was already
mentioned in (2) in §1.

Definition 2.1 (P (n, d,B)-structured Sparsity)
Let B, d, n,N ∈ N such that d < B < N and let P1, . . . , Pn ∈ Z[x] be non-constant
polynomials of degree at most d with

Pj(x) =

d∑
k=0

ajkx
k,

where ajk ∈ (−dN/2e, bN/2c] ∩ Z such that for all j ∈ {1, . . . , n} and x ∈ {1, . . . , B} we
have Pj(x) ∈ (−dN/2e, bN/2c] ∩ Z. Define the n support sets

Sj := {Pj(x) : x ∈ {1, . . . , B}}

and let S :=
⋃n
j=1 Sj . A 2π-periodic function f : [0, 2π] → C is P(n,d,B)-structured

sparse if it is of the form
f(x) =

∑
ω∈S

cω(f)eiωx
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for some vector of Fourier coefficients (cω(f))ω∈S ∈ CBn.

This means that the at most Bn energetic frequencies of the function f are generated
by evaluating n polynomials of degree at most d with integer coefficients at B points.
Our aim in this paper is to develop a sublinear-time Fourier algorithm for P (n, d,B)-

structured sparse input functions, based on ideas introduced in [23] and [24]. One im-
portant concept for our method is that of a good hashing prime; a prime modulo which
not all frequencies in a support set Sj are hashed to the same residue.

Definition 2.2
Let f be a P (n, d,B)-structured sparse function with support set S =

⋃n
j=1 Sj generated

by some polynomials P1, . . . , Pn. Then a prime p > B hashes a support set Sj well if

|{ω mod p : ω ∈ Sj}| > 1.

Lemma 2.3
Let f be a P (n, d,B)-structured sparse function with support set S =

⋃n
j=1 Sj defined

by some polynomials P1, . . . , Pn. Then a prime p > B hashes a support set Sj with
generating polynomial

Pj(x) =
d∑

k=0

ajkx
k

well if and only if there exists a non-constant coefficient ajk, k 6= 0, with p - ajk.

Proof. Assume p|ajk for all k ∈ {1, . . . , d}. Then we have for all x ∈ {1, . . . , B} that

Pj(x) =
d∑

k=0

ajkx
k ≡ aj0 mod p ⇒ |{ω mod p : ω ∈ Sj}| = 1,

so p does not hash Sj well. If, on the other hand, p does not hash Sj well, then

|{ω mod p : ω ∈ Sj}| = 1 ⇒ Pj(y) ≡ Pj(z) mod p ∀y, z ∈ {1, . . . , B}.

This means that for fixed y ∈ {1, . . . , B} the polynomial

Q(x) := Pj(x)− Pj(y) =
d∑

k=0

ajkx
k − Pj(y)

of degree d has B > d zeroes modulo p. Thus Q is the zero polynomial modulo p, and

p| (aj0 − Pj(y)) and p|ajk ∀j ∈ {1, . . . , d}.

For a good hashing prime and a P (n, d,B)-structured sparse function we can bound
the number of frequencies that are hashed to the same residue.

Lemma 2.4
Let f be a P (n, d,B)-structured sparse function with support set S =

⋃n
j=1 Sj defined

by some polynomials P1, . . . , Pn. If a support set Sj is hashed well by a prime p > B,
then
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(i) Pj is not constant modulo p and

(ii) |{ω ≡ ν mod p : ω ∈ Sj}| ≤ d for all residues ν ∈ {0, . . . , p− 1}.

Proof. It is clear that Pj is not constant modulo p if |{ω mod p : ω ∈ Sj}| > 1. Assume
now that |{ω ≡ ν mod p : ω ∈ Sj}| > d for some ν ∈ {0, . . . , p − 1}. Since all elements
of Sj are generated by evaluating Pj at B points, we find for a y ∈ {1, . . . , B} with
Pj(y) ≡ ν mod p that

Pj(y) ≡ Pj(z) mod p

for d distinct choices of z ∈ {1, . . . , B}\{y}. Then the polynomial Q(x) := Pj(x)−Pj(y)
has at least d+ 1 zeroes modulo p, which is a contradiction, so (ii) holds.

Let us now assume that there exists a prime p > B that hashes all support sets
S1, . . . , Sn of a P (n, d,B)-structured sparse function well. Then the restriction of any
Sj to the frequencies congruent to ν modulo p is at most d-sparse for all residues ν ∈
{0, . . . , p−1}. Consequently, the restriction of S to these frequencies is at most dn-sparse.
In our setting of P (n, d,B)-structured sparse input functions we want to apply the

SFT algorithm in [24] (Algorithm 3) to the restrictions of the function to frequencies
congruent to ν modulo u for all residues ν, where u is a prime that hashes all support
sets well, since these restrictions are at most dn-sparse.
In general, finding a single well-hashing prime u for all support sets is not possible

without further information on the generating polynomials. However, we can use the
observations presented in the remainder of §2 to findM primes such that the majority of
them hashes all support sets well. As these methods, as well as Algorithm 3 in [24], rely
heavily on the Chinese Remainder Theorem, we state it here as a reminder (see [28]).

Theorem 2.5 (Chinese Remainder Theorem (CRT))
Let n1, . . . , nm be pairwise relatively prime integers and N ≤

∏m
j=1 nj. Then the system

of simultaneous congruencies x ≡ a1 mod n1, . . . , x ≡ am mod nm has a unique solution
modulo N .

Definition 2.6 (Enumeration of the Natural Primes)
For j ∈ N denote by pj the j-th natural prime number. Additionally, let p0 = 1. Then,

p0 = 1, p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . . .

In order to find primes for which the restriction of the frequencies to any residue is
sparse, we first need to define the notion of separation.

Definition 2.7 (Separation)
Let k ∈ N and ω1, . . . , ωk ∈ Z. An integer n ∈ N is said to separate ω1, . . . , ωk if

ωj mod n 6= ωl mod n ∀j, l ∈ {1, . . . , k}, j 6= l.

The following result about separating primes has been shown in [24].

Lemma 2.8
Let E ∈ N and u1 := pr for some r ∈ N. Set M = 2 · E · blogu1 Nc + 1. Choose M − 1
further primes with u1 < · · · < uM and let T ⊂ (−dN/2e, bN/2c]∩Z with |T | ≤ E. Then
more than M

2 of the um separate every x ∈ (−dN/2e, bN/2c] ∩ Z from all t ∈ T\{x}.
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In the next lemma we prove that, for a suitable M , it suffices to find M primes such
that more than half of them separate the leading coefficients of the frequency generating
polynomials from 0 at the same time, in order to guarantee that more than half of them
hash all support sets well.

Lemma 2.9
Let f be P (n, d,B)-structured sparse with support set S =

⋃n
j=1 Sj defined by some

polynomials P1, . . . , Pn, and set E = n+ 1. Let M primes B < u1 < · · · < uM be given
as in Lemma 2.8. Then more than M

2 of the um hash all n support sets S1, . . . , Sn well.

Proof. Let T be the set consisting of the distinct leading polynomial coefficients,

T :=

aj,deg(Pj) : Pj(x) =

deg(Pj)∑
k=0

ajkx
k, j ∈ {1, . . . , n}

 .

Then aj,deg(Pj) 6= 0 for all polynomials and, since |T ∪ {0}| ≤ E, by Lemma 2.8 more
than M

2 of the um separate every element of (−dN/2e, bN/2c]∩Z from all other elements
of T ∪ {0}, i.e., from all distinct leading polynomial coefficients and from 0.
Let p be such a prime. Assume that there exists a support set Sj that is not well

hashed by p, so that we have

{ω mod p : ω ∈ Sj} = {ν}

for some residue ν ∈ {0, . . . , p− 1}. Then the polynomial Pj that generates Sj satisfies

Pj(x)− ν ≡ 0 mod p ∀x ∈ {1, . . . , B}.

Consider now the polynomial Q(x) := Pj(x)− ν modulo p. It is a polynomial of degree
at most d with B > d zeroes, so it has to be the zero polynomial modulo p, meaning that

p|ajk ∀k ∈ {1, . . . , d} and p|(aj0 − ν).

Since p separates aj,deg(Pj) from 0 and the other leading coefficients, we find that

aj,deg(Pj) ≡ 0 mod p and aj,deg(Pj) 6≡ t mod p ∀t ∈ (T ∪ {0})\{aj,deg(Pj)}.

This is only possible if aj,deg(Pj) = 0, which is a contradiction. Thus we obtain that

|{ω mod p : ω ∈ Sj}| > 1,

so p hashes all Sj well. Consequently, all of the more than M
2 primes u1, . . . , uM that

separate the leading coefficients from one another and from 0 hash all support sets well.

