
Scalable Rule-Based Gene Expression Data Classification
(Extended Version)

Mark A. Iwen
University of Michigan

Department of Mathematics
markiwen@umich.edu

Willis Lang Jignesh M. Patel
University of Michigan

EECS Department
wlang,jignesh@eecs.umich.edu

ABSTRACT
Current state-of-the-art association rule-based classifiers for gene
expression data operate in two phases: (i) Association rule mining
from training data followed by (ii) Classification of query data us-
ing the mined rules. In the worst case, these methods require an
exponential search over the subset space of the training data set’s
samples and/or genes during at least one of these two phases. On
large gene expression datasets these existing methods are compu-
tationally prohibitively expensive.

Our main result is the development of a heuristic rule-based gene
expression data classifier called Boolean Structure Table Classifi-
cation (BSTC). BSTC is explicitly related to association rule-based
methods, but is guaranteed to be polynomial space/time. Extensive
cross validation studies on several real gene expression datasets
demonstrate that BSTC retains the classification accuracy of cur-
rent association rule-based methods while being orders of mag-
nitude faster than the current best classifier RCBT [9] on large
datasets. As a result, BSTC is able to finish table generation and
classification on large datasets for which current association rule-
based methods become computationally infeasible.

BSTC also enjoys two other advantages over association rule-
based classifiers: (i) BSTC is easy to use (requires no parameter
tuning), and (ii) BSTC can easily handle datasets with any number
of class types. Furthermore, in the process of developing BSTC
we introduce a novel class of boolean association rules which have
many potential applications to other data mining problems.

1. INTRODUCTION
Microarray technology allows biologists to simultaneously mea-

sure the expression of thousands of genes in a single experiment.
This technology is currently revolutionizing biomedical research as
it provides a unique tool to examine the state of a cell under various
conditions. Microarray methods are also poised to play a critical
role in personalized medicine as they can be used to determine the
unique genetic susceptibility of an individual to disease.

See Table 1 for a sample microarray dataset shown using the
common discretized relational representation. In this table, each
sample row consists of (i) a list of discretized genes and (ii) a class

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDE ’08 Cancún, México
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Sample Expressed Genes Class Label
s1 g1 g2 g3 g5 Cancer
s2 g1 g3 g6 Cancer
s3 g2 g4 g6 Cancer
s4 g2 g3 g5 Healthy
s5 g3 g4 g5 g6 Healthy

Table 1: Running Example of Microarray Data

label. A gene is present in a sample row if the sample expresses
the gene. The absence of a gene in a row implies that the gene
is not expressed in that sample. Thus, the sample/gene expression
relationships for relational microarray data are essentially boolean.

Leading associated rule-based methods such as Top-k [9],
FARMER [10], CLOSET+ [30], and CHARM [34] which have
been applied to microarray datasets aim to correlate gene expres-
sion patterns with the classification labels. For these algorithms the
discovered correlations take the form of association rules [2]. For
an example association rule, consider the data shown in Table 1.
Note that only the Cancer samples s1 and s2 express both genes
g1 and g3. Based on this observation we can create the following
association rule: g1, g3 ⇒ Cancer. This rule implies that if a query
sample express both g1 and g3 (i.e., if g1 and g3’s associated genes
are both expressed in their associated expression intervals), then the
query sample is likely to be of type Cancer. Hence, we can use this
rule to classify query samples of unknown type as Cancer if they
express both g1 and g3. Note that there is nothing special about
the class label Cancer. After noticing that only Healthy sample
s5 expresses both g5 and g6, we can also create the meaningful
association rule g5, g6 ⇒ Healthy.

In this paper we focus on association rule-based classifiers (here-
after referred to simply as rule-based classifiers) for gene expres-
sion data. We focus on rule-based classifiers for two reasons: (i)
rule-based classifiers have been demonstrated to be more accurate
for gene expression analysis than other methods [9,10,14,18] such
as SVM [11] and tree-based C4.5 family algorithms [26], and (ii)
as opposed to other classifiers such as SVM, rule-based classi-
fiers can offer concise, concrete, and biologically meaningful rules
supporting their non-default classifications. However, rule-based
methods are not scalable due to their high association rule mining
costs. Although these rule mining costs are “one-time costs” in the
sense that rules must only be mined once per training set, larger
training data sets are being generated at an ever increasing rate. It
is impossible for any exponential time method to keep up. Conse-
quently, in this paper, we focus on extending accurate association
rule-based classification methods to larger data sets.

This paper develops a scalable rule-based classifier called Boolean

1

Structure Table Classification (BSTC) for microarray datasets. Given
a labeled training set, such as the example in Table 1, BSTC effi-
ciently builds an accurate classifier. The emphasis on accuracy is
easy to appreciate and comes from BSTC being related to associa-
tion rule-based methods. Hence, BSTC supports its classifications
with intuitive rules. The emphasis on efficiency is also critical since
large gene expression datasets are computationally taxing for exist-
ing association rule-based algorithms and, as successful microarray
techniques fuel the growth of gene expression datasets, these meth-
ods will quickly become infeasible. In contrast, BSTC’s space and
runtime costs are only polynomial. Hence, BSTC is scalable to
large data sets on which current association rule-based methods
are computationally challenged.

In an attempt to control runtime many current association rule
methods [9, 10, 21] utilize support based rule pruning. Using a
large enough support cutoff does allow rule mining to finish more
quickly, but doesn’t completely resolve the issue. If the user sets
the support cutoff too small he/she can easily spend days waiting
for rule mining to finish before giving up in frustration. A few such
mistakes can result in weeks of wasted time. On the other hand,
setting the support cutoff too high excludes the generation of im-
portant high-confidence lower-support rules [22]. In order to not
miss too many important rules the user can’t set the support cutoff
too high. The end result is that in practice support cutoffs are diffi-
cult and time intensive to tune. In contrast, BSTC is fast and easy
to use.

In addition, to the best of our knowledge all current association
rule-based classifiers for gene expression data only handle datasets
with two class labels. Although our example Table 1 data contains
just two class labels, in practice microarray data can contain an ar-
bitrary, though small, number of class types. Unlike previous asso-
ciation rule-based classifiers, BSTC easily generalizes to datasets
with more than two class types.

To develop an accurate, scalable, multi-class, and easy to use
rule-based classifier we carefully considered the underlying prim-
itives that power association rule-based methods. These methods
use conjunctive association rules (CARs), where the rule antecedent
is restricted to being a conjunction of terms. In contrast, we ap-
proach this problem by relaxing the types of rules to an important
and larger subset of the more general class of boolean association
rules (BARs). We develop a novel method for compactly storing
these BARs in a simple data structure called a Boolean Structure
Table (BST). BSTs can then be used for BAR generation and clas-
sification. BST classification (BSTC) collectively considers many
simple BARs with 100% confidence in bulk. Because the rules are
simple BSTC avoids extensive rule mining. Furthermore, consid-
ering rules in bulk keeps the computational cost low.

