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Abstract—This paper improves on the best-known runtime
and measurement bounds for a recently proposed Deterministic
sublinear-time Sparse Fourier Transform algorithm (hereafter
called DSFT). In [1], [2], it is shown that DSFT can exactly re-
construct the Fourier transform (FT) of an N-bandwidth signal f,
consisting of B < N non-zero frequencies, using O(B?-polylog(N))
time and O(B? - polylog(N)) f-samples. DSFT works by taking
advantage of natural aliasing phenomena to hash a frequency-
sparse signal’s FT information modulo O(B-polylog(N)) pairwise
coprime numbers via O(B - polylog(N)) small Discrete Fourier
Transforms. Number theoretic arguments then guarantee the
original DFT frequencies/coefficients can be recovered via the
Chinese Remainder Theorem. DSFT’s usage of primes makes
its runtime and signal sample requirements highly dependent
on the sizes of sums and products of small primes. Our new
bounds utilize analytic number theoretic techniques to generate
improved (asymptotic) bounds for DSFT. As a result, we provide
better bounds for the sampling complexity/number of low-rate
analog-to-digital converters (ADCs) required to deterministically
recover frequency-sparse wideband signals via DSFT in signal
processing applications [3], [4].

Index Terms—Fourier transforms, Discrete Fourier trans-
forms, Algorithms, Number theory, Signal processing

1. INTRODUCTION

Compressed Sensing (CS) is an exciting new signal acqui-
sition and recovery paradigm in which highly compressible
signals can be (approximately) recovered from a few linear
measurements, considerably fewer measurements than previ-
ously assumed [5], [6]. This paper will focus on a particular
type of compressible signal, namely signals consisting of a
small number of significant Fourier modes. Thus, we sample
a frequency-sparse signal f on a small deterministic sample
set and then reconstruct the signal by returning a list of the
predominant frequencies in the spectrum of f. This sensing
paradigm is useful in many areas, including MR imaging [7],
[8], numerical methods for multiscale problems [9], [10], and
ADC design [3], [4].

Existing CS (related) Fourier reconstruction algorithms [5],
[6], [11], [12], [13] are all either (i) super-linear time in the sig-
nal’s bandwidth, making them computationally intensive for
wideband signals, or (if) capable of producing incorrect results
with some small probability, making them inappropriate for
failure intolerant applications. DSFT [1], [2] is both sublinear-
time and deterministic. Hence, it is an improvement over
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previous CS (related) Fourier reconstruction algorithms for
N-bandwidth signals containing B < N significant (e.g., non-
zero) frequencies, although it does require a O(B-polylog(N))-
factor increase in the number of signal samples over previous
randomized approaches [14]. Furthermore, DSFT is consistent
with recently proposed ADC designs [3], [4] that suggest a
radical new approach to analog-to-digital conversion. These
ADC designs, which are based on random sampling, currently
require the implementation of random clocks, pseudo-random
switches, etc. Due to its deterministic nature, DSFT would
allow one to build similar circuits with fixed sample sets in
the hardware, thus simplifying the circuit design.

In this paper, we employ analytic number theory to give
the first asymptotic runtime/sample complexity bounds for
DSFT on B-support wideband signals (i.e., wideband signals
consisting of exactly B non-zero frequencies). Furthermore,
we present experiments which both validate our theoretical
sample bounds and investigate the number of significant
frequencies DSFT may recover from signals of various sizes
while maintaining sub-linear sample usage. Finally, we briefly
discuss algorithmic improvements which significantly decrease
DSFT’s sampling and runtime requirements in practice. Our
new bounds, besides advancing our knowledge of DSFT’s
computational properties, also allow us to better bound the
number of low-rate parallel ADCs required to deterministically
recover wideband frequency-sparse signals along the lines of
(31, [4].

II. PRELIMINARIES

Throughout the remainder of this paper, we will be inter-
ested in complex-valued signals, f : [0,27r] — C, which are
band-limited and frequency-sparse. Hence, we will assume
there exists an N € N such that for all our signals f,
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Also, we assume that for all f, we have B = [Q| < N. For
any signal f, we will refer to the B non-zero elements of Q as
w1, W, ..., wp. Furthermore, we will refer to the process of
either calculating or measuring f at any ¢ € [0, 2x] as sampling
from f. Finally, we will say that N is f’s bandwidth.