These lemmas imply that applying Algorithm 3 in [24] to the restrictions of the input
function to frequencies congruent to ν modulo M primes as defined in Lemma 2.8 yields
the correct frequencies and Fourier coefficients in the majority of the cases, since the
algorithm works well as long as the input function is sparse enough.
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3 Algorithm for Polynomially Structured Sparse Functions

Before we can begin to develop our algorithm for polynomially structured sparse func-
tions, we need to develop the notation necessary in order to apply Algorithm 3 in [24] to
the frequency restrictions.

3.1 Measurement Matrices

Definition 3.1 (Notation)
Let f : [0, 2π] → C be P (n, d,B)-structured sparse with bandwidth N . Let B < u1 <
· · · < uM be prime and s1 < · · · < sK pairwise relatively prime natural numbers such
that there exist L natural numbers t1 < · · · < tL < s1 which satisfy that the set

{t1, . . . , tL, s1, . . . , sK , u1, . . . , uM}

is pairwise relatively prime and that

L∏
l=1

tl ≥
N

s1u1
.

We set κ :=
∑K

k=1 sk, λ := 1 +
∑L

l=1 tl and µ :=
∑M

m=1 um. Further, we define

q := lcm(N, s1, . . . , sK , t1, . . . , tL, u1, . . . , uM ).

From now on we always assume that occurring natural numbers q, s1, . . . , sK , t1, . . . , tL,
u1, . . . , uM comply with Definition 3.1.

Definition 3.2
For a given 2π-periodic function f and m ∈ N define the sample vector Am ∈ Cm by

Am(j) := f

(
2πj

m

)
∀j ∈ {0, . . . ,m− 1}.

Definition 3.3 (Discrete Fourier Transform)
For m ∈ N we denote the discrete Fourier transform of a vector x ∈ Cm by

x̂ = Fmx,

where Fm := 1
m

(
ωjkm
)m−1

j,k=0
∈ Cm×m is the m-th Fourier matrix and ωm := e

−2πi
m is the

m-th primitive root of unity.

In order to apply Algorithm 3 in [24] to the restrictions to frequencies that are congru-
ent to ν modulo um for all residues ν ∈ {0, . . . , um− 1} and all m ∈ {1, . . . ,M}, we need
to transform the vector Âq into a matrix with sparse columns whose entries correspond
to the frequencies that are congruent to ν modulo um. For this purpose and also for later
use we recall the definition of the row-wise Hadamard tensor product.

Definition 3.4 (Row-wise Hadamard Product)
Let A ∈ Cκ×m, B ∈ Cλ×m. Then the row-wise Hadamard product A~B ∈ C(κ·λ)×m is

11



given by

(A~B)jl = Aj mod κ,l ·B j−(j mod κ)
κ

,l
, j ∈ {0, . . . , κλ− 1}, l ∈ {0, . . . ,m− 1},

i.e., the first κ rows are given as the Hadamard product of all rows of A with the first
row of B, the second κ rows as the Hadamard product of all rows of A with the second
row of B and so forth.

Lemma 3.5
Let A ∈ Cκ×m, B ∈ Cλ×m. Then every row of A~B is given as the row tensor product
of a row of A with a row of B.

Definition 3.6 (Measurement Matrices I)
For t1, . . . , tL, s1, . . . , sK , u1, . . . , uM from Definition 3.1 we construct a special µ × N
measurement matrix Mu1,M , analogously to the measurement matrix concept used in
[24]. The matrix consists of rows of ones and zeroes, where an entry of a row is one if and
only if its column index is congruent to a certain residue modulo um. Letm ∈ {1, . . . ,M}
and ν ∈ {0, . . . , um− 1} be a fixed residue modulo um. Then we define the row rum,ν by

(rum,ν)j := δ ((j − ν) mod um) =

{
1, if j ≡ ν mod um,

0, otherwise,
(4)

and set

Mu1,M :=



ru1,0
...
ru1,u1−1

ru2,0
...
ruM ,uM−1


=


Iu1 Iu1 . . .
Iu2 Iu2 . . .
...

...
...

IuM IuM . . .

 .

We define the extension HM of Mu1,M to a µ × q matrix by extending all rows rum,ν
to columns indexed by j ∈ {0, . . . , q − 1}, as given by (4). Further, as in [24], we define
the κ × N matrix Ms1,K and the (λ − 1) × N matrix Mt1,L, consisting of the rows
corresponding to the possible residues modulo all the sk and tl, respectively,

Ms1,K :=

 rs1,0
...

rsK ,sK−1

 and Mt1,L :=

 rt1,0
...

rtL,tL−1

 .

We set Nt1,L to be the λ×N matrix whose first row contains only ones and whose other
rows are given byMt1,L,

Nt1,L :=

(
1N
Mt1,L

)
,

and define the (κ ·λ)×N row-wise Hadamard product RL,K :=Ms1,K ~Nt1,L ofMs1,K

and Nt1,L and its extension GL,K to a (κ · λ)× q matrix. Because all sk, tl and um thus
have to divide q, we set q = lcm(N, s1, . . . , sK , t1, . . . , tL) as the length of the sample
vector.

Remark 3.7 (Restriction of Âq)

12



If we compute the row-wise Hadamard product of HM with (Âq)
T ∈ C1×q, every row

of HM ~ (Âq)
T is, by Lemma 3.5, given as the row-wise Hadamard product of a row of

HM and (Âq)
T . Thus every column ρTum,ν of (HM ~ (Âq)

T )T ∈ Cq×µ corresponds to a
residue ν modulo a prime um. This column only contains nonzero entries at frequencies
that are congruent to ν modulo um,

ρTum,ν(j) :=
(
rum,ν ~ (Âq)

T
)T
j

= (rum,ν)Tj · (Âq)j

=δ ((j − ν) mod um) · Âq(j) =

{
Âq(j), j ≡ ν mod um,

0, otherwise.

This means that the column ρTum,ν of (HM~(Âq)
T )T is the restriction of Âq to frequencies

congruent to ν modulo um, which is at most dn-sparse for a good hashing prime um.
Thus for more than M/2 of the um we can apply Algorithm 3 in [24] with sparsity dn
column by column. ♦

3.2 Required Technical Background

In the following we give a short description of Algorithm 3 in [24] and summarize some
of the results proven therein. Said SFT algorithm reconstructs the energetic frequencies
and the corresponding Fourier coefficients of a sparse input function f : [0, 2π]→ C with
bandwidth N from the Fourier transforms of vectors consisting of sktl � N equispaced
samples of f , where sk and tl are small primes depending on the bandwidth and sparsity
of the function. The energetic frequencies are reconstructed from their residues modulo
sk and t1, . . . , tL with the help of the CRT, which is why the primes have to satisfy

L−1∏
l=1

tl <
N

s1
≤

L∏
l=1

tl.

For a general d-sparse input function the method introduced in [23, 24] is not guaran-
teed to work for any prime sk. However, setting K = 8dblogs1 Nc + 1 and choosing
s1, . . . , sK as the K smallest primes greater than d and tL, for more than K/2 of them
all energetic frequencies are correctly reconstructed from their residues. These can be
found by comparing the entries of Âsk and Âsktl that correspond to the same frequency
for all l. The coefficient estimates are then obtained by taking the medians over the K
coefficient estimates found for the sk. The following remark summarizes the main results
for Algorithm 3 in [24] that are relevant for this paper.

Remark 3.8
Let f : [0, 2π]→ C and d < N ∈ N.

(i) (Lemma 5 in [24]) By the CRT, every row of GL,K is of the form

(rsktl,h)j = (rsk,h mod sk ~ rtl,h mod tl)j =

{
1, if j ≡ h mod sktl

0, otherwise
,

for h ∈ {0, . . . , sktl − 1}, k ∈ {1, . . . ,K} and l ∈ {0, . . . , L}, where t0 := 1 in order
to have the same notation also for rows of the form rsk,h mod sk ~ 1N .
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(ii) (Lemma 6 in [24]) If ω ∈ (−dN/2e, bN/2c] ∩ Z is such that

|cω| > 4 ·
(

1

2d

∥∥∥c(N)− copt
2d (N)

∥∥∥
1

+ ‖c(f)− c(N,Z)‖1
)
,

then ω will be reconstructed more than K
2 times.

(iii) (Proof of Theorem 7 in [24]) If ω is reconstructed more than K
2 times, then

|xω − cω| ≤
√

2

(
1

2d

∥∥∥c(N)− copt
2d (N)

∥∥∥
1

+ ‖c(f)− c(N,Z)‖1
)
.