The main contributions of this paper are:
1. We propose a new polynomial time and space rule-based

classifier for gene expression data analysis that is accurate,
scalable, easy to use, and easily generalizable to multi-class
classification.

2. We extensively evaluate our method against the current best
association rule-based method (RCBT [9]), and show that
our method is orders of magnitude faster on large datasets
while maintaining high classification accuracy.

3. We introduce a subclass of more general boolean association
rules and relate them to existing CARs. This not only leads to
a better appreciation of why our classification method works,
but also lays the foundation for the future use of these BARs
on other database problems.

The remainder of this paper is organized as follows: First, in Sec-

tion 2 we formalize the concept of BARs. Then in Section 3, we
define a concept called Boolean Structure Tables (BSTs) which are
related to an important class of BARs. Section 5 provides a poly-
nomial time and parameter-free classifier based on BSTs. Section 6
presents an extensive empirical evaluation of our classifier. Finally,
Section 7 discusses related work, and Section 8 briefly presents our
conclusions and directions for future work.

2. PRELIMINARIES
We work with the following type of data: We are given a finite

set G of genes and N collections of subsets from G. These N col-
lections are disjoint and represented as C1 = {s1,1, . . . , s1,m1

},
. . . , CN = {sN,1, . . . , sN,mN

}. Each Ci is called a class type
or class label. Furthermore, we will refer to each set si,j ⊂ G
as a sample and every element g ∈ G as a gene. We denote the
total set of samples by S = ∪N

i=1Ci. If g ∈ si,j we will say that
sample si,j expresses gene g. Otherwise, if g ∈ G and g /∈ si,j

we will say that sample si,j doesn’t express gene g. Similarly, we
say that sample s is of class type Ci if and only if Ci contains
s ⊂ G. Consider the Table 1 data. Here we have samples S =
{s1, s2, s3, s4, s5} and genes G = {g1, g2, g3, g4, g5, g6}. Fur-
thermore, we have N = 2 classes: C1 = Cancer = {s1, s2, s3}
and C2 = Healthy = {s4, s5}.

Given such relational training data, a conjunctive association
rule (CAR) is any element of 2Gx{1, . . . , N}. A CAR
gj1 , . . . , gjr

⇒ n can be interpreted as follows: “If a query sam-
ple s contains all genes gj1 , . . . , gjr

then it should be grouped with
class type Cn.” Naturally, of the 2|G| ·N possible association rules
some are more useful than others. The following standard defini-
tions were introduced in [2] to compare association rules:

Support: The support of a CAR gj1 , . . . , gjr
⇒ n, called

supp[gj1 , . . . , gjr
⇒ n], is:

|{sn,j s.t. {gj1 , . . . , gjr
} ⊂ sn,j , 1 ≤ j ≤ mn}|.

Confidence: The confidence of a CAR (gj1 , . . . , gjr
, n) is:

supp[(gj1 , . . . , gjr
, n)]

|{si,j s.t. {gj1 , . . . , gjr
} ⊂ si,j∀i, j}|

.

Consider the CAR g1, g3 ⇒ Cancer for our running example
in Table 1. We can see that the example CAR has a support of 2
since only two Cancer samples, s1 and s2, contain both g1 and g3.
Furthermore, we can see that the example CAR has confidence 1
(or 100%) since no healthy samples contain both g1 and g3.

2.1 Boolean Association Rules
For any sample s and gene gi, 1 ≤ i ≤ n = |G|, let s[gi] ∈

{0, 1} represent whether or not sample s expresses gene gi. Fur-
thermore, define s[−gi] to be −s[gi] ∀gi ∈ G. Now suppose that
B(x1, . . . , xn) is a Boolean expression whose value depends on
some subset of {x1, . . . , xn}. We can evaluate B to true or false
given a sample s by computing B(s[g1], . . . , s[gn]). For example,
consider the boolean expression:

B̂(x1, x2, x3, x4, x5, x6) = (x1 ∧ x3) ∨ (x2 ∧ x4).

Using Table 1 we can evaluate

B̂(s1[g1], s1[g2], s1[g3], s1[g4], s1[g5], s1[g6]) (1)

2

g6
g5
g4
g3
g2
g1

s3s2s1

(s5: -g3, -g5)(s5: -g4, -g5)

(s4: g1) & (s5: -g4, -g6)

(s5: -g3, -g5)

(s4: -g2, -g5) & (s5: -g4, -g5)(s4: g1) & (s5: -g4, -g6)

(s4: -g3, -g5)(s4: g1)

Figure 1: Example BST for the Cancer Class

to be (1 ∧ 1) ∨ (1 ∧ 0) = 1. Note that B̂ will only evaluate the
Table 1 Cancer samples to True.

For a given class set Ci and boolean expression B we can create
a Boolean association rule (BAR) of the form B ⇒ Ci. The in-
terpretation of any such BAR, B ⇒ Ci, is “if B(s[g1], . . . , s[gn])
evaluates to true for a given sample s, then s should belong to class
Ci.” From this point on we will work with the following general-
ized definitions of support and confidence:

Support: The support of any BAR B ⇒ Ci, represented as
supp(B ⇒ Ci) is:

{samples s ∈ Ci s.t. B(s[g1], . . . , s[gn]) evaluates to true}.

The corresponding numerical support value of B ⇒ Ci is de-
noted as |supp(B ⇒ Ci)|.
Confidence: The confidence of a BAR B ⇒ Ci is

|supp(B ⇒ Ci)|

|{samples s s.t. B(s[g1], . . . , s[gn]) evaluates to true}|

For CARs these definitions coincide with the CAR definitions
of support and confidence found in [2, 3]. Hence, they are natural
generalizations of the previous definitions (see section 4.3).

Consider our example boolean expression B̂ in terms of Table 1.
We can see that the BAR B̂ ⇒ Cancer (shown in Eq. 1) has sup-
port 3 and confidence 1.

3. BSTS AND BARS
The discussion in this section will focus on tables for each class

Ci. These tables, called Boolean Structure Tables (BSTs), will
form the basis for our classification method. In order to motivate
the utility of BSTs for classification, we will present their close
relationship to a special category of BARs which, in turn, will be
related back to CARs. Through this discussion we will demonstrate
that BSTs contain all the information of the high confidence CARs
already known to be valuable for microarray data classification.

3.1 Boolean Structure Tables
A Boolean Structure Table (BST) T (i) is a two dimensional

table, T (i) = G×Ci, where each table entry refers to a maximum
of |S| − |Ci| lists of up to |G| genes each. For every Ci the associ-
ated BST, T (i), will require O ((|S| − |Ci|) · |G| · |Ci|) space and
can be constructed with the same time complexity via Algorithm 1.

