Locally Linear Low-rank Tensor Approximation

Alp Ozdemir, Mark A. Iwen and Selin Aviyente

Abstract—Recently, collecting and storing higher order data has become more feasible with the use of methods from multilinear algebra. High order data usually lies in a low dimensional subspace or manifold along each mode and its intrinsic structure can be revealed by linear methods such as higher order SVD. However, these linear approaches may not capture the local nonlinearities in the data that may occur due to moving sensors or other nonlinearities in the measurements. In this paper, we propose to use a piecewise linear model to better identify the non-linearities in higher order data. The proposed approach decomposes the higher-order data into subtensors and fits a low rank model to each subtensor. The proposed approach is applied to simulated datasets and a video sequence captured across different angles to show its robustness to non-linear structures.

Index Terms—Tensor algebra, higher order SVD, low-rank approximation, manifold learning.

I. INTRODUCTION

High dimensional data sets in \mathbb{R}^D are often assumed to be lying near a lower d-dimensional manifold, or subspace, with $d \ll D$. When the data points are located on a linear subspace, this linear structure can be represented by a basis identified via PCA (or SVD). However, if the data points lie near a nonlinear manifold, the basis obtained by such linear methods may not encode the data points efficiently [1], [2].

In order to address this issue, many approaches for learning low dimensional manifolds from high dimensional datasets have been developed by the machine learning community (see, e.g., [1]–[4]). For example, Tenenbaum et al. [3], presented an algorithm that consists of embedding the data into a graph and then constructing a d-dimensional manifold by applying multidimensional scaling (MDS) to the graph. Similarly, Roweis and Saul [4] introduced locally linear embedding (LLE) approach by assuming that each data point and its neighbors are lying on a locally linear patch of the manifold. More recently, Allard et al. [1] proposed generating data-dependent multiscale dictionaries called Geometric Multi-resolution Analysis (GMRA) in order to have a fast and compact encoding system for nonlinear data. Although these approaches are useful for identifying embedded low dimensional manifold for vector type data, they are not directly applicable to high-order data sets, such as tensors which occur in many applications including video, hyperspectral imaging, social and biological networks [5]–[7].

Herein we propose a new method for identifying low-dimensional manifold structure from higher-order data. Our proposal is both general and simple: one may simply replace linear methods (e.g., the SVD) with non-linear manifold learning methods when computing tensor factorizations of high-order data. Unsurprisingly, doing so results in superior performance when the data in question has nonlinearity, as opposed to linear, low-dimensional structure. Applications of this work include finding low-dimensional approximations to tensor data arising from problems in face recognition, surveillance video analysis, and anomaly detection in social networks.

Previously, these problems involving higher order data have been addressed using higher order SVD (HOSVD). For example, Vasilescu and Terzopoulos [8] extended the eigenface concept to the tensorface by using higher order SVD and taking different modes such as expression, illumination and pose into account. Yang et al. [9] presented 2D-PCA for matrices and used it for feature extraction from face images without converting the images into vectors. Others [10]–[12] used incremental SVD for tensors for background modelling and face recognition. Most of the subspace learning algorithms mentioned above are interested in fitting a low-rank model to data which lies near a linear subspace and do not focus on non-linear structures that the datasets possibly have.

More recently, researchers have extended manifold learning approaches to tensors. For example, He et al. [13] extended locality preserving projections [14] to second order tensors and then used it for dimensionality reduction and face recognition in a supervised setting. Dai and Yeung [15] presented generalized tensor embedding methods such as the tensor extension of local discriminant embedding methods [16], neighborhood preserving embedding methods [17], and locality preserving projection methods [14]. Li et al. [18] proposed a discrimination method which preserves local structures in each class, and then extended the algorithm to high-order tensors. However, these methods are mostly limited to learning the optimal linear transformation for supervised classification of high-order data. In contrast, we propose novel unsupervised higher-order manifold learning approaches for summarizing, reducing, and performing anomaly detection within tensor data.

The proposed method will be referred to as locally linear higher order singular value decomposition (LL-HOSVD) which enables us to deal with piecewise linear low-rank structure for high-order data. This algorithm consists of two main steps: Decomposing the tensor into lower dimensional subtensors which are expected to have more linear structure, and then applying HOSVD to these subtensors to identify their underlying low-dimensional linear structure. Moreover, we propose two approaches to decompose the tensor into the subtensors. Finally, we apply the proposed algorithm to two synthetic datasets as well as a video sequence to exhibit its robustness to non-linearities.
II. **BACKGROUND**

A. **Tensor Algebra**

A multidimensional array with N modes $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_N}$ is called a tensor, where x_{i_1,i_2,\ldots,i_N} denotes the (i_1,i_2,\ldots,i_N)th element of the tensor \mathcal{X}. Vectors obtained by fixing all indices of the tensor except the one that corresponds to nth mode are called mode-n fibers. Basic tensor operations are reviewed below [19], [20].