(iv) (Theorem 7 in [24]) Algorithm 3 in [24] will output an xR ∈ CN satisfying

‖c(N)− xR‖2

≤
∥∥∥c(N)− copt

d (N)
∥∥∥

2
+

11√
d

∥∥∥c(N)− copt
2d (N)

∥∥∥
1

+ 22
√
d ‖c(f)− c(N,Z)‖1

in a runtime of

O

(
d2 log2N log(d logN) log2 N

d

log2 d log log N
d

)
.

♦

3.3 Application to Polynomially Structured Sparse Functions

We can now apply Algorithm 3 in [24] with sparsity dn to the columns ρTum,ν of (HM ~
(Âq)

T )T . Recall that ρTum,ν is only guaranteed to be at most dn-sparse if um hashes all
support sets S1, . . . , Sn well. This means that only for columns corresponding to those
primes the algorithm will return all energetic frequencies and good estimates for their
Fourier coefficients. Hence we have to apply the algorithm to every single column of
(HM ~ (Âq)

T )T and choose those frequencies and coefficient estimates that appear for
the more than M

2 well-hashing um.
In Algorithm 3 in [24], estimates for the Fourier coefficients cω of the input function f

are calculated from certain entries of GL,K · Âq. These entries can be obtained in a fast
way from f by computing DFTs of the vectors Asktl .

Remark 3.9
For polynomially structured sparse input functions we now have to show that the entries
of GL,K · (HM ~ (Âq)

T )T can also be calculated fast. As we want to use the residues
modulo the um for the reconstruction as well, an idea similar to the one from [24] leads
to DFTs of the sktlum-length sample vectors Asktlum from Definition 3.1. Consider an
entry of GL,K · (HM ~ (Âq)

T )T ∈ Cκλ×µ that is given as the product of a row of GL,K ,
by Remark 3.8 of the form rsktl,h for a residue h modulo sktl, with a column ρTum,ν of
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(HM ~ (Âq)
T )T for a residue ν modulo um,

rsktl,h · ρ
T
um,ν =

q−1∑
j=0

rsktl,h(j)ρTum,ν(j)

=

q−1∑
j=0

δ ((j − h) mod sktl) δ ((j − ν) mod um) · Âq(j). (5)

As there can only be nonzero summands in (5) if j ≡ h mod sktl and j ≡ ν mod um,
we find with the CRT that j has to be of the form

j = τ + j′sktlum, j′ ∈
{

0, . . . ,
q

sktlum
− 1

}
.

Then,

rsktl,h · ρ
T
um,ν =

q
sktlum

−1∑
j′=0

Âq(τ + j′ · sktlum)

=

q
sktlum

−1∑
j′=0

1

q

q−1∑
b=0

Aq(b)e
−2πib(τ+j′sktlum)

q

=

q−1∑
b=0

1

q
Aq(b)e

−2πibτ
q

q
sktlum

−1∑
j′=0

e
−2πibj′sktlum

q

=

q−1∑
b=0

1

sktlum
f

(
2πb

q

)
e
−2πibτ

q · δ
(
b mod

q

sktlum

)

=

sktlum−1∑
b′=0

1

sktlum
f

(
2πb′ q

sktlum

q

)
e
−2πiτb′ q

sktlum
q

=Âsktlum(τ).

By Bézout’s identity, 1 = gcd(sktl, um) = v · sktl + w · um for some v, w ∈ Z, and we
obtain that τ satisfies

τ = ((h− ν)w mod sktl) · um + ν ∈ {0, . . . , sktlum − 1}. (6)

Thus we find that, in the column for the residue ν modulo um, for fixed sktl only the
sktl different values Âsktlum(τ) with τ depending on h as in (6) are contained. Hence
the column of GL,K · (HM ~ (Âq)

T )T corresponding to ν modulo um is of the form(
B̂m,ν
s1

T
, B̂m,ν

s1t1

T
, . . . , B̂m,ν

s1tL

T
, B̂m,ν

s2

T
, . . . , B̂m,ν

sKtL

T
)T

,

where

B̂m,ν
sktl

(j) := Âsktlum ((j − ν)w mod sktl) · um + ν) ∀j ∈ {0, . . . , sktl − 1}. (7)
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The entries of GL,K ·(HM~(Âq)
T )T can be calculated in a fast way, using KLM DFTs of

vectors of sktlum equispaced samples with runtime O(sktlum · log(sktlum)) for all k, l,m.
How exactly do we apply Algorithm 3 in [24] to the columns of GL,K · (HM ~ (Âq)

T )T ?
Until now we considered a fixed residue h modulo sktl and a fixed residue ν modulo
um. However, in line 7 of that algorithm we fix the residue h′ modulo sk of a frequency
and find its residues modulo the sktl in line 9. In the setting of polynomially structured
sparse functions this means that for a frequency ω with residue ν modulo um and residue
h′ modulo sk we have to find the corresponding residue modulo sktlum for every l. Then

τ ′ := ω mod skum = ((h′ − ν)w mod sk) · um + ν

holds for the residue of ω modulo skum, where Bézout’s identity implies that

1 = gcd(sk, um) = v′ · sk + w′ · um

for some v′, w′ ∈ Z. Then the residue of ω modulo sktlum is of the form

ω mod sktlum = τ ′ + bmin · skum

for a bmin ∈ {0, . . . , tl − 1}, which is given as

bmin := argmin
b∈{0,...,tl−1}

∣∣∣Âskum(τ ′)− Âsktlum(τ ′ + b · skum)
∣∣∣ . (8)

Finally, the residue of ω modulo tl is

al := ω mod tl = (τ ′ + bmin · skum) mod tl,

and ω can be reconstructed from its residues ω ≡ τ ′ mod skum, ω ≡ a1 mod t1,. . . ,ω ≡

aL mod tL. Recall the notion of the B̂
(m,ν)
sktl

introduced in (7). These vectors are defined
such that if ω ≡ ν mod um and ω ≡ h mod sktl, we have

B̂m,ν
sktl

(ω mod sktl) = Âsktlum(ω mod sktlum).

To use this notation, we take the residues modulo sktlum again modulo sktl, and obtain
the following,

bmin = argmin
b∈{0,...,tl−1}

∣∣∣Âskum(τ ′)− Âsktlum(τ ′ + b · skum)
∣∣∣

= argmin
b∈{0,...,tl−1}

∣∣∣B̂m,ν
sk (h′)− B̂m,ν

sktl
((τ ′ + b · skum) mod sktl)

∣∣∣
= argmin
b∈{0,...,tl−1}

∣∣∣∣∣(EK · Âq

)
rsk,h′

,ρTm,ν
−
(
GL,K · Âq

)
rsktl,(τ ′+bskum) mod sktl

,ρTm,ν

∣∣∣∣∣ .
♦

Algorithm 1 presents itself as a summary of the preceding considerations.

16



Algorithm 1 Fourier Approximation

Input: Function f+η, K = 8dnblogs1
N
u1
c+1, M = 2(n+1) · blogu1 Nc+1 and pairwise

relatively prime s1 < · · · < sK , t1 < · · · < tL, B < u1 < · · · < uM with tL < s1, um
prime and

∏L
l=1 tl ≥

N
s1u1

.
Output: R,xR, where R contains the nB frequencies ω with greatest magnitude coef-

ficient estimates xR(ω).
1: Initialize R = ∅, xR = 0N , q = lcm(N, s1, . . . , sK , t1, . . . , tL, u1, . . . , uM )

2: GL,K · (HM ~ (Âq)
T )T ←

((
B̂m,ν
s1

T
, B̂m,ν

s1t1

T
, . . . , B̂m,ν

sKtL

T)T)M,um−1

m=1,ν=0

3: EK · (HM ~ (Âq)
T )T ←

((
B̂m,ν
s1

T
, . . . , B̂m,ν

sK

T))M,um−1

m=1,ν=0

4: for m from 1 to M do
5: for ν from 0 to um − 1 do
6: (R(m,ν),x(m,ν))← 2dn frequencies with largest magnitude coefficient estimates

returned by Algorithm 3 in [24] applied to GL,K · (HM ~ (Âq)
T )T

ρTm,ν
and EK · (HM ~

(Âq)
T )T

ρTm,ν
with sparsity dn.