When the Algorithm 1 is run on the Table 1 example input and
for class Cancer, the Boolean Structure Table shown in Figure 1 is
produced. In Figure 1 a black dot at location (g, s) indicates that no
healthy samples express gene g but some cancerous sample does.
A cell (g, s) is left blank only if sample s didn’t express gene g. If
(g, s) contains a list of the form (h : −g1, . . . ,−gn) it means that

Algorithm 1 Create-BST: The BST Creation Algorithm
1: Input: Finite set of Genes G, set of samples S, Class Ci

2: Output: The BST Table for Class Ci.
3: for all (c, h) ∈ Ci × S − Ci do
4: initialize a pointer← NULL
5: end for
6: for all (g, c) ∈ G× Ci s.t. g ∈ c and g /∈ ∪h∈S−Ci

h do
7: Set BST (g, c)← Black Dot
8: end for
9: for all (g, c, h) ∈ G× Ci × S − Ci s.t. g ∈ c and g ∈ h do

10: if pointer (c, h) 6= NULL then
11: push a copy of (c, h)→ BST (g, c)
12: else
13: L = {g ∈ G s.t. g ∈ h & g 6∈ c}
14: if L 6= ∅ then
15: (c, h)← L’s address
16: else
17: L = {g ∈ G s.t. g 6∈ h & g ∈ c}
18: (c, h)← L’s address
19: end if
20: end if
21: Push a copy of (c, h)→ BST (g, c).
22: end for

s may be distinguished from sample h by the non-expression of
any one of genes g1 through gn. Similarly, if (g, s) contains a list
of the form (h : g1, . . . , gn) it means that s may be distinguished
from sample h by the expression of any one of genes g1 through
gn. Such lists will hereafter be referred to as exclusion lists.

Note that there is no reason why the BST in Figure 1 was created
for the Cancer class. We can just as easily build a BST for the
Healthy class using the example shown in Table 1. In general,
if a relational gene expression dataset contains N classes, we can
construct N different BSTs for the data set (one for each class).

3.1.1 Runtime Complexity for BST Creation
We can see that the total time to construct BSTs via Algorithm 1

for all of C1, . . . , CN is O
“

PN

i=1(|S| − |Ci|) · |Ci| · |G|
”

. Given
that the class sets Ci are all disjoint, we have

PN

i=1(|S| − |Ci|) ·

|Ci| · |G| ≤
PN

i=1 |S| · |Ci| · |G| = |S|2 · |G|. Hence, BSTs can
be constructed for all Cis in time O(|S|2 · |G|).

3.2 BST Generable BARs
We view every BST cell, (g, c), as an atomic 100% confident

BAR. For example, Figure 1’s (g3, s1)-cell corresponds to the BAR

g3 expressed AND g1 expressed AND (either g4 or g6 not ex-
pressed) ⇒ Cancer.

We refer to this rule as the Figure 1 BST’s (g3, s1)-cell rule. Note
that the cell rule is both (i) 100% confident, and (ii) supported by
sample s1. Throughout the remainder of this section we will use
such cell rules as atomic building blocks to construct more com-
plicated BARs. Furthermore, in Section 5, we will directly employ
BST cell rules to build a new classifier called BSTC.

3.2.1 Mining More Complicated BST BARs
Let T (i) be a BST for sample type Ci. We can view each row of

T (i) as a 100% confident BAR by combining the row’s cell rules.
To see this, choose any gj ∈ G and consider the CAR gj ⇒ Ci.
This CAR can be augmented with exclusion list clauses from each
of T (i)’s gj-row cells via Algorithm 2. The result will be a BAR
with 100% confidence which is logically equivalent to a disjunction
of T (i)’s gj-row cell rules. See Figure 2 for the gene row BARs

3

Algorithm 2 BSTRowBAR: Constructing BST Gene Row BAR
1: Input: Class Ci, BST for the class T (i), gene gj

2: Output: Row BAR for gene gj with 100% conf.
3: A← FALSE
4: for all s ∈ Ci s.t. T (i)’s (gj , s)− cell is not empty do
5: B ← TRUE
6: for all exclusion lists e ∈ T (i)’s (gj , s)-cell do
7: if e = (sk : −gl1 · · · − glm) then
8: B ← B AND (−gl1OR . . . OR− glm)
9: else if e = (sk : gl1 . . . glm) then

10: B ← B AND (gl1OR . . . OR glm)
11: end if
12: A← A OR B
13: end for
14: end for
15: Return gj AND A⇒ Ci

Gene g1: (g1 expressed) ⇒ Cancer.
Gene g2: (g2 expressed AND [EITHER (g1 expressed) OR
(either g5 or g3 not expressed)]) ⇒ Cancer.
Gene g3: (g3 expressed AND [EITHER {(g1 expressed) AND
(either g4 or g6 not expressed)} OR { (either g2 or g5 not
expressed) AND (either g4 or g5 not expressed)}]) ⇒ Cancer.
Gene g4: (g4 expressed AND [either g5 or g3 not expressed]) ⇒
Cancer.
Gene g5: (g5 expressed AND [g1 expressed AND (either g4 or
g6 not expressed)]) ⇒ Cancer.
Gene g6: (g6 expressed AND [(either g4 or g5 not expressed)
OR (either g3 or g5 not expressed)]) ⇒ Cancer.

Figure 2: Gene Row BARs with 100% Confidence Values.

which result from applying Algorithm 2 to the example BST in
Figure 1.

For the remainder of this paper we will restrict our attention to
BARs that may be generated by taking conjunctions of BST cell
rule disjuncts. Henceforth we simply refer to these as BARs. It is
very important to notice that all such BARs have a special form:
Their antecedents consist of a CAR antecedent ANDed with a dis-
junction of BST exclusion list clause conjunctions. Consider the
BAR for gene g6 in Figure 2. Gene g6’s rule antecedent consists
of a CAR antecedent, g6, conjoined to a disjunction of the Figure 1
exclusion list clauses: (either g4 or g5 not expressed) and (either g3

or g5 not expressed).
Along these same lines, BARs with more complex antecedents

can be created by taking the logical AND of a BST’s gene row
rules. For example, consider our running example BST’s gene row
rules listed in Figure 2. We can form the 100% confident CAR
(g1 expressed AND g6 expressed) ⇒ Cancer by ANDing Fig-
ure 2 gene row rules for g1 and g6 as follows: While ANDing
we use the BST in Figure 1 to quickly simplify the resulting ex-
pression. First, we can tell that product will only be supported by
sample s2 because only the BST’s s2 column contains non-empty
cells for both of gene rows g1 and g6. Thus, we only need to con-
sider the exclusion lists in cells (g1, s2) and (g6, s2) while forming
our product. Second, the black dot in BST entry (g1, s2) means we
don’t have to use the Healthy sample s5 exclusion list information
(s5 : −g4,−g5) from BST entry (g6, s2) in our new rule. This is
because gene g1 already excludes s5 on its own since g1 /∈ s5. By
ANDing gene row rules in this manner we can create BARs with
antecedents that are the conjunction of any desired CAR antecedent
with a simplified exclusion list based clause (to eliminate non-Ci

supporting samples).