Recently, a Deterministic sublinear-time Sparse Fourier
Transform algorithm (DSFT) [1], [2] was developed by



building upon the number theoretic hashing techniques first
proposed in [15], [16]. For a given input signal f, DSFT
produces output of the form (wy, f(wy)), ..., (ws, f(wp)) using
O(B%log’ N) time and O(B?log® N) samples [1], [2]. In order
to get a feel for how DSFT works, consider the following
example: Suppose that f is a non-identically zero function
of the form f(x) = C - ¢!“* consisting of a single unknown
frequency w € (=%, 5] (e.g., consider a windowed sinusoidal
portion of a wideband frequency-hopping signal [3]). Sam-
pling at the Nyquist rate would dictate the need for at least
N equally spaced samples from f in order to discover w via
the Fast Fourier Transform (FFT) without aliasing. Thus, we
would have to compute the FFT of the N-element vector

-
AN(j)=f(%), 0<j<N.

However, if we use aliasing to our advantage, we can correctly
determine w with significantly fewer f-samples as follows.
Let A, be a 2-element array of f-samples with

A2(0) = f(0)=C, and Ax(1) = f(m) = C - (-1)".
Calculating KZ, we get that
— 1 —1)¥ - 1 -1 w+1
A2 (0)=C- 1+EDY 4 A =C- %

Note that since cg\is an integer, exactly one element of K; will
be non-zero. If A,(0) * 0, then we know that w = 0 modulo
2. On the other hand, A,(1) # 0 implies that w = 1 modulo 2.
More generally, if we let A, be the array

2r 2n(p - 1)
f<0>,f(—),...,f(”—),
14 P
then
_ c 2! =itk C if h=w mod p
Ap(h) = e ¢ { else

k=0

In this same fashion, we may use several potentially aliased
Fast Fourier Transforms in parallel to discover w modulo 3,
5, ..., the O(log N)" prime. Once we have collected these
moduli, we can reconstruct w via modular arithmetic. The
Chinese Remainder Theorem will guarantee that we identify
the correct w.

Of course, this example is extremely simple. When our
input signal f consists of B > 1 non-zero frequencies, there
is the potential for frequencies to collide modulo various
primes. Dealing with these potential collisions in a determin-
istic fashion requires us to hash f’s B frequencies modulo
O(B - polylog(N)) relatively prime numbers. We next define
the numbers which DSFT uses to hash signal frequencies via
aliasing. See [1], [2] for details.

Let po = 1 and p; be the [ prime. Next, choose m such
that

Finally, let gx > --- > ¢q; > max(B, p,) be the smallest
K = 3Bl|logg N| + 1 primes > max(B, p,). DSFT requires
the computation of the Discrete Fourier Transform (DFT) of
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for every 0 </ <m and 1 < j < K. Note that each of these
(m+ 1) - K DFT’s will take O(p,,gk log gg) time despite the
factorizations of the array lengths [17], [18].

Fact 1. The number of ADC f-samples required by DSFT is

Zm]ZK:pzq, (Zm: ](ZK] ‘]j]- (1

=0 j=1 =0 j=1

Fact 2. The runtime of DSFT is

m K
{Z Z piq;log CIJ] . 2

=0 j=1

The remainder of this paper is dedicated to studying (1) and
(2). In the following section, we establish necessary lemmas
so that in Section IV, we may analyze DSFT’s runtime and
number of required samples. Then, in Section V, we both
empirically validate our Section IV sample bounds for (1)
and investigate DSFT’s ability to reconstruct superpositions of
various sizes using a sub-linear number of samples. Finally, we
discuss methods of improving DSFT’s sampling performance
in Section VI before concluding with a brief discussion in
Section VII.

III. REQUIRED LEMMAS

In this section, we will assume that R > 3, B> 2, and N/B >
3. Furthermore, p will always stand for a prime number, and
n(x) will denote the number of primes < x. The following

lemma recalls three forms of the Prime Number Theorem.

Lemma 3. One has that

m(x) =

X X
m +0(_1n2x) (3)

pr=1Inl+0(@InInl). (4)

and that

Also, there exists a positive constant ¢ such that
Inp=x+ O( ) 5
;‘c exp(c VIn x)

We now use the Prime Number Theorem to establish
asymptotics required in the analysis of DSFT.