7: end for
8: end for
9: for each ω ∈

⋃M
m=1

⋃um−1
ν=0 R(m,ν) found more than M

2 times do

10: Re(xω) = median
ν=0,...,um−1
m=1,...,M

{
Re
(
x

(m,ν)
ω̃

)
: ω̃ = ω, ω̃ ∈ R(m,ν)

}
11: Im(xω) = median

ν=0,...,um−1
m=1,...,M

{
Im
(
x

(m,ν)
ω̃

)
: ω̃ = ω, ω̃ ∈ R(m,ν)

}
12: end for
13: Sort the coefficients by magnitude s.t. |xω1 | ≥ |xω2 | ≥ · · ·
14: Output: R = {ω1, . . . , ωnB},xR
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3.4 Results for Polynomially Structured Sparse Functions

In order to obtain bounds on the accuracy and runtime of our algorithm, we can utilize
some of the results developed in [24], at least for the more than M

2 primes um that hash all
support sets S1, . . . , Sn well, i.e., the primes where the columns ρTum,ν of (HM ~ (Âq)

T )T

are guaranteed to be at most dn-sparse.
Analogously to our previous notation we denote by c(N, um, ν), c(N,Z, um, ν) and

c(um, ν) the restrictions of c(N), c(N,Z) and c(f + η), respectively, to the frequencies
congruent to ν modulo um. Further, recall that copt

2dn(N, um, ν) is the optimal 2dn-term
representation of c(N, um, ν).
The following lemma guarantees that all significantly enough frequencies will be found

and their Fourier coefficients estimated well.

Lemma 3.10
Let N ∈ N and f : [0, 2π] → C be P (n, d,B)-structured sparse with noise η such that
c(η) ∈ `1 and ‖c(η)‖∞ ≤ ε. Let u1 be a prime and s1, t1 natural numbers such that with
K = 8dnblogs1

N
u1
c+ 1 and M = 2(n+ 1)blogu1 Nc+ 1 we have that B < u1 < · · · < uM

are primes, t1 < · · · < tL < s1 < · · · < sK , and u1, . . . , uM , s1, . . . , sK , t1, . . . , tL are
pairwise relatively prime with

∏L
l=1 tl ≥

N
s1u1

. Set

δ = max
ν=0,...,um−1
um hasheswell

{
δ(m,ν)

}
= max

ν=0,...,um−1
um hasheswell

{
1

2dn

∥∥∥c(N, um, ν)− copt
2dn(N, um, ν)

∥∥∥
1

+ ‖c(N,Z, um, ν)− c(um, ν)‖1
}
.

Then each ω ∈ (−dN/2e, bN/2c] ∩ Z with |cω| > ε + 4δ is added to the output R of
Algorithm 1 in line 14, and its coefficient estimate from lines 10 and 11 satisfies

|xR(ω)− cω| ≤ 2δ.

Proof. Let um be a good hashing prime and assume that ω ∈ (−dN/2e, bN/2c] ∩ Z is
contained in R

(m,ν),opt
dn \R(m,ν), i.e., that it is one of the dn largest magnitude Fourier

coefficient frequencies that are congruent to ν modulo um, but not contained in the set
of frequencies returned by Algorithm 3 in [24] applied to GL,K · (HM ~ (Âq)

T )T
ρTm,ν

for
sparsity dn.
If |cω| ≤ ε + 4δ, then |cω| is small enough that not including it in the reconstruction

R does not yield large errors, since δ is defined as the maximum over the

δ(m,ν) =
1

2dn

∥∥∥c(N, um, ν)− copt
2dn(N, um, ν)

∥∥∥
1

+ ‖c(N,Z, um, ν)− c(um, ν)‖1

for all good hashing primes um.
If |cω| > ε + 4 · δ ≥ 4 · δ(m,ν) for all good hashing primes um, we know by Remark

3.8 (ii) that ω will be reconstructed more than K
2 times by Algorithm 3 in [24]. Then ω

can only not be contained in R(m,ν) if there are dn+ 1 frequencies ω̃ in R(m,ν)\R(m,ν),opt
dn

that satisfy
∣∣∣x(m,ν)
ω̃

∣∣∣ ≥ ∣∣∣x(m,ν)
ω

∣∣∣. Recall that um hashes all support sets S1, . . . , Sn well, so
there are at most dn energetic frequencies congruent to ν modulo um. Suppose that all
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frequencies with this residue are ordered by magnitude of their Fourier coefficient, i.e.,∣∣∣c
ω
(m,ν)
1

∣∣∣ ≥ ∣∣∣c
ω
(m,ν)
2

∣∣∣ ≥ · · · ≥ ∣∣∣c
ω
(m,ν)
dn

∣∣∣ ≥ ∣∣∣∣cω(m,ν)
dn+1

∣∣∣∣︸ ︷︷ ︸
≤ε

≥ · · · .

Then |cω̃| ≤
∣∣∣∣cω(m,ν)

dn+1

∣∣∣∣ ≤ |cω| for all ω̃. By Remark 3.8 (iii) we have for all ω̄ that were

reconstructed more than K
2 times by Algorithm 3 in [24] for ν modulo um that∣∣∣x(m,ν)

ω̄ − cω̄
∣∣∣ ≤ √2δ(m,ν), (9)

and further ∣∣∣x(m,ν)
ω̄

∣∣∣ ≤ |cω̄|+√2δ(m,ν) (10)∣∣∣x(m,ν)
ω̄

∣∣∣ ≥ |cω̄| − √2δ(m,ν). (11)

(9) - (11) hold for the ω and ω̃ from above, and we find for all ω ∈ R(m,ν),opt
dn \R(m,ν) that∣∣∣∣cω(m,ν)

dn+1

∣∣∣∣+
√

2δ(m,ν) ≥ |cω̃|+
√

2δ(m,ν) ≥
∣∣∣x(m,ν)
ω̃

∣∣∣
≥|xω| ≥ |cω| −

√
2δ(m,ν) ≥

∣∣∣∣cω(m,ν)
dn+1

∣∣∣∣−√2δ(m,ν).

Then
|cω| ≤

∣∣∣∣cω(m,ν)
dn+1

∣∣∣∣+ 2
√

2δ(m,ν) ≤ ε+ 2
√

2δ(m,ν),

which contradicts |cω| > ε + 4δ, so we know that ω ∈ R(m,ν). Since this holds for all
more than M

2 good hashing primes, ω will be considered from line 9 onward. We now
prove the accuracy of the coefficient estimate. From (9) it follows that∣∣∣Re

(
x(m,ν)
ω

)
− Re(cω)

∣∣∣ ≤ ∣∣∣x(m,ν)
ω − cω

∣∣∣ ≤ √2δ(m,ν) ≤
√

2δ,

and analogously for the imaginary parts. As the estimates hold for more than M
2 of the

hashing primes um, they also hold for the medians in lines 10 and 11. These are taken
over the at most M coefficient estimates x(m,ν)

ω̃ for ω, since for each um an ω̃ = ω can
appear in at most one set R(m,ν). Hence, we obtain

|Re (xω)− Re(cω)| ≤
√

2δ and |Im (xω)− Im(cω)| ≤
√

2δ,

and finally

|xω − cω| =
√

(Re (xω − cω))2 + (Im (xω − cω))2 ≤
√(√

2δ
)2

+
(√

2δ
)2

= 2δ.

All that remains to be shown is that ω will actually be added to R in line 14. Similarly
to (11) we find that |xω| ≥ |cω| − 2δ. Together with |cω| > ε + 4δ this implies that
|xω| > ε + 2δ. Then ω is only not included in the output if xω is not among the Bn
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largest magnitude coefficient estimates, i.e., if there exist Bn other frequencies ω̃ that
satisfy |xω̃| ≥ |xω|. We know that ω is energetic, which means that at least one of these
ω̃ must have a Fourier coefficient with |cω̃| ≤ ε. Then an analogue to (10) yields

|xω| ≤ |xω̃| ≤ |cω̃|+ 2δ ≤ ε+ 2δ,

which contradicts |xω| > ε+ 2δ. Hence, ω will be added to R in line 14.

Remark 3.11
One way to ensure that the requirements of Algorithm 1 are met is to define t1, . . . , tL
as the L smallest primes satisfying

L−1∏
l=1

tl <
N

Bdn
≤

L∏
l=1

tl.

Set s1 as the smallest prime that is greater than both dn and tL,

s1 := px > max{dn, tL} ≥ px−1.

Instead of taking the minimal K, we can increase it slightly by using that u1 > B, i.e.,

K = 8dn

⌊
logs1

N

B

⌋
+ 1 ≥ 8dn

⌊
logs1

N

u1

⌋
+ 1.