Algorithm 3 (MC)2BAR Mining Algorithm
1: Input: Number MC2BARs k, Class Ci, BST for the class T (i), Genes

G
2: Output: Set of Top-k supported MC2BARs
3: for all g ∈ G do
4: initialize Ci SUP [g] ← Ci subset supporting T (i)’s 100% confi-

dence g-row BAR
5: end for
6: Sort Ci SUP by subset size
7: Create arrays RULES and RULE SUP
8: B ← largest size of any Ci SUP subset.
9: for all S ∈ Ci SUPs.t.|S| = B do

10: R← AND all T (i) gene-row rules with support ⊇ S
11: Push R→ RULES
12: Push S → RULE SUP
13: Push S → B SUP
14: end for
15: for all (S1, S2) ∈ B SUP ×RULE SUP do
16: Push S1 ∩ S2 → NEWSUPP
17: Sort NEWSUPP by subset size
18: Merge NEWSUPP into Ci SUP (ordered)
19: Remove duplicates from Ci SUP
20: end for
21: Set Ci SUP = Ci SUP −B SUP
22: Empty B SUP
23: if |RULES| < k then
24: Goto step 8
25: else
26: Quit.
27: end if

4. EXTENDED CAR MINING SECTION
We begin by introducing the concept of maximally complex BARs

which we need in order to both accomplish fast BAR mining via
BSTs and to better understand the relationship between CARs and
BARs.

4.1 Maximally Complex BARs
We’ll say a BAR is maximally complex if no new genes may

be conjoined to its antecedent’s CAR portion without decreasing
the size of its Ci support set. For example, by looking at Fig-
ure 1 above we can see that the Figure 2 BARs for genes g2 and g6

are maximally complex while all others are not. The g2-row rule
has support sample set {s1, s3} which isn’t a subset of any other
gene row rule’s support set. Likewise, the g6-row rule has support
that isn’t a subset of any other gene row rule’s support. However,
the g1-row rule (for example) isn’t maximally complex because it’s
support {s1, s2} is the same as the support of the g3-row rule.

With the concept of maximum complexity in hand we can extend
the idea of gene-row BAR generation to find a Maximally Complex
100% (i.e. Maximally) Confident Boolean Association Rule, or
(MC)2BAR, for each of the largest k supportable Ci sample sub-
sets. Toward this end we propose the Mine-MCMCBAR algo-
rithm (shown in Algorithm 3). This algorithm finds a (MC)2BAR
for each of the top-k supporting Ci sample subsets. Note that
Mine-MCMCBAR algorithm can be executed in worst case time
O(k2 log(k) · |G| log(|G|) · |S|2). Furthemore, the algorithm is
progressive. New BARs can be shared with the user as they are
added to the RULES array.

Upon completion, the algorithm will store a (MC)2BAR for each
top-k supporting Ci subset in the RULES array. It is important to
observe that the more complex a boolean association rule is (i.e.
the more ANDed gene row BARs used to create it) the fewer
exclusion list clauses it must contain. In general, if R1 and R2

are any two Boolean association rule antecedents, then (R1 AND

4

Algorithm 4 Mine-MCMCBAR-Per-Samp Mining Algorithm
1: Input: Number MC2BARs k, Class Ci, BST for the class T (i), Genes

G
2: Output: Set of Top-k supported MC2BARs per Sample
3: Initialize ALL RULES ← ∅
4: for all c ∈ Ci do
5: Find k rules with support containing c via modified Mine-

MCMCBAR
6: Push k rules→ RULES
7: Sort RULES by support (lexicographically)
8: Merge RULES with ALL RULES
9: Remove duplicates from ALL RULES

10: Empty RULES
11: end for

R2) ⇒ Ci must only contain exclusion clauses for samples ex-
cluded in both R1 and R2.

Note that in the Mine-MCMCBAR algorithm a secondary order-
ing relation could be used to break ties between same-sized subsets
in the Ci SUPPORTS array. For example, subsets whose related
(MC)2BARs have a small number of excluded samples could be
ordered before subsets of the same size whose related (MC)2BARs
have many excluded samples. This would effectively break ties by
ordering (MC)2BARs with higher confidence antecedent CAR por-
tions first (see section 4.3).

We next turn our attention to the correctness of the Mine −
MCMCBAR algorithm. We can formally prove that the Mine−
MCMCBAR algorithm is guaranteed to produce a top-k set of
MC2BARs, of maximal support.

THEOREM 1. The Mine-MCMCBAR algorithm will produce a
top-k set of (MC)2BARs of maximal support.

PROOF:
Let g be a gene. T (i)’s g-row BAR will have support ⊇ the sup-
port of any (MC)2BAR whose antecedent’s CAR portion contains
g. More generally, ANDing two (MC)2BARs will always yield
a BAR whose support is the intersection of its parents’ supports.
Below we will refer to the number of CAR antecedent genes in a
BAR as that rules complexity. A simple BAR has only one CAR
antecedent gene (e.g., BST gene-row BARs and atomic cell rules
are simple). Let B ⇒ Ci be any (MC)2BAR implying class Ci.
Then, there exists a set of (MC)2BARs B1 ⇒ Ci, . . . , Bn ⇒ Ci

such that the following are true:

1. The antecedents B1, . . . , Bn are all conjunctions of antecedents
of 100% confident maximally supported gene row rules (as
discussed in section 3.2 above).

2. The subset of Ci samples which evaluate the antecedent B
to true is exactly the subset of Ci samples which evaluate the
conjunction of the antecedents B1, . . . , Bn to true.

3. For each Bj , 1 ≤ j ≤ n, the subset of Ci samples which
evaluate the antecedent Bj to true is a superset of the subset
of Ci samples which evaluate the antecedent B to true.

4. If B ⇒ Ci is non-simple, then for each non-simple rule an-
tecedent Bj , 1 ≤ j ≤ n, there exist two 100% confident
simple rule antecedent clauses, x and y, such that Bj =
(xANDy)ANDR. Here R ⇒ Ci is either a (MC)2BAR or
true. Furthermore, the subset of Ci samples which evaluate
the antecedent Bj to true is exactly the subset of Ci samples
which evaluate (xANDy) to true.