Lemma 4. Choose m such that
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Therefore, we may conclude that

There exists a positive constant ¢ such that
R 2 2
X R R
pmzln%+0 "z | , nx™ T 2R (1n2R) ©
exp (C yIn ln%) By Riemann-Stieltjes integration, integration by parts, and
Proof: Note that formulas (3) and (6), it follows that
R
N = -
1_[ p>— if and only if Z Inp>In— ZP f_ xdn(x) = Rn(R) f m(x)dx
B p<R 2 2
P<R P<R
R? R?
It now follows from formula (5) that there exists a positive =R + O( 5 )
constant ¢ such that n In"R
f (= +0o|—||a
- — —— || dx
N In B 2 Inx ]n2 X
pm=In—+ 0| —————|.
B exp(c,/lnlnﬂ) _ R +0 R
£ " 2InR R}
u ]
Lemma 5. One has IV. RUNTIME AND MEASUREMENT BOUNDS
Z plnp = R? L0 ( R_2 ) We now are prepared to analyze the performance of DSFT
o 2 InR By formula (3), we have
. S . N
Proof: By Riemann-Stieltjes integration (see Chapter 10 _ Al B In
[19]), integration by parts, and formula (3), we obtain #(max(B, pn)) = O InB * In m% '
R+
Wh
Z plnp = (xIn x)dn(x) en
P<R 2 S = n(max(B, p,)) + K
k In%
= (RInR)7(R) - f a(x)d(x1n x) = 3Bllogz; N] + O B_1,
, 2 In B B Inln %
=R% 4+ O(IR_R) then by formula (4), we have
n
fR( x ( X )) gk =ps =SInS +O(S InlnS)
- — +O0(——))(Inx + 1)dx Inln(B1n N
> ‘MInx \In?y = 3B[logy N)In(Bln N)( (M))
RZ R2 ln(B In N)
=5t O(M) Using Lemma 6, we see that
. K
qj = p
Lemma 6. One has ; max(B,p,%<quK
R? R? 9 InIn(B1n N)
= +0(——]. =B 2
2,7 2InR (1n2R) 7B logs V] ln(BlnN)( ( In(BIn N) ))
P<R
Proof: Note that and
=« 2 i P ( P )
n X P =
—dx=0 21n p,, 2
jz‘ nxr (ln3 R) 1=0 np In” pyy,
In? % 1
and that = —|1+0|——||. (7
R R? 1 2Inln Inln %
fi mdx InR Ll _y dy Combining the above two estimates with Fact 1, we obtain the
e nR following theorem.
_ylny
“ R " mmR+In y Theorem 7. The number of f-samples required by DSFT is
yiny . 9B%|logy NJ* In(BInN) In* & y
" IR mR |)]* Alnin ¥
1+ 0 1 InIn(BIn N) .
Inln%  In(BInN)

211‘1R O(Ian).



By Lemma 5, we have

K
D ailng;= ), php
j=1 max(B,p,)<p<qk
q; qx
= X0 X +B+)p} (8)
2 In [7) ¢
_ (3Bllogz N]In(BIn N))? s InIn(B1In N)
B 2 In(BInN) }]°

By combining Fact 2 with formulas (7) and (8), we obtain the
following theorem.

Theorem 8. The runtime of DSFT is
@[BZ . In®N - In* & -lnz(BlnN))

2 N
In BolnlnE

Let a € (0,%) be a constant, and suppose that B =
O(N?). In this case, we have improved the previous best

sample bound for DSFT from O(B2log® N) to ® (B2 . I;g“fig]v]v .

Furthermore, we have improved the previous best bound

for DSFT’s runtime from O(B?log’ N) to @(32 . lsz“fngN).
Finally, in signal processing applications along the lines of
[3], [4], we can see that the sub-Nyquist sampling required
to compute DSFT’s (m + 1) - K DFTs can be accomplished
via m+1)-K = 0(B~ 101;%) parallel analog-to-digital
converters, each with rate O(p,,qx) = O (B log2 N ) Hz. Hence,
DSFT provides a promising deterministic method for quickly
reconstructing frequency-sparse wideband signals. We next
empirically investigate the signal sizes for which DSFT (as
formulated in [1]) can reconstruct sparse superpositions with
sub-linear sampling requirements.