Hence, we can now choose the remaining sk independently from the um to be sk := px−1+k

for k ∈ {1, . . . ,K}. The hashing primes um can then be found by setting

u1 := py > max{B, sK} ≥ py−1,

M = 2(n+1)blogu1 Nc+1 and um := py−1+m form ∈ {1, . . . ,M}. With these definitions
t1, . . . , tL, s1, . . . , sK , u1, . . . , uM are pairwise relatively prime and satisfy that

skum ·
L∏
l=1

tl ≥ N,

as well as sk > dn and um > B for all k and m. ♦

Using the sk, tl and um from Remark 3.11, the following main theorem gives us the
runtime and error bounds of Algorithm 1.

Theorem 3.12
Let N ∈ N and f : [0, 2π] → C be P (n, d,B)-structured sparse with noise η such that
c(η) ∈ `1 and ‖c(η)‖∞ ≤ ε. Let t1, . . . , tL be the smallest primes with

∏L
l=1 tl ≥

N
Bdn . Set

s1 as the smallest prime greater than max{dn, tL}, K = 8dnblogs1
N
B c+ 1 and s2, . . . , sK

as the first K − 1 primes greater than s1. Let u1 be the smallest prime greater than
max{B, sK}, M = 2(n+ 1)blogu1 Nc+ 1 and u2, . . . , uM the first M − 1 primes greater
than u1. Let further δ be defined as

δ := max
ν=0,...,um−1
um hashes well

{
1

2dn
‖c(N, um, ν)− copt

2dn(N, um, ν)‖1 + ‖c(N,Z, um, ν)− c(um, ν)‖1
}
.
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Then the output (R,xR) of Algorithm 1 satisfies

‖c(N)− xR‖2 ≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥

2
+
√
Bn · (ε+ 6δ).

If B > sK , the output can be computed in a runtime of

O

d2n3(B + n logN) · log2 N
Bdn log2 N

B logN log
(
dn log N

B

)
log2

(
B+n logN

logB

)
log2B log2(dn) log log N

Bdn


and the algorithm has a sampling complexity of

O

d2n3(B + n logN) · log2 N
Bdn log2 N

B logN log
(
dn log N

B

)
log
(
B+n logN

logB

)
log2B log2(dn) log log N

Bdn

 .

Proof. For the vector cR(N), whose entries are the Fourier coefficients cω for the fre-
quencies contained in R and zero otherwise, it always holds that

‖c(N)− xR‖2 ≤ ‖c(N)− cR(N)‖2 + ‖cR(N)− xR‖2. (12)

The square of first summand in (12) can be written as

‖c(N)− cR(N)‖22 =

bN2 c∑
ω=−dN2 e+1

|cω − cR(ω)|2

=
∑
ω/∈R

|cω|2 +
∑
ω∈R
|cω − cR(ω)|2︸ ︷︷ ︸

=0

=
∑

ω/∈Ropt
Bn

|cω|2 +
∑

ω∈Ropt
Bn\R

|cω|2 −
∑

ω∈R\Ropt
Bn

|cω|2

=
∥∥∥c(N)− copt

Bn(N)
∥∥∥2

2
+

∑
ω∈Ropt

Bn\R

|cω|2 −
∑

ω∈R\Ropt
Bn

|cω|2.

For every ω ∈ Ropt
Bn\R we know by Lemma 3.10 that |cω| ≤ ε+ 4δ, because otherwise it

would be contained in R. Since Ropt
Bn\R contains at most Bn elements, this yields

‖c(N)− cR(N)‖22 =
∥∥∥c(N)− copt

Bn(N)
∥∥∥2

2
+

∑
ω∈Ropt

Bn\R

|cω|2

︸ ︷︷ ︸
≤Bn(ε+4δ)2

−
∑

ω∈R\Ropt
Bn

|cω|2

︸ ︷︷ ︸
≥0

≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥2

2
+Bn(ε+ 4δ)2.

For the second summand in (12) consider an ω ∈ R. For each of the more than M
2 good

hashing primes it has to be contained in exactly one of the R(m,ν), so ω must have been
reconstructed more than K

2 times by Algorithm 3 in [24], applied to the entries congruent
to ν ≡ ω mod um. Hence we have by (9) that∣∣∣x(m,ν)

ω − cω
∣∣∣ ≤ √2δ(m,ν) and |xR(ω)− cω| ≤ 2δ,
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analogously to the proof of Lemma 3.10. Since R contains at most Bn elements, we find

‖cR(N)− xR‖22 =
∑
ω∈R
|cω − xR(ω)|2︸ ︷︷ ︸

≤4δ2

≤ 4Bnδ2.

Combining all these estimates we obtain that

‖c(N)− xR‖2 ≤
√
‖c(N)− cR(N)‖22 + ‖cR(N)− xR‖22

≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥

2
+
√
Bn(ε+ 4δ) + 2

√
Bnδ

=
∥∥∥c(N)− copt

Bn(N)
∥∥∥

2
+
√
Bn(ε+ 6δ).

In order to determine the runtime of the algorithm let us first consider the runtime of
the calculation of the DFTs in line 2. It was shown in [24,27] that

tL = O
(

log
N

Bdn

)
and sK = O

(
dn logdn

N

B
log

(
dn log

N

B

))
.

Let π be the prime-counting function,

π(x) =
∑

2≤p≤x
p prime

1.

If sK ≤ B, we can set u1 := py > B ≥ py−1 to be the first prime greater than B, so by
the Prime Number Theorem (see [36])

y − 1 = π(B) = O
(

B

logB

)
and

y − 1 +M = O
(

B

logB
+ n logB N

)
= O

(
B + n logN

logB

)
.

An equivalent formulation of the Prime Number Theorem yields for uM = py−1+M that

uM = O((y − 1 +M) log(y − 1 +M)) = O
(
B + n logN

logB
log

(
B + n logN

logB

))
.

In [27] it was proven that ∑
2≤p≤R
p prime

p = O
(

R2

logR

)
.

Because estimating
∑M

m=1 um log um by summing p log p for all primes less than uM would
take into account many primes that do not contribute to the sum, we use instead that

M∑
m=1

um log um = O(M · uM log uM ).

In line 2 we have to calculate the DFTs of length sktlum of the vectors Asktlum for all
k, l,m. Even if some m̃ ∈ N is not a power of 2, computing a DFT of length m̃ has a
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runtime of O(m̃ log m̃) (see [5, 40]). Since u1 > sK , we obtain a computational effort of

O

(
K∑
k=1

L∑
l=0

M∑
m=1

sktlum log(sktlum)

)
= O

(
K∑
k=1

sk

L∑
l=0

tl

M∑
m=1

um log um

)

=O
(

t2L
log tL

·
s2
K

log sK
·M · uM log uM

)

=O

d2n3(B + n logN) · log2 N
Bdn log2 N

B logN log(dn log N
B ) log2

(
B+n logN

logB

)
log2B log2(dn) log log N

Bdn

 .

For the sampling complexity we find

O

(
K∑
k=1

sk

L∑
l=0

tl

M∑
m=1

um

)
= O

(
t2L

log tL
·

s2
K

log sK
·M · uM

)

=O

d2n3(B + n logN) · log2 N
Bdn log2 N

B logN log(dn log N
B ) log

(
B+n logN

logB

)
log2B log2(dn) log log N

Bdn

 .

Now we can estimate the runtime of the remaining steps of the algorithm. The q in line 1
does not actually have to be computed, it is just defined there in order to introduce more
readable notation. In line 6 we apply Algorithm 3 in [24] to the column corresponding to
the residue ν modulo um of GL,K · (HM ~ (Âq)

T )T , which was already computed in line
2. We know from Remark 3.8 that the runtime of Algorithm 3 in [24] is dominated by
the computation of the DFTs, so the runtime of lines 4 to 8 of Algorithm 1 is dominated
by the runtime of line 2. In order to find out for which frequencies line 9 to 12 have to
be executed, we can sort the 2dn

∑M
m=1 um frequencies that are returned by all the calls

of Algorithm 3 in [24] by size and count how often each distinct frequency appears. This
can be done in

O

(
2dn

(
M∑
m=1

um

)
· log

(
2dn

M∑
m=1

um

))
= O (dnMuM · log(dnMuM ))

time, so it is also insignificant compared to the DFT computation. There are at most

2

M
·
M∑
m=1

um−1∑
ν=0

2dn =
4dn

M
·
M∑
m=1

um = O (4dn · uM )

frequencies that can have been found more than M
2 times. If we fix one of these fre-

quencies, ω, then for each um there is exactly one residue ν(m) ∈ {0, . . . , um − 1} with
ω ≡ ν(m) mod um. Since the 2dn frequencies recovered for any fixed residue modulo
some hashing prime are distinct, there can be at most M frequencies ω̃ satisfying ω̃ = ω
found for all hashing primes. This means that the medians in lines 10 and 11 are taken
over at most M elements. As medians can be computed by sorting, both lines have a
runtime of O(M logM). Combining these considerations we obtain that lines 9 to 12
require

O (4dn · uM ·M logM)

arithmetical operations, which is dominated by the effort of the DFT computations in
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line 2. Finally, sorting the O(4dn · uM ) coefficient estimates in line 13 has a runtime of

O(4dnuM log(4dnuM )),

so, as stated above, the runtime of Algorithm 1 is determined by the one of line 2.