By induction on the number of non-exclusion clause genes in B
(i.e. the degree of complexity) we can see that the 4 part claim
above is true. Using the claim we can see that if we visit each pos-
sible supporting Ci set from largest to smallest, we will be able use
the BST to generate a (MC)2BAR for each visited supporting set.
Using this claim we can see that the Mine−MCMCBAR algo-
rithm above will correctly mine the top-k supported (MC)2BARs
(one for each possible supporting set). 2

It is often desirable to make sure that each training sample be-
longs to the support of at least one mined rule. The Mine-MCMCBAR
algorithm can easily be modified to accomplish this task (i.e. to find
a (MC)2BAR for each top-k supportable Ci subset containing any
given Ci sample c). All we have to do is restrict our attention to
Ci sample subsets containing sample c in the Mine-MCMCBAR
algorithm. Hence, if desired we may ensure that for every Ci sam-
ple c we generate a (MC)2BAR for each of the top-k supportable
Ci subsets containing c. The Mine-MCMCBAR-Per-Samp algo-
rithm shown in Algorithm 4 does this in worst case time complexity
O(k2 log(k) · |G| log(|G|) · |S|3).

Note that (MC)2BARs are analogous to the rule group upper
bounds proposed in [10]. Hence, they can be used in the same way
to represent all BST creatable BARs with the same support set.

4.2 Interesting Boolean Rule Groups
The following rule group definitions are essentially identical to

those found in FARMER and similar results (such as the uniqueness
of rule group upper bounds [10]) are true. An interesting boolean
rule group (IBRG) is as follows:

IBRG Definition 1. Let S be the set of samples in our data set.
We say that RG = {RI ⇒ Ci|RI is a conjunction of simple 100%
confident BAR antecedents} is an IBRG with consequent Ci and
antecedent support set S if it has both the following properties:

1. ∀RI ⇒ Ci ∈ RG we have supp(RI ⇒ Ci) = S.

2. All conjunctions of simple 100% confident BAR antecedents,
RI , with row support set S have RI ⇒ Ci ∈ RG.

A 100% confident BAR Ru ⇒ Ci in RG is called an upper
bound of RG ⇐⇒ there exist no R̂ ⇒ Ci ∈ RG such that
R̂’s CAR portion ⊃ Ru’s CAR portion. A 100% confident BAR
RL ⇒ Ci ∈ RG is called a lower bound of RG ⇐⇒ there
exist no R̂ ⇒ Ci ∈ RG such that R̂’s CAR portion ⊂ RL’s CAR
portion.

In our running example the set { (g1ANDg6 expressed) ⇒ Cancer,
(g3ANDg6 expressed AND (either g4 or g5 not expressed)) ⇒
Cancer, (g1ANDg3ANDg6 expressed) ⇒ Cancer } is the boolean
rule group with consequent Cancer and antecedent support set
{s2}. The first two boolean association rules are the lower bounds
while the last most complex rule is the upper bound. We can see
that each maximally complex rule found by the two algorithms in
section 4.1 will be an upper bound to a unique IBRG.

Note that we are now in the position to use (MC)2BARs to clas-
sify query gene expression data samples. To do so we can (i) Mine
the top-k supported IBRG upper bounds per training sample (via
Figure 4 algorithm) for each class label/type in the data, (ii) Cal-
culate a query classification number ∈ [0, 1] for every generated
IBRG upper bound by using each BAR’s exclusion lists (see sec-
tion 5.2), and then (iii) Classify the query sample as the class type
antecedent belonging to the IBRG upper bound with the largest
classification number. This approach is polynomial time. However,
it also depends on the support related parameter k. Hence, we forgo

5

greater development of these classification schemes and concen-
trate on the support pruning/parameter free classification method
presented in section 5.3.

Next we formalize the relationship between BST created boolean
association rules and conjunctive association rules.

4.3 BARs Relationships to CARs
Let R ⇒ Ci be any 100% confident BST created BAR contain-

ing exclusion clauses for non-Ci samples h1, . . . hm. Removing
all exclusion list clauses related to {ĥ1, . . . , ĥp} ⊂ {h1, . . . , hm},
p ≤ m, will create a new boolean association rule, R̂ ⇒ Ci, with
support = supp(R ⇒ Ci) and confidence ≥ |supp(R⇒Ci)|

|(supp(R⇒Ci)|+p
.

Let’s consider the g3-row BAR from our running example:

(g3 expressed AND [EITHER {(g1 expressed) AND (either g4

or g6 not expressed)} OR { (either g2 or g5 not expressed) AND
(either g4 or g5 not expressed)}]) ⇒ Cancer.

It has 100% confidence and support {s1, s2}. Now, if we remove
all exclusion list clauses related to sample row s5 we end up with
the boolean association rule (g3 expressed AND [EITHER (g1 ex-
pressed) OR (either g2 or g5 not expressed)] ⇒ Cancer. This new
rule has support {s1, s2} and a confidence of |{s1,s2}|

|{s1,s2,s5}|
= 2

3
. The

preceding observation leads us to the following theorem:

THEOREM 2. Let D be a relational data set containing s sam-
ples no two of which are the same (i.e. no two sample rows express
the exact same set of genes). Then, there exists a pure conjunction
B implying a class type C (i.e., a CAR) with confidence c and sup-
port supp for D ⇐⇒ there exists a 100% confident BST gener-
ated BAR B̂ ⇒ C for D that: (i) has supp(B̂ ⇒ C) = supp, and
(ii) contains exclusion list clauses actively excluding (1

c
−1)|supp|

non-C samples.
PROOF. ⇐: From the observation directly preceding this the-

orem we can see that if B̂ ⇒ C has supp(B̂ ⇒ C) = supp

then removing all the exclusion list clauses from B̂ (by replac-
ing them all with true) will create a new pure conjunction B with
supp(B ⇒ C) = supp. Furthermore, we require that {non-C
samples excluded by exclusion clauses} = {non-C samples satis-
fying B} (i.e., the exclusion clauses actually exclude something).
Hence, B ⇒ C will have confidence c = |supp|

|supp|+# excluded samples .
⇒: Let B be a conjunction of items/genes g1, . . . , gn. Given that
no two samples in D are the same we can build a 100% confident
BST for class C of D. Furthermore, both the following are true:

1. A non-C sample h expresses all genes g1, . . . , gn ⇐⇒
∀s ∈ supp and 1 ≤ i ≤ n the BST cell (gi, s) contains
an active exclusion list for h. Thus, only non-C samples ex-
pressing all of g1, . . . , gn (and therefore satisfying B) gen-
erate active exclusion lists in all relevant (gi, s) BST cells.

2. supp(B ⇒ C) = ∩1≤j≤nsupp(gj ⇒ C).

Here we get the B̂ by ANDing down each of the BST supp(B ⇒
C) sample column’s gi cells and then ORing the resulting |supp(B ⇒
C)| rules together.

Theorem 2 tells us how we can get CARs from BARs. Fur-
thermore, it says 100% confident BARs with large support and
a small number of excluded samples are equivalent to high sup-
port/confidence CARs. Hence, genes that show up in many high
confidence, high support CARs will also be prevalent in many 100%
confident BARS with high support and a low number excluded

samples. Most importantly, we see that all high confidence CARs
(which tend to be good classifiers) have closely related BAR coun-
terparts. Furthermore, these counterparts can be mined from a BST
by ANDing gene row BARs.