V. SampLING: EMPIRICAL EVALUATION

In order to test DSFT’s sample asymptotic (Theorem 7), we
compare the number of f-samples DSFT requires to perfectly
recover an N-bandwidth signal f containing exactly B = 512
non-zero frequencies against the sample asymptotic’s main
term in Theorem 7. The number of DSFT samples required
to recover a 512-frequency superposition, divided by the as-
sociated asymptotic value in Theorem 7, is plotted in Figure 1
for various bandwidth values N. Figure 1 demonstrates that
our asymptotic is within a constant multiple of 2 of the true
number of samples required by DSFT for all bandwidth values.
Thus, despite the fact that our asymptotic converges to DSFT’s
number of utilized samples at an exceedingly slow pace, it ap-
pears as if the asymptotic generally gives us a reliable estimate
of DSFT’s sampling requirements. Experiments performed for
smaller B reinforce this observation.

Given that a standard FFT can determine the Fourier trans-
form of an N-bandwidth signal f by taking N samples from
S, it is important for us to determine when DSFT enables
us to utilize less than N samples to recover f. Figure 2
addresses this issue by plotting, for each bandwidth value N,
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1.8 i ; .

(2]
T

~
T

4& M&! Mj‘é@%ﬁw ‘

U p
"MMYMM B g g o, e

L

DSFT to Asymptotic Sample Ratio

0.8
10

‘woo éoo 300
0 . 10
Bandwidth Size (N)

Fig. 1. Empirical Test of Theorem 7.

the maximum number of non-zero frequencies f may contain
while still allowing DSFT to determine f using less than N
f-samples. Figure 2 demonstrates that DSFT, as formulated
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Fig. 2. Maximum B Value Yielding Less Than N Samples.

in [1] and [2], does not exhibit sub-linear sampling for B > 1
until the bandwidth is > 222 (about 4 million). In Section VI,
we will discuss improvements/modifications for DSFT which
allow sub-linear sampling for significantly smaller signals.

Finally, Figure 3 plots the number of f-samples DSFT
requires to recover f divided by f’s bandwidth, N, for three
different bandwidth values. It is interesting to note that DSFT’s
number of required samples occasionally decreases as B
increases. This is due to K = 3B|logz N]+1 decreasing in size,
implying that DSFT requires fewer g;-primes (see Section II).
We will use this phenomenon to our advantage in the following
section.

VI. SampLING: IMPROVING DSFT’s PERFORMANCE

DSFT’s sample usage can be mildly decreased (i.e., by
a constant factor) through a more careful choice of which
primes p; and ¢q; from Section II are used for sampling. In
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this section, we will discuss three such DSFT improvements.
We will also briefly mention two more radical changes to
DSFT which dramatically reduce the sample usage, but at
the expense of either loosing DSFT’s sub-linear reconstruction
time or deterministic nature.

First, it should be noted that using powers of p;-primes can
decrease DSFT’s sample usage. Instead of performing DFTs
of size py-qj, ..., pm-q; for each g;-prime, one can implement
DSFT using DFTs of size

@jy @jm j

po'qj,p(lljvl.qj’-“spv 'Qj’---,Pm,- qj

for each g;-prime (see Section II). This would require that

mj m;—1
: ajy N ’ a;y
P2 - > Py
v=1 4qj v=1

for each ¢g;. We would then replace each

m mj
[Z pl) -g; term with a (Z pf/] -gj term
=0 v=0
in our bounds for the number of f-samples and the runtime.
Finally, the condition that ¢; > max(B, p,,) would be replaced
with the requirement that g; > max(B, p,,;) foreach 1 < j < K.
Second, as pointed out at the end of the last section, using a
larger B for DSFT sometimes decreases sampling requirements
(see Figure 3). We may use this phenomenon to our advantage
by increasing the size of ¢; and redefining our required number
of gj-primes to be

K =3Bllog, N]+ 1. ©)]

Here g, > max(B, p,,,), as in the previous paragraph, but g;
need not be the smallest prime > max(B, p,,,). By altering
g1 and K’s definitions in this fashion, it becomes clear that
slightly increasing g; can be beneficial.

Third, by a careful analysis of the arguments in [1], [2],
DSFT can be modified to require only K = 2B[log, N]+ 1
gj-primes (i.e., K’s factor of 3 can be reduced to a 2) while
still maintaining its sub-linear ®(B%)-runtime in Theorem 8.

No modification of the p,%»-values are required. We will next
consider an example that demonstrates the utility of these three
modifications with respect to DSFT’s sample usage.