If f + η is bandlimited, simplifying the above error bound yields Theorem 1.2 in §1.4.

Corollary 3.13
Let N ∈ N and f : [0, 2π] → C be P (n, d,B)-structured sparse with noise η such that
c(η) ∈ `1, ‖c(η)‖∞ ≤ ε and f and f + η are bandlimited to (−dN/2e, bN/2c] ∩ Z.
Choosing the sk, tl, um as in Theorem 3.12, the output (R,xR) of Algorithm 1 satisfies

‖c(N)− xR‖2 ≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥

2
+
√
Bn

(
ε+

3

dn

∥∥∥c(N)− copt
2Bn(N)

∥∥∥
1

)
.

Proof. By definition of δ we have that

δ := max
ν=0,...,um−1
um hashes well

{
δ(m,ν)

}
= δ(m′,ν′)

=
1

2dn

∥∥∥c(N, um′ , ν
′)− copt

2dn(N, um′ , ν
′)
∥∥∥

1
+
∥∥c(N,Z, um′ , ν ′)− c(um′ , ν

′)
∥∥

1

for some residue ν ′ modulo a good hashing prime um′ . Since f and f+η are bandlimited,
the second summand is 0. Due to the fact that f is P (n, d,B)-structured sparse, any
restriction c(N, um′ , ν) of c(f) to the frequencies that are congruent to ν modulo um′ is
dn-sparse. As there are at most Bn energetic frequencies, we find the following estimate,

δ ≤
um′−1∑
ν=0

δ(m′,ν) ≤
um′−1∑
ν=0

1

2dn

∥∥∥c(N, um′ , ν)− copt
2dn(N, um′ , ν)

∥∥∥
1

≤ 1

2dn

∥∥∥c(N)− copt
2Bn(N)

∥∥∥
1
,

so the error bound from Theorem 3.12 reduces to

‖c(N)− xR‖2 ≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥

2
+
√
Bn · (ε+ 6δ)

≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥

2
+
√
Bn ·

(
ε+

3

dn

∥∥∥c(N)− copt
2Bn(N)

∥∥∥
1

)
.

4 Algorithm for Functions with Simplified Fourier Structure

The algorithm introduced in §3.3 always usesM hashing primes of which more thanM/2
are good. If we can guarantee that one hashing prime suffices, a simplified, faster version
of Algorithm 1 can be applied, which is what we will study in the following.
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4.1 Structured Sparse Functions Requiring Only One Hashing Prime

If certain additional information about the polynomials generating the support sets
S1, . . . , Sn is known, the number of required hashing primes can be reduced to one.
We know by Lemma 2.3 that a prime u does not hash a support set Sj well if and only
if u divides all non-constant coefficients. Thus we can make the following observation.

Theorem 4.1
Let N ∈ N and f : [0, 2π] → C be P (n, d,B)-structured sparse with noise η such that
c(η) ∈ `1 and ‖c(η)‖∞ ≤ ε. Let the support set S =

⋃n
j=1 Sj of f be defined by the

non-constant polynomials Pj(x) =
∑d

k=0 ajkx
k for j ∈ {1, . . . , n}. Let u > B be a prime

such that for all j ∈ {1, . . . , n} there exists a kj ∈ {1, . . . , d} with p - ajkj . Then u hashes
all support sets well. Set M = 1 and the sk and tl as in Theorem 3.12. If B > sK , the
runtime of Algorithm 1 reduces to

O

(
u log u · (dn)2 log2 N

Bdn log2 N
B log

(
dn log N

B

)
log2(dn) log log N

Bdn

)
,

while only

O

(
u · (dn)2 log2 N

Bdn log2 N
B log

(
dn log N

B

)
log2(dn) log log N

Bdn

)
samples of f + η are being used. If B ≤ sK , we obtain a runtime of

O

(
u · (dn)2 · log2 N

Bdn log2 N
B log2

(
dn log N

B

)
log2(dn) log log N

Bdn

)

and a sampling complexity of

O

(
u · (dn)2 · log2 N

Bdn log2 N
B log

(
dn log N

B

)
log2(dn) log log N

Bdn

)
.

Proof. Lemma 2.3 implies that u hashes all n support sets well, so the restriction to the
frequencies congruent to ν modulo u is at most dn-sparse for all residues. Hence, we can
apply Algorithm 3 in [24] to GL,K · (HM ~ (Âq)

T )T
ρTm,ν

for every residue ν modulo u, and
will always obtain a good reconstruction. As there are no residues modulo which more
than dn energetic frequencies can collide, it suffices to set u1 = u and M = 1. Lines 9
to 12 do not have to be executed, since every frequency will be recovered in line 6 for
exactly one residue.
If u > sK , we can define the tl and sk as in Remark 3.11. If u ≤ sK , then u might

collide with one of the sk or tl. In that case we shift all the tl and sk, starting by u,
to the next largest prime, so they are at most the next largest prime greater than the
original tl and sk. This does not change the estimates in the proof of Theorem 3.12.
Let us first consider the case that u > sK . We obtain for the computation of the DFTs
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in line 2, which dominates the runtime of Algorithm 1, that they require

O

(
K∑
k=1

L∑
l=0

sktlu log(sktlu)

)
= O

(
u log u ·

t2L
log tL

·
s2
K

log sK

)

=O

(
u log u · (dn)2 log2 N

Bdn log2 N
B log

(
dn log N

B

)
log2(dn) log log N

Bdn

)

arithmetical operations and have a sampling complexity of

O

(
K∑
k=1

L∑
l=0

sktlu

)
= O

(
u ·

t2L
log tL

·
s2
K

log sK

)

=O

(
u · (dn)2 log2 N

Bdn log2 N
B log

(
dn log N

B

)
log2(dn) log log N

Bdn

)
.

If u ≤ sK , we obtain a runtime of

O

(
u ·

L∑
l=0

tl

K∑
k=1

sk log sk

)
= O

(
u ·

t2L
log tL

· s2
K

)

=O

(
u · (dn)2 · log2 N

Bdn log2 N
B log2

(
dn log N

B

)
log2(dn) log log N

Bdn

)

and a sampling complexity of

O

(
K∑
k=1

L∑
l=0

sktlu

)
= O

(
u ·

t2L
log tL

·
s2
K

log sK

)

=O

(
u · (dn)2 · log2 N

Bdn log2 N
B log

(
dn log N

B

)
log2(dn) log log N

Bdn

)
.

We now give some conditions on the coefficients of the polynomials P1, . . . , Pn gener-
ating the support sets S1, . . . , Sn which guarantee that all Sj are hashed well. All of the
conditions arise by tightening the necessary and sufficient requirement of the existence
of a non-constant coefficient that is not divisible by u in Theorem 4.1. Hence, all of
the conditions are sufficient, but they may not be necessary anymore, which might make
them easier to prove in practice.

Lemma 4.2
Let f be P (n, d,B)-structured sparse. In the following cases any prime u > B is guar-
anteed to hash all frequency subsets well,

(i) ∀ j ∈ {1, . . . , n} : gcd (aj1, . . . , ajd) < B, which includes gcd (aj1 , . . . , ajd) = 1,

(ii) ∀ j ∈ {1, . . . , n} ∃ kj ∈ {1, . . . , d} :
∣∣ajkj ∣∣ < B,

(iii) ∀ j ∈ {1, . . . , n} ∃ kj ∈ {1, . . . , d} : ajkj = 1, which includes monic polynomials,

(iv) ∀ j ∈ {1, . . . , n} : deg(Pj) = 1 and aj1 = 1, which is the block sparse case.
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If we have already fixed a prime u > B that is supposed to be the hashing prime, the
following conditions imply that u indeed hashes all support sets well.

Lemma 4.3
Let f be P (n, d,B)-structured sparse. In the following cases a fixed prime u > B is
guaranteed to hash all support sets well.