Tensor norm Norm of a tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_N}$ is square root of sum of the squares of all its elements.

$$\| \mathcal{X} \| = \sqrt{\sum_{i_1=1}^{I_1} \sum_{i_2=1}^{I_2} \ldots \sum_{i_N=1}^{I_N} x_{i_1,i_2,\ldots,i_N}^2}$$

Tensor inner product The inner product of two same sized tensors $\mathcal{X}, \mathcal{Y} \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_N}$ is sum of the products of their elements.

$$\langle \mathcal{X}, \mathcal{Y} \rangle = \sum_{i_1=1}^{I_1} \sum_{i_2=1}^{I_2} \ldots \sum_{i_N=1}^{I_N} x_{i_1,i_2,\ldots,i_N} y_{i_1,i_2,\ldots,i_N}$$

Mode-n product The mode-n product of a tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_N}$ and a matrix $U \in \mathbb{R}^{I_n \times I_N}$ is denoted as $\mathcal{X} \times_n U$; $(\mathcal{X} \times_n U)_{i_1,i_2,\ldots,i_{n-1},j_{n+1},\ldots,i_N} = \sum_{i_n=1}^{I_n} x_{i_1,i_2,\ldots,i_{n-1},j_{n+1},\ldots,i_N} u_{i_n,j_{n+1},\ldots,j_N}$ and is of size $I_1 \times \ldots \times I_{n-1} \times J \times I_{n+1} \times \ldots \times I_N$.

Tensor matricization Process of reordering the elements of the tensor into a matrix known as matricization or unfolding. The mode-n matricization of tensor \mathcal{X} is denoted as $Y_{(n)}$ and is obtained by arranging mode-n fibers to be the columns of the resulting matrix. Matricization is equivalent to $Y_{(n)} = U^{(n)}X_{(n)}(U^{(N)})^\top \otimes \ldots \otimes U^{(n-1)} \otimes U^{(n-1)} \otimes \ldots \otimes U^{(1)}$, where \otimes is the matrix Kronecker product.

Tensor Rank Unlike matrices, which have a unique definition of rank, there are multiple rank definitions for tensors including tensor rank and tensor n-rank. The rank of a tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_N}$ is the smallest number of rank-one tensors that form \mathcal{X} as their sum. The n-rank of \mathcal{X} is the collection of ranks of mode matrices $X_{(n)}$ and is denoted as:

$$n\text{-rank}(\mathcal{X}) = (\text{rank}(X_{(1)}), \text{rank}(X_{(2)}), \ldots, \text{rank}(X_{(N)})).$$

B. **Higher Order Singular Value Decomposition (HOSVD)**

Any tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_N}$ can be decomposed as mode products of a core tensor \mathcal{F} and N orthogonal projection matrices $U^{(n)} \in \mathbb{R}^{I_n \times I_N}$ which are the left singular vectors of $X_{(n)}$ [21]:

$$\mathcal{X} = \mathcal{F} \times_1 U^{(1)} \times_2 U^{(2)} \ldots \times_N U^{(N)}$$

where \mathcal{F} is computed as

$$\mathcal{F} = \mathcal{X} \times_1 (U^{(1)})^\top \times_2 (U^{(2)})^\top \ldots \times_N (U^{(N)})^\top.$$

Let $\mathcal{F}_{(n)}$ be a subtensor of \mathcal{F} obtained by fixing the nth index to α. This subtensor satisfies following properties:

- all-orthogonality: $\mathcal{F}_{(n)} = \alpha$ and $\mathcal{F}_{(n)} = \beta$ are orthogonal for all possible values of n, α and β subject to $\alpha \neq \beta$.

$$\langle \mathcal{F}_{(n)} = \alpha, \mathcal{F}_{(n)} = \beta \rangle = 0 \text{ when } \alpha \neq \beta.$$

- ordering:

$$\| \mathcal{F}_{(n)} = 1 \| \geq \| \mathcal{F}_{(n)} = 2 \| \geq \ldots \geq \| \mathcal{F}_{(n)} = I \| \geq 0$$

for all possible values of n.