5. BST-BASED CLASSIFICATION
In principal, 100% confident BST-generable BARs should be

sufficient for classification because they contain at least as much
information as all generable CARs do (see section 4.3). Indeed, be-
yond what CARs with similar support are capable of, 100% confi-
dent BARs supply us with “unpolluted” ground truth. Thus, it’s not
too surprising that the class of BST-generable BARs we’ve looked
at so far will be enough to enable highly accurate classification.

Let Ci be a class set of interest and T (i) be the BST for class
Ci constructed from the given training data. From section 3.2 we
can see that all BST generable BARs for class Ci are created by
combining T (i) cell rules. Thus, we expect that by restricting our
attention to the O(|G| · C(i)) atomic T (i) cell rules we will be,
in some sense, still considering all T (i) generable BARs for Ci.
Our new scalable classifier, the Boolean Structure Table Classi-
fier (BSTC), capitalizes on this line of thought by ignoring BAR
generation and focusing exclusively on atomic BST cell rules.

5.1 BSTC Overview
Let Q be a test/query gene expression data sample and T (i) be

a BST for class set Ci. BSTC is a heuristic rule-based classi-
fier motivated by standard Boolean formula arithmetization tech-
niques [23] such as those employed in fuzzy satisfiability [29]. By
using these ideas we can avoid the highly costly process of sup-
port/confidence based association rule mining. Instead of explicitly
generating rules, BSTC decides (heuristically), for all Ci, how well
Q collectively satisfies T (i)’s atomic cell rules. BSTC then clas-
sifies Q as the sample class whose BST has the highest expected
atomic rule satisfaction level from Q.

Intuitively, we expect BSTC to be accurate because it approxi-
mates the results of CAR-based classification: Suppose that a high
support/confidence CAR exists which classifies our query sample
Q as class Cj . This will only happen if all the CAR’s antecedent
genes, AG, appear in both (i) Q and, (ii) most of the training sam-
ples in the CAR’s consequent class Cj . Let T (j) be the BST for
class Cj . Because of (ii) most of T (j)’s sample columns must
contain cell entries for all the AG genes. Furthermore, all T (j)’s
AG cell entries will have few exclusion lists in common (by Theo-
rem 1). Hence, T (j)’s expected atomic rule satisfaction level from
Q (i.e., Q’s classification value) should be heavily influenced (in-
creased) by the AG rows and their few shared lists.

5.2 BST Cell Rule Satisfaction
As above, let Q be a test/query gene expression data sample and

T (i) be a BST for class set Ci. Algorithm 5, BSTCE, gives BSTC’s
method of calculating the level that Q satisfies a given atomic T (i)
cell rule. We next explain the rational behind BSTCE.

We know that each T (i) (g, s)-cell exclusion list, L, corresponds
to a disjunction in T (i)’s (g, s)-cell rule. Hence, if Q satisfies any
one negation/inclusion in L, Q will satisfy L. However, if Q ex-
presses most of its genes in common with L’s associated non-Ci

sample we assume it’s probably not of type Ci (i.e., Q is weakly
excluded). Hence, we use BSTCE’s line 4 ratio to approximate the
probability that L correctly excludes Q from being of L’s associ-
ated sample’s class.

In order for the (g, s)-cell rule to be satisfied, all of (g, s)’s ex-
clusion lists must be satisfied (i.e., logical AND). If independence
of each exclusion list’s correct classification is assumed it’s natu-

6

Algorithm 5 BST Cell rule quantized Evaluation (BSTCE)
1: Input: Class Ci, BST for the class T (i), Samples S, Query sample Q
2: Output: Classification value
3: for all non-empty exclusion lists e in T (i)’s cells do
4: Ve ←

|{ĝ∈e s.t. Q[ĝ]=1}|
|e|

5: end for
6: for all (g, s) ∈ {g ∈ G s.t. Q[g] = 1} × Ci do
7: if T (i)(g, s) contains a • then
8: T (i)[g][s]← 1
9: else

10: T (i)[g][s]←Min {Ve s.t. e is in T (i)(g, s)}
11: end if
12: end for
13: for all non-blank sample columns s ∈ T (i) do
14: Vs ←Mean of non-blank T (i)[?][s] values
15: end for
16: Return the Mean of step 16’s Vs values

Algorithm 6 The BSTC Algorithm
1: Input: BSTs for all dataset classes T (1), . . . , T (N), Query sample Q
2: Output: Classification for query sample Q
3: for all i ∈ {1, . . . , N} do
4: CV (i)← BSTCE(T (i), Q)
5: end for
6: Return min{i|CV (i) = max{CV (1), . . . , CV (N)}}

ral to multiply all of (g, s)’s list’s probabilities. We don’t assume
independence and use a min instead (line 10).

Finally, recall that all black dots in T (i) correspond to genes
expressed only in class Ci samples. If Q expresses a black dot
gene it automatically satisfies all that gene’s non-empty T (i) cell
rules. Hence, black dots are all assigned values of 1 in BSTCE’s
line 8.

Once we have used BSTCE lines 1-12 to calculate Q’s classifi-
cation values (i.e., T (i)’s atomic rule satisfaction levels from Q)
for each relevant simple (g, s)-cell rule, we are nearly finished. We
have all the values required to judge Q’s similarity to T (i) via an
expectation calculation. For the sake of T (i)’s expectation calcu-
lation, all that is left to do is imagine choosing a relevant simple
T (i) rule at random and then using it to classify Q. To randomly
select a (g, s) rule we first imagine selecting a non-empty T (i)
sample column uniformly at random and then picking a cell-rule
from that column uniformly at random. The expected probability
of correctly classifying Q with T (i) via this method (which heuris-
tically is proportional to T (i)’s expected satisfaction level from Q)
is then calculated by averaging the approximate cell rule satisfac-
tion levels down each non-empty sample column (line 14) and then
averaging the resulting non-empty sample averages (line 16).

5.3 BSTC Algorithm
Suppose we are given relational training data D containing sam-

ple rows S split up into disjoint class sets C1, . . . , CN . BSTC uses
D to construct N BSTs, T (1), . . . , T (N). Next, let G be the union
of the elements contained in each sample row of D (i.e. the gene
set of D) and let Q be a query sample with expression informa-
tion regarding G. BSTC will use the BSTCE algorithm to classify
Q as being the Ci with smallest i such that BSTCE(T (i), Q) =
max{BSTCE(T (j), Q)|0 ≤ j ≤ N}. See Algorithm 6 for the
BSTC algorithm.

Note that there is no reason why N must be 2. BSTC easily
generalizes to datasets containing more than two class labels.