(v) (i) to (iv) from Lemma 4.2 hold for u, and B can be changed to u for (i) and (ii)

(vi) ∀ j ∈ {1, . . . , n} : u -
∑d

k=1 ajk,

(vii) ∀ j ∈ {1, . . . , n} ∃ εj ∈ {0, 1}d : u -
∑d

k=1(−1)εjkajk.

4.2 Block Frequency Sparse Functions

Let us consider block frequency sparse functions (condition (iv) in Lemma 4.2) in more
detail. In that case, the support sets S1, . . . , Sn are of the form

Sj = {aj0, aj0 + 1, . . . , aj0 +B − 1} , j ∈ {1, . . . , n},

and we can improve the runtime of our algorithm even further.

Definition 4.4 ((n,B)-block Sparsity)
A P (n, 1, B)-structured sparse function f is called (n,B)-block sparse if the support sets
S1, . . . , Sn are generated by the monic linear polynomials

Pj(x) := x+ aj , j ∈ {1, . . . , n}.

For block sparse functions we can extend the definition of good hashing primes to
integers, because we do not require the multiplicative invertibility of all nonzero elements
anymore.

Definition 4.5
Let f be (n,B)-block sparse with support set S =

⋃n
j=1 Sj generated by the polynomials

P1, . . . , Pn. An integer u > B hashes a support set Sj well if

|{ω mod u : ω ∈ Sj}| = B ∀j ∈ {1, . . . , n}.

Remark 4.6
For an (n,B)-block sparse function f any integer u > B hashes every support set Sj
well, since it consists of B consecutive frequencies. Thus for every residue ν modulo u
the restriction of S to the frequencies congruent to ν is at most n-sparse,

|{ω ≡ ν mod u : ω ∈ S}| ≤ n ∀ν ∈ {0, . . . , u− 1}.

♦

If f is (n,B)-block sparse, we can choose the hashing integer u to be the smallest
power of 2 that is greater than the block length B. Then u = O(B), which allows us to
give better runtime estimates. Additionally, computing DFTs of length s · t · u, where s
and t are small primes and u is a power of 2 is faster than if u were a prime of the same
size.
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Corollary 4.7
Let N ∈ N and f : [0, 2π] → C be (n,B)-block sparse with noise η such that c(η) ∈ `1
and ‖c(η)‖∞ ≤ ε. Set u := 2α, where α := blog2Bc+ 1, M = 1 and the sk and tl as in
Theorem 3.12. If u > sK , the runtime of Algorithm 1 is given by

O

(
B logB · n2 log2 N

Bn log2 N
B log

(
n log N

B

)
log2 n log log N

Bn

)
,

and otherwise, if u < sK , by

O

(
Bn2 · log2 N

Bn log2 N
B log2

(
n log N

B

)
log2 n log log N

Bn

)
.

In both cases the algorithm has a sampling complexity of

O

(
Bn2 · log2 N

Bn log2 N
B log

(
n log N

B

)
log2 n log log N

Bn

)
.

Proof. Choosing u as a power of 2 implies that we now have to slightly modify the tl
and sk. Similar to the choice of the primes in Remark 3.11, we take the smallest L odd
primes such that their product is greater than or equal to N

un ,

L−1∏
l=1

tl <
N

un
≤

L∏
l=1

tl, t1 := 3.

This means that tl = pl+1. Let s1 be the smallest prime that is greater than n and tL,

s1 := px > max{n, tL} ≥ px−1.

In this setting we can use the minimal K,

K = 8n

⌊
logs1

N

u

⌋
+ 1.

The remaining sk can be set as sk := px−1+k for k ∈ {1, . . . ,K}. Then the set
{t1, . . . , tL, s1, . . . , sK , u} is pairwise relatively prime, u > B and

L∏
l=1

tl ≥
N

s1u1
,

so the CRT can be applied. Since we chose t1 = 3, the prime tL in this case is at most
the smallest prime greater than the tL from Remark 3.11 for d = 1, and thus we still
have that

tL = O
(

log
N

un

)
and sK = O

(
n logn

N

u
log

(
n log

N

u

))
.

28



Using additionally that u = O(B), the runtime of Algorithm 1 for u > sK is given by

O

(
K∑
k=1

L∑
l=0

sktlu log(sktlu)

)
= O

(
u log u ·

s2
K

log sK
·

t2L
log tL

)

=O

(
B logB · n2 log2 N

Bn log2 N
B log

(
n log N

B

)
log2 n log log N

Bn

)
.

If u < sK , we obtain a runtime of

O

(
K∑
k=1

L∑
l=0

sktlu log(sktlu)

)
= O

(
u · s2

K ·
t2L

log tL

)

=O

(
Bn2 · log2 N

Bn log2 N
B log2

(
n log N

B

)
log2 n log log N

Bn

)
.

In both cases the number of required samples of f + η is

O

(
K∑
k=1

L∑
l=0

sktlu

)
= O

(
u ·

s2
K

log sK
·

t2L
log tL

)

=O

(
Bn2 · log2 N

Bn log2 N
B log

(
n log N

B

)
log2 n log log N

Bn

)
.

If f + n is bandlimited, we can prove the 1-norm error bound in Theorem 1.2 in §1.4.

Corollary 4.8
Let N ∈ N and f : [0, 2π] → C be (n,B)-block sparse with noise η such that η ∈ `1,
‖c(η)‖∞ ≤ ε and f and f + η are bandlimited to (−dN/2e, bN/2c] ∩ Z. Setting u :=
u1 := 2α, where α := blog2Bc + 1, M = 1 and the sk and tl as in Theorem 3.12, the
output (R,xR) of Algorithm 1 satisfies

‖c(N)− xR‖1 ≤ 4
∥∥∥c(N)− copt

Bn(N)
∥∥∥

1
+ 2Bnε.

Proof. As we do not have to take medians over the estimates obtained for the different
hashing primes, we can consider the following inequality,

‖c(N)− xR‖1 =

bN2 c∑
ω=−dN2 e+1

|cω − xω| =
u−1∑
ν=0

bN2 c∑
ω=−dN2 e+1

ω≡ν mod u

|cω − xω|

=
u−1∑
ν=0

( ∑
ω∈R(1,ν)

ω≡ν mod u

|cω − xω|+
∑

ω/∈R(1,ν)

ω≡ν mod u

|cω|
)

=

u−1∑
ν=0

( ∑
ω∈R(1,ν)

|cω − xω|+
∑

ω/∈R(1,ν),opt
n

|cω|+
∑

ω∈R(1,ν),opt
n \R(1,ν)

|cω| −
∑

ω∈R(1,ν)\R(1,ν),opt
n

|cω|
)
.
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By (9) the 2n elements of R(1,ν) satisfy |cω − xω| ≤
√

2δ(1,ν). From the proof of Lemma
3.10 it follows that |cω| ≤ ε+ 2

√
2δ(1,ν) for all ω ∈ R(1,ν),opt

n \R(1,ν), because otherwise ω
would be added to R(1,ν). Recall the definition of δ(1,ν),

δ(1,ν) :=
1

2n

∥∥∥c(N, u, ν)− copt
2n (N, u, ν)

∥∥∥
1

+ ‖c(N,Z, u, ν)− c(u, ν)‖1︸ ︷︷ ︸
=0

,

since f + η is bandlimited. Combining these considerations we find that

‖c(N)− xR‖1 ≤
u−1∑
ν=0

(
2
√

2nδ(1,ν) +
∥∥c(N, u, ν)− copt

n (N, u, ν)
∥∥

1
+ n

(
ε+ 2

√
2δ(1,ν)

))
=
u−1∑
ν=0

(∥∥c(N, u, ν)− copt
n (N, u, ν)

∥∥
1

+ 4
√

2n

(
1

2n

∥∥∥c(N, u, ν)− copt
2n (N, u, ν)

∥∥∥
1

))
+nuε.

Because f is (n,B)-block sparse, every restriction c(N, u, ν) of c(f+η) to the frequencies
that are congruent to ν modulo u is n-sparse, so we can use the same idea as in the proof
of Corollary 3.13 to obtain

‖c(N)− xR‖1 ≤
∥∥∥c(N)− copt

Bn(N)
∥∥∥

1
+ 2
√

2 ·
∥∥∥c(N)− copt

2Bn(N)
∥∥∥

1
+ nuε

≤4 ·
∥∥∥c(N)− copt

Bn(N)
∥∥∥

1
+ 2Bnε.