III. **LOCAL HIGHER ORDER SINGULAR VALUE DECOMPOSITION**

In this section, we present a procedure which provides low n-rank approximation to subtensors of an Nth order tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_N}$ to better capture local nonlinearities.

The proposed method starts with decomposing tensor \mathcal{X} into K subtensors $\mathcal{Y}_k \in \mathbb{R}^{I_{1,k} \times I_{2,k} \times \ldots \times I_{N,k}}$ with $k \in \{1, 2, \ldots, K\}$. \mathcal{Y}_k are formed by using the following mapping functions f_k defined on the index sets of \mathcal{X} and \mathcal{Y}_k.

Let f_k be a mapping function from the index set of \mathcal{X} to the index set of \mathcal{Y}_k as $f_k : J_1 \times J_2 \times \ldots \times J_N \mapsto J_{1,k} \times J_{2,k} \times \ldots \times J_{N,k}$, where $J_0 = \{1, 2, \ldots, I_0\}$, $J_{n,k} = \{1, 2, \ldots, I_{n,k}\}$ with $n \in \{1, 2, \ldots, N\}$, and f_k satisfies $\cup_{k=1}^K J_{n,k} = J_n$ and $J_{n,k} \cap J_{l,k} = \emptyset$ when $k \neq l$ for all $k, l \in \{1, 2, \ldots, K\}$. We propose two approaches: direct division and sequential division to obtain the f_k’s and \mathcal{Y}_k’s as explained in the next two sections.

Once \mathcal{Y}_k are obtained, HOSVD is used to obtain the low n-rank approximation for each \mathcal{Y}_k. This can be achieved by using truncated mode matrices obtained by keeping only a few of the vectors of $U^{(n,k)}$ corresponding to the highest singular values. For purposes of simplifying the representation, the same n-rank is selected for each $\mathcal{Y}_k, k \in \{1, 2, \ldots, K\}$ and this rank is denoted by $R = (r_1, r_2, \ldots, r_N)$. Let \mathcal{F}_k be a low n-rank approximation of \mathcal{Y}_k computed as:

$$\mathcal{F}_k = \mathcal{F}_{(1,k)} \times_1 (U^{(1,k)})^\top \times_2 (U^{(2,k)})^\top \ldots \times_N (U^{(N,k)})^\top,$$

where $U^{(n,k)}$ are the truncated projection matrices of \mathcal{Y}_k obtained by keeping the first r_n columns of $U^{(n,k)}$ for $n \in \{1, 2, \ldots, N\}$ and \mathcal{F}_k is the core tensor

$$\mathcal{F}_k = \mathcal{F}_{(1,k)} \times_1 (U^{(1,k)})^\top \times_2 (U^{(2,k)})^\top \ldots \times_N (U^{(N,k)})^\top.$$

Therefore,

$$\mathcal{F}_k(j_1 \times \ldots \times I_N) = \mathcal{F}_k,$$

and combining all of the subtensors \mathcal{F}_k by using the inverse mapping functions f_k^{-1} provides piecewise-linear approximation of \mathcal{X}:

$$\mathcal{F} = \sum_{k=1}^K \mathcal{F}_k(f_k^{-1}(j_1 \times \ldots \times J_N)).$$

A pseudo code of the algorithm is given in Algorithm 1.
Algorithm 1 Locally Linear Higher Order SVD

1: Input: \hat{X}: tensor, $R = (r_1, r_2, ..., r_N)$: the desired local n-rank, $C = (c_1, c_2, ..., c_N)$: the desired number of clusters for mode-n fibers.
2: Output: $\hat{\mathscr{X}}$
3: $K = \prod_{i=1}^{N} c_i$
4: $\{\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_K\}$, $\{f_1, f_2, ..., f_K\}$ = direct-division(\hat{X}, C) or sequential-division(\hat{X}, C)
5: for $k = 1$ to K do
6: for $n = 1$ to N do
7: $(U^{(n,k)}) \leftarrow \text{SVD}(Y_{(k)}, n)$
8: $(U^{(n,k)}) \leftarrow \text{truncate}(U^{(n,k)}, r_n)$
9: end for
10: $\mathcal{F}_k \leftarrow \mathcal{F}_k \times_1 (U^{(1,k)})^\top \times_2 (U^{(2,k)})^\top \times_N (U^{(N,k)})^\top$
11: $\mathcal{F}_k \leftarrow \mathcal{F}_k \times_1 1^k \times_2 1^k \times_N 1^k$
12: end for
13: $\hat{X} = \sum_{k=1}^{K} \mathcal{F}_k (f_k^1 \times f_k^2 \times ... \times f_k^N)$