5.3.1 BSTC Runtime
As noted in section 3.1.1 it takes time and space O(|S|2 · |G|)

g6
g5
g4
g3
g2
g1

s3s2s1

1, 0.5
0.5

11

s3s2s1
0.51(1 + 0.5)/2 = 0.75

CANCER classification value = (0.75 + 1 + 0.5)/3 = 0.75

Figure 3: BSTC cell rule Evaluation Example

to construct all the BSTs T (1), . . . , T (N). Thus, BSTC requires
time and space O(|S|2 · |G|) to construct. Furthermore, during
classification BSTC must calculate BSTCE(T (i), Q) for 1 ≤ i ≤
N . BSTCE (Algorithm 5) runs in O ((|S| − |Ci|) · |G| · |Ci|) time
per query sample. Therefore the BSTC worst case evaluation time
is also O(|S|2 · |G|) per query sample. See Section 8 for more on
BSTC’s per-query classification time.

5.3.2 Biological Meaning of BSTC Classification
Association rules mined from gene expression data provide an

intuitive representation of biological knowledge (i.e., the expres-
sion of certain genes implies cancer). Hence, CAR-based classi-
fiers have the desirable ability to justify each non-default conse-
quent class query classification with the biologically meaningful
CAR(s) the query satisfied. BSTC, being rule-based and explicitly
related to CAR-classifiers, also has this property.

BSTC can support it’s query classifications with BARs of any
user specified complexity. Most simply, for any given query sample
Q and c ∈ (0, 1], BSTC can justify it’s classification of Q as class
Ci by reporting all T (i) atomic cell rules with satisfaction levels
≥ c. Note that returning this information requires no additional
per-query classification time. Also note that section 3.2.1 methods
can be used to progressively mine more complex highly satisfied
BARs if desired.

5.4 BSTC Example
Consider our running example from Table 1. In order to con-

struct BSTC we must construct both T (Healthy) and T (Cancer)
(shown in Figure 1). Once both BSTs have been constructed we
can begin to classify query samples. Suppose, for example, we
are given the query sample Q = {g1 expressed, g2 not expressed,
g3 not expressed, g4 expressed, g5 expressed, g6 not expressed}.
To classify this query we must first calculate BSTCE(T (Cancer), Q)
and BSTCE(T (Healthy), Q).

The evaluation of BSTCE(T (Cancer), Q) proceeds as follows:
Since our query sample Q expresses gene g5 we can see that we
must, for example, determine the fraction of both of the (g5, s1)-
cell’s exclusion lists satisfied by Q. The (g5, s1)-cell’s (s4 : g1)
exclusion list is totally satisfied since Q expresses g1. Hence, it
gets a value of 1. However, the (s5 : −g4,−g6) exclusion list is
only half satisfied since, although Q doesn’t express g6, Q does
expresses g4. Thus, in total, we only consider half of the simple
(g5, s1)-cell rule to be satisfied (i.e. the s5 exclusion list is the
weakest link). Continuing to use BSTC’s approximation scheme

7

for the expected probability of Q’s correct Cancer classification
via the Figure 1 BST we obtain Figure 3. Note that only Figure 3
gene rows corresponding to genes expressed in Q are non-empty.

If we now evaluate BST-EXPECT(T (Healthy), Q) we obtain a
final value of 3

8
. To finish, BSTC will compare Q’s Cancer clas-

sification value of 3
4

to Q’s Healthy classification value of 3
8

and
conclude that Q is most probably Cancer. Hence, Q will be clas-
sified as Cancer.

6. EXPERIMENTAL EVALUATION
All experiments reported here were carried out on a 3.6 GHz

Xeon machine with 3GB of memory running Red Hat Linux En-
terprise 4. For our empirical evaluation we use four standard real
microarray datasets1. Table 2 lists the dataset names, class labels,
and the number of samples of each class. All discretization was
done using the entropy-minimized partition2.

Class 1 Class 0 # Class 1 # Class 0
Dataset Genes label label samples samples
ALL/AML (ALL) 7129 ALL AML 47 25
Lung Cancer (LC) 12533 MPM ADCA 31 150
Prostate Cancer (PC) 12600 tumor normal 77 59
Ovarian Cancer (OC) 15154 tumor normal 162 91

Table 2: Gene Expression Datasets

Executables for both RCBT and Top-k were provided by the au-
thors of [9]. In all experiments, the Top-k rule generator was used
to generate rule groups for RCBT. Unless otherwise noted we ran
both Top-k and RCBT with the author suggested parameter values
(i.e., support = 0.7, k = 10, nl = 20, 10 RCBT classifiers). Hence,
while generating rules for RCBT we used Top-k with a minimum
support value of 0.7 and found the 10 most confident covering rule
groups (i.e. k = 10). Furthermore, during classification we used
RCBT with the suggested 10 classifiers (1 primary and 9 standby).
Finally, nl, the number of lower bound rules to use for classifica-
tion per Top-k mined rule group, was set equal to 20. We coded
BSTC with C++ 3.

6.1 Preliminary Experiments
Each of Table 2’s four gene expression datasets comes with a

clinically determined training set. The authors of [9] provided us
with their discretizations of these four datasets. We ran BSTC on
their discretizations and BSTC matched RCBT’s reported mean ac-
curacy (about 96%) outperforming CBA (87%), IRG (81%), Weka
3.2 (C4.5 family single tree (74%), bagging (78%), boosting(74%)),
and SVMlight 5.0 (93%) in reported mean performance [9].

To compare BSTC and RCBT with the most recent R e1071
package SVM implementation [7] and randomForest version 4.5 [6]
we rediscretized the four datasets and reran BSTC/RCBT. To keep
comparisons fair we ran SVM and randomForest on the same genes
selected by our entropy discretization except with their original
undiscretized gene expression values. SVM was run with its de-
fault radial kernel. We ran randomForest 10 times with its default
500 trees for ALL, LC, and OC and its accuracy was constant. For
1All four undiscretized gene expression data files are available at
http://sdmc.i2r.a-star.edu.sg/rp/
2The entropy partition code is available at http://cran.r-
project.org/src/contrib/dprep 1.0.tar.gz
3BSTC Code and data files are located at http://www-
personal.umich.edu/∼markiwen/.

PC we had to increase randomForest’s number of trees to 1000 be-
fore its accuracy stabilized over the 10 runs.

Table 3 contains the number of class 0/1 samples in the clinically
determined training set, the number of genes selected by our en-
tropy discretization, and our experimental results. As shown in this
table, the overall average accuracies of BSTC and RCBT are again
best at about 96% each. When compared against RCBT, SVM, and
randomForest on the individual tests we can see that BSTC is alone
in having 100% accuracy on the majority of datasets.