5 Numerical Evaluation

In this section we evaluate the performance of two different variants of Algorithm 1 in-
cluding (i) the deterministic variant for block sparse functions described in §4.2 (referred
to as the Fourier Algorithm for Structured sparsiTy (FAST) below), and (ii) a random-
ized implementation of Algorithm 1 which only utilizes a small random subset of the M
hashing primes used by FAST for each choice of its parameters (referred to as the Fourier
Algorithm for Structured sparsiTy with Randomization (FASTR) below). Both of these
C++ implementations are publicly available.3 We also compare these implementations’
runtime and robustness characteristics with GFFT,4 FFTW 3.3.4,5 and sFFT 2.0.6

Note that FAST and FASTR are both designed to approximate functions that are
(n,B)−block sparse in Fourier space. This means that both FAST and FASTR take
upper bounds on the number of blocks, n, and length of each block, B, present in the
spectrum of the functions they aim to recover as parameters. In contrast, both GFFT
(a deterministic sparse Fourier transform [41]) and SFFT 2.0 (a randomized noise ro-
bust sparse Fourier transform [19]) only require an upper bound on the effective sparsity,
s, of the function’s Fourier coefficients. Herein s is always set so that s = Bn for

3http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=software.
4Also available at http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=
software.

5http://www.fftw.org/
6https://groups.csail.mit.edu/netmit/sFFT/
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(a) Runtime comparison for bandwidth N = 226

and n = 2 blocks.
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(b) Runtime comparison for bandwidth N = 226

and n = 3 blocks.

Figure 1: Runtime plots for several algorithms and implementations of sparse Fourier
transform for different B settings

these methods. Finally, FFTW is a highly optimized and publicly available implementa-
tion of the traditional FFT algorithm which runs in O(N logN)-time for input vectors
of length N . All the FFTW results below were obtained using FFTW 3.3.4 with its
FFTW_MEASURE plan.
For the runtime experiments below the trial signals were formed by choosing sets of

frequencies with (n,B)−block sparsity uniformly at random from (−dN/2e, bN/2c] ∩ Z.
Each frequency in this set was then assigned a magnitude 1 Fourier coefficient with a
uniformly random phase. The remaining frequencies were all set to zero. Every data
point in a figure below corresponds to an average over 100 trial runs on 100 different
trial signals of this kind. For different n, B and N , the parameters in each randomized
algorithm (i.e. FASTR and sFFT 2.0) were chosen so that the probability of correctly
recovering an (n,B)-block sparse function was at least 0.9 for each run. Finally, all
experiments were run on a Linux CentOS machine with 2.50GHz CPU and 16 GB of
RAM.

5.1 Runtime as Block Length B Varies: N = 226, n = 2 and n = 3

In Figure 1a we fix the number of blocks to n = 2 and the bandwidth to N = 226,
and then perform numerical experiments for 10 different block lengths B = 22, 23, ...,
211. We then plot the runtime (averaged over 100 trial runs) for FAST, FASTR, GFFT,
sFFT 2.0 and FFTW. As expected, the runtime of FFTW is constant with increasing
sparsity. The runtimes of all the sparse Fourier transform algorithms other than GFFT
are approximately linear in B, and they have similar slopes. Figure 1a demonstrates that
allowing a small probability of incorrect recovery always lets the randomized algorithms
(FASTR and sFFT 2.0) outperform the deterministic algorithms with respect to run-
time. Among the deterministic algorithms, FAST is always faster than GFFT, and only
becomes slower than FFTW when the value of B is greater than 256. The runtimes of
both FASTR and sFFT 2.0 are still comparable with the one of FFTW when the block
length B is 2048. Comparing with sFFT 2.0, FASTR has better runtime performance
on these block sparse functions, and is the only algorithm that is still faster than FFTW
when B = 2048. In Figure 1b we use the same settings of N and B as in the previous
experiment and increase the number of blocks n from 2 to 3. With these settings the
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Figure 2: Runtime comparison for bandwidth N = 226 and block length B = 32.

largest sparsity s = Bn increases from 4048 (2 · 211) to 6144 (3 · 211). The respective
results for the methods are similar in this plot.

5.2 Runtime as Number of Blocks n Varies: N = 226 and B = 32

In Figure 2 we fix the bandwidth N = 226 and block length B = 32, then vary the
number of blocks n from 1 to 10. Looking at Figure 2, we can see that the deterministic
sparse FFTs, GFFT and FAST, both have runtimes that increase more rapidly with n
than those of their randomized competitors. Among the three deterministic algorithms,
FAST has the best performance when the number of blocks is smaller than 6. Similar
to the previous experiments, FFTW becomes the fastest deterministic algorithm when
the sparsity s = Bn gets large enough (greater than 224 in this experiment). The two
randomized algorithms are both faster than FFTW by an order of magnitude when the
number of blocks is 10. Similarly, FASTR is always faster than sFFT 2.0 for the examined
value of N .

5.3 Runtime as Signal Size N Varies: n = 2 and B = 64

In Figure 3 we fix the number of blocks n = 2 and block length B = 64, then test
the performance of the different algorithms with various bandwidths N . It can be seen
in Figure 3 that FFTW is the fastest deterministic algorithm for small bandwidth val-
ues. However, the runtime of FFTW becomes slower than the one of FAST when the
bandwidth N is greater than 224. GFFT is the slowest deterministic algorithm for this
sparsity level for all plotted N . Comparing randomized SFT algorithms, FASTR always
performs better than sFFT 2.0 when the bandwidth is greater than 218.

5.4 Robustness to Noise

To test the robustness of the methods to noise we add Gaussian noise to each of the signal
samples utilized in each method and then measure the contamination of the recovered
Fourier series coefficients for (n,B)-block sparse functions f : [0, 2π]→ C with bandwidth
N = 222, number of blocks n = 3, and block length B = 24. More specifically, each
method considered herein utilizes a set of samples from f given by f = (f(xj))

m−1
j=0 for
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Figure 3: Runtime comparison for n = 2 blocks of length B = 64.
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Figure 4: Robustness to noise for bandwidth N = 222 and n = 3 blocks of length B = 24.

some x0, . . . , xm−1 ∈ [0, 2π) with m ≤ N . For the experiments in this section we instead
provide each algorithm with noisy function evaluations of the form (f(xj) + nj)

m−1
j=0 ,

where each nj ∈ C is a complex Gaussian random variable with mean 0. The nj are then
rescaled so that the total additive noise n = (nj)

m−1
j=0 achieves the signal-to-noise ratios

(SNRs) considered in Figure 4.7

Recall that the two randomized algorithms compared herein (SFT 2.0 and FASTR)
are both tuned to guarantee exact recover of block sparse functions with probability at
least 0.9 in all experiments. For our noise robustness experiments this ensures that the
correct frequency support, S, is found for at least 90 of the 100 trial signals used to
generate each point plotted in Figure 4. All the other (deterministic) methods always
find this correct support for all noise levels considered herein after sorting their output
Fourier coefficient estimates by magnitude. Figure 4 plots the average `1-error over the
true Fourier coefficients for frequencies in the correct frequency support S of each trial
signal, averaged over the at least 90 trial runs at each point for which each sparse Fourier

7The SNR is defined to be SNR = 20 log
(
‖f‖2
‖n‖2

)
, where f and n are as given above.
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transform correctly identified S. More specifically, it graphs

1

Bn

∑
ω∈S

∣∣cω − xω∣∣,
where cω are the true Fourier coefficients for frequencies ω ∈ S, and xω are their recovered
approximations, averaged over the at least 90 trial signals where each method correctly
identified S.
Looking at Figure 4 one can see that all of the Fourier transform algorithms in our

experiments are robust to noise. Overall, however, the deterministic algorithms (FAST,
GFFT and FFTW) are more robust than randomized algorithms (FASTR and sFFT
2.0). As expected, FFTW is the most robust algorithm in this experiment, followed
closely by GFFT. For the randomized algorithms, FASTR is more robust than sFFT 2.0.

6 Conclusion

In this paper we developed the fastest known deterministic SFT method for the recov-
ery of polynomially structured sparse input functions. However, there are still some
remaining avenues for future research. To begin with one could try to find other types of
structured sparsity that also guarantee an upper bound on the sparsity of the frequency
restrictions for all possible residues. Considering a structure generated by polynomials
was merely the most obvious choice, as polynomials naturally agree well with hashing
modulo prime numbers and therefore interact well with the the number theoretic con-
structions used herein. One could also investigate whether utilizing structured sparsity
might actually improve the runtimes of existing randomized SFT algorithms for unstruc-
tured sparsity.
It would also be interesting to know whether the results presented herein can be trans-

ferred to the non-periodic, continuous case, i.e., to sparse functions defined on the whole
real line. Results in [6] about porting randomized SFT algorithms to the continuous
setting suggest that this should be possible for a randomized version of Algorithm 1.
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