A. Direct Division

In this approach, tensor $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ is first unfolded across each mode yielding $X_{l_1} \in \mathbb{R}^{k_1 \times l_2 \times ... \times l_N}$ whose columns are the mode-n fibers of \mathcal{X}. For each mode, the mode-n fibers are partitioned into c_n non-overlapping clusters. We made use of diffusion maps to partition the mode-n fibers as follows [22]: Let $x_{n,j}$ be the jth mode-n fiber of \mathcal{X}. First, each $x_{n,j}$ is connected to its k-nearest neighbors with weights $W_{i,j} = K(x_{n,i}, x_{n,j}) = e^{-\|x_{n,i} - x_{n,j}\|^2/\epsilon n}$, where ϵn is the Euclidean distance between $x_{n,i}$ and its k/2-nearest neighbors, to obtain the weighted graph on the mode-n fibers. We then use the METIS algorithm [23] to partition the constructed graph for clustering the fibers. This process is applied for each mode separately. Then, Cartesian product of the fiber labels coming from different modes yields $K = \prod_{i=1}^{N} c_n$ subtensors \mathcal{F}_k. This approach is illustrated in Fig. 1a for 2-way tensors.

B. Sequential Division

In this approach, non-overlapping tensors \mathcal{F}_ks are obtained by applying clustering to the fibers across each mode and generating non-overlapping tensors N times repeatedly as follows. First mode-1 fibers of \mathcal{X} are grouped into c_1 clusters using the same two step procedure as in approach-1 through a weighted graph constructed from the fibers and then partitioning using METIS. Then, mode-2 fibers of each of the newly created tensors are clustered into c_2 clusters separately which yields $c_1 \times c_2$ subtensors. This procedure is applied N times by clustering the fibers of different modes at each step and $K = \prod_{i=1}^{N} c_n$ subtensors \mathcal{F}_k are obtained (Fig. 1b). However, in this procedure, it is not necessary to start from the mode-1 fibers and choosing different ordering of the modes yields $N!$ different possible decompositions, \mathcal{F}_k.

IV. RESULTS

In this section, we will evaluate the effectiveness of the locally linear higher order SVD with direct division (LL-HOSVD(DD)) and sequential division (LL-HOSVD(SD)) approaches for revealing the non-linear structure of tensor type data.
To be able to adjust the speed of the rotation, the rotation matrix A is constructed as $A = I_{10} \otimes \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$.

At $t = 10$, the angle of the rotation increased to $\theta = \pi/6$ from $\theta = \pi/12$. A 3-mode tensor $\mathcal{X} \in \mathbb{R}^{100 \times 200 \times 80}$ is created to represent data samples, where the third mode is time. Low n-rank approximations of \mathcal{X} are computed by HOSVD and the proposed approaches LL-HOSVD(DD) and LL-HOSVD(SD). The various n-ranks for \mathcal{X} are used in the experiments and the cluster number along each mode is chosen as $C = (4,4,4)$ (Table II). Similar to previous simulations, we reported one of the LL-HOSVD(SD) results with the lowest MSE. As seen in Table II, both of the proposed approaches give better approximation than HOSVD in terms of MSE.

C. PIE Dataset

In this experiment, a 3-mode tensor $\mathcal{X} \in \mathbb{R}^{122 \times 160 \times 138}$ is created from PIE dataset [24]. The tensor contains 138 images from 6 different yaw angles and varying illumination conditions collected from a subject where each image is converted to gray scale and downsampled to 122×160. n-rank for \mathcal{X} is determined empirically as $(20,25,15)$ for this experiment and the cluster number along each mode is chosen as $C = (4,4,4)$. Similar to previous simulations, we reported the LL-HOSVD(SD) results with the lowest MSE. As seen in Fig. 3, the proposed approaches provide more details for the faces with reduced MSE while conventional HOSVD gives blurry approximations.

V. CONCLUSIONS

In this study, we introduced a new low-rank tensor approximation technique which learns the underlying nonlinear structure by fitting locally linear low rank subtensors. We also proposed two approaches to decompose a tensor into its subtensors. The proposed framework is evaluated by applying it to a set of simulated datasets and a video from different angles. Future work will consider automatic selection of parameters in the algorithm such as the number of clusters along each mode and the appropriate rank along each mode. Combining the algorithm with the multiscale structure of GMRA will enable us to obtain a multi-resolution tree structure for high order datasets. Adapting the method to dynamic tensors for identifying structural changes to the tensor in time will also be considered.

REFERENCES