Consider an N = 50,000 bandwidth signal f containing
exactly B = 5 non-zero frequencies. DSFT, as formulated in
Section 11, [i], and [2], would require almost 950, 000 samples
to recover f. DSFT would use 2,3,5,7,11, and 13 as its p;-
primes, leading to a total of

K
41 - [Z q/']
j=1
DSFT samples. However, if we require g, to be greater than

40 and use 4,9,5, and 7 as the p,%~-values for all g;-primes,
we can modestly reduce DSFT’s sample usage to

K

j=1
In addition to our savings from using different p,“-values,
using g; = 41 instead of g¢; = 11 also allows the use of fewer
g;-primes (see (9)). This, in combination with the aforemen-
tioned algorithmic reduction of K’s constant factor from 3 to 2,
will allow a well optimized DSFT implementation to recover
our N = 50,000 bandwidth, 5-frequency superposition f using
roughly 43,000 samples (about 22 times fewer samples than
previously required). Thus, optimizing DSFT can dramatically
improve its performance.

Further reductions in DSFT’s sampling requirements can
be obtained if the user is willing to tolerate a super-linear
O(B - N) Fourier reconstruction time for N-bandwidth signals
with B non-zero frequencies. After performing DFT’s of
length g1, g2, ...,qk, as in Section II, one can determine the
Fourier coefficient for any of the signal’s N, possibly non-zero,
frequencies as follows: For each

we (5150

we first determine w’s residue modulo g; for each g;. Proofs
analogous to those in [1], [2] then guarantee that w’s Fourier
coefficient’s real/imaginary part will equal the median of the
real/imaginary parts of the K DFT entries associated with w’s
residues modulo each ¢g;. Thus, we no longer need any p,%-
values if we are willing to inspect all N frequencies in this
fashion. The number of required samples is reduced to

K
245
=1

Returning to the last paragraph’s example, this modified DSFT
method only needs 1,791 samples to correctly recover an
N = 50,000 bandwidth, B = 5 superposition’s Fourier trans-
form. This represents roughly an additional 24-fold decrease in
DSFT’s sampling needs. However, we are forced to abandon
DSFT’s sub-linear runtime.

Finally, it is also worthwhile to note that Monte Carlo
Fourier results similar to those of [14] may be obtained by
limiting our g;-prime usage in Section II. If we only use a



small subset of randomly chosen g;, we will still be able
to isolate all non-zero superposition frequencies with high
probability. The frequency’s coefficients can then either (i)
be approximated by USFFT techniques [14], [20], [21], [22]
or (ii) be recovered exactly (assuming non-zero frequency
isolation occurs more often then not) using a procedure similar
to the one outlined in the previous paragraph. This allows
one to use only O(B)-samples/runtime for B-frequency su-
perposition reconstruction, which is within a polylogarithmic
factor of the current best sample bounds for sparse signal
reconstruction via Linear Programming [23], [24]. However,
modifying our DSFT techniques in this fashion only allows
one to reconstruct sparse superpositions with high probability,
and the deterministic nature of our algorithm is lost.

VII. CoNcLUSION

In this paper, we utilized analytic number theory to develop
the first known asymptotic runtime/sample complexity bounds
for DSFT on B-support wideband signals. We then empirically
evaluated our new DSFT sampling bounds in Section V. Let
a € (0, %) be a constant, and suppose that B = O(N?). In
this case, we have improved the previous best sample bound

for DSFT from O(Blog N) to © (B - {2 X

we have improved the previous best bound for DSFT’s run-

time from O(B*log’ N) to © (B - pi% ). In Section VI, we
demonstrated that if one is willing to tolerate a super-linear
O(Bl_logql N|log(Bllog, NJ)- N) reconstruction runtime (af-
ter all DFTs have been taken), then DSFT’s sampling bound
can be reduced to @(B?-log N). Furthermore, if one is willing
to exchange determinism for success with high probability,
we can reduce both DSFT’s runtime and sampling needs to
O(B - polylog(N)).

In signal processing applications [3], [4], we have shown
that the sub-Nyquist sampling required to compute DSFT’s
(m + 1) - K DFTs can be accomplished via (m + 1) - K =
O(B- 101;%) parallel ADCs, each with rate O(B log? N)
Hz. Hence, DSFT provides a promising deterministic method
for quickly reconstructing frequency-sparse wideband signals.
Finally, it is worth noting that our DSFT methods are closely
related to combinatorial group testing and many other algorith-
mic problems involving hashing by consecutive primes [15],
[25]. Our new DSFT bounds should also provide asymptotic
bounds for these related methods.

). Furthermore,
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