However, BSTC’s performance on the preliminary AML/ALL
dataset test is relatively poor. This is likely due to over fitting. Ev-
ery error BSTC made mistook a class 0 (AML) test sample for a
class 1 (ALL) test sample (i.e., all errors were made in this same
direction). And, the ALL training data has both (i) about 2.5 times
as many class 1 samples as class 0 samples, and (ii) a small num-
ber of total samples/genes. When the training set is more balanced
and the number of samples/genes is larger we can expect that can-
cellation of errors will tend to neutralize/balance any over fitting
effects in BSTC. And, BSTC is a method meant primarily for large
training sets where CAR-mining is prohibitively expensive. As we
will see later in Section 6.2.1, BSTC’s performance is much better
for larger AML/ALL training set sizes.

6.2 Cross-Validation Studies
Cross-validation studies make comparisons less susceptible to

the choice of a single training dataset and provide performance
evaluations that are likely to better represent program behavior in
practice. We next present results from a thorough cross-validation
study completed using 100 different training/test sets from each of
the ALL, LC, PC, and OC data sets. For these cross-validation tests
we benchmark BSTC against Top-k/RCBT because (i) BSTC/RCBT
perform best in our preliminary experiments, (ii) Top-k/RCBT is
the fastest/most accurate CAR-based classifier for microarray data,
and (iii) we are interested in BSTC’s CAR-related vs Top-k/RCBT’s
CAR-based scalability.

For the cross-validation study we generated training sets of sizes
40%, 60%, and 80% of the total samples. Each training set was pro-
duced by randomly selecting samples from the original combined
dataset. We then used the standard R dprep package’s entropy
minimized partition [1] to discretize the selected training samples.
Finally, the remaining dataset samples were used for testing the two
classifiers after rule/BST generation on the randomly selected train-
ing data. For each training set size we produced 25 independent
tests. In addition to these training sets, we created an additional
25 1-x/0-y tests. To create these tests we chose training data by
randomly selecting x class 1 samples and y class 0 samples to be
used as training data. As before, the remaining samples were then
used to test both classifiers. For each dataset the x and y values
are chosen so that the resulting 25 classification tests have the ex-
act same training/test data proportions as the single related dataset
test reported in section 6.1. For each training set size we plot our
results using a boxplot.

Boxplot Interpretation: Each boxplot that we show in this sec-
tion can be interpreted as follows: The median of the measurements
is shown as a diamond, and a box with boundaries is drawn at the
first and the third quartile. The range between these two quar-
tiles is called the inter-quartile range (IQR). Vertical lines (a.k.a.
“whiskers”) are drawn from the bottom and the edge of the box
to indicate the minimum and the maximum value, unless outliers
are present. If outliers are presents, the whiskers only extend to
1.5 × IRQ. The outliers that are near (i.e. within 3 × IRQ are
drawn as an empty circle, and outliers that are further are drawn
using an asterisk.

8

Class 1 # Class 0 Genes
Training Training After BSTC RCBT SVM randomForest

Dataset Samples Samples Discretization Accuracy Accuracy Accuracy Accuracy
ALL/AML (ALL) 27 11 866 82.35% 91.18% 91.18% 85.29%
Lung Cancer (LC) 16 16 2173 100% 97.99% 93.29% 99.33%
Prostate Cancer (PC) 52 50 1554 100% 97.06% 73.53% 73.53%
Ovarian Cancer (OC) 133 77 5769 100% 97.67% 100% 100 %
Average Accuracy 95.59% 95.98% 89.5% 89.54%

Table 3: Results Using Given Training Data

Median Mean Near outliers Far outliers

BSTC RCBT

Ac
cu

ra
cy

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0
40% Training

(a)
BSTC RCBT

0.6

0.7

0.8

0.9

1.0
60% Training

(b)
BSTC RCBT

0.6

0.7

0.8

0.9

1.0
80% Training

(c)
BSTC RCBT

0.6

0.7

0.8

0.9

1.0
1−27/0−11 Training

(d)

Median Mean Near outliers Far outliers

BSTC RCBT
Ac

cu
ra

cy

0.8

0.85

0.9

0.95

1.0
40% Training

(a)
BSTC RCBT

0.8

0.9

1.0
60% Training

(b)
BSTC RCBT

0.8

0.9

1.0
80% Training

(c)
BSTC RCBT

0.8

0.9

1.0
1−16/0−16 Training

(d)

Figure 4: ALL Cross-Validation Results Figure 5: LC Cross-Validation Results

6.2.1 ALL/AML (ALL) Experiment
Figure 4 shows the classification accuracy for the ALL/AML

dataset. As can be seen in this figure, BSTC and RCBT have simi-
lar accuracy across the ALL/AML tests as a whole. BSTC outper-
forms RCBT in terms of median and mean accuracy on the 40%
and 80% training set sizes while RCBT has better median/mean
accuracy on the 1-27/0-11 training size tests. And, both classifiers
have the same median on the 60% training set size. Over the 100
ALL/AML tests we see that BSTC has a mean accuracy of 92.13%
while RCBT has a mean accuracy of 91.39% (they are very close).

It’s noteworthy that BSTC is 100% accurate on the majority of
80% training size tests. However, BSTC appears to have slightly
higher variance than RCBT on all but the 40% training tests. Con-
sidering all the results together both BSTC and RCBT have essen-
tially equivalent classification accuracies on the ALL/AML dataset.

6.2.2 Lung Cancer (LC) Experiment
The results for the Lung Cancer dataset are reported in Figure 5.

Here, again, both BSTC and RCBT have similar classification be-
havior. RCBT has higher mean and median accuracies on the 40%
and 60% tests while BSTC outperforms RCBT on the 1-16/0-16
tests. Meanwhile, both classifier have the same median on the 80%
training test. Over all 100 LC tests we find that BSTC has a mean
accuracy of 96.32% while RCBT has a mean accuracy of 97.08%
(again, they are very close).

As before, BSTC is alone in having 100% accuracy more then
half the time for any training set size (see Figure 5 (d)). However,
RCBT has smaller variance for 3 of the 4 training set sizes. There-
fore, as for the ALL/AML data set, both BSTC and RCBT have
essentially the same classification accuracy on LC.

6.2.3 Prostate Cancer (PC) Experiment

RCBT begins to run into a computational difficulties on PC’s
larger training set sizes. This is because before using a Top-k rule
group for classification RCBT must first mine nl lower bound rules
for the rule group. RCBT accomplishes rule group lower bound
mining via a pruned breadth-first search on the subset space of
the rule group’s upper bound antecedent genes. This breadth-first
search can be quite time consuming. In the case of the Prostate
Cancer (PC) dataset all 100 classification tests (25 tests for each
of the 4 training set sizes) generated at least one top-10 rule group
upper bound with more than 400 antecedent genes. Due to the dif-
ficulties involved with a breadth-first search over the subset space
of a several hundred element set, RCBT began suffering from long
run times on many PC classification tests.

Table 4 contains four average classification test run times (in sec-
onds) for each PC training size. The ‘BSTC’ column run times
reflect the average time required to build both class 0 and class 1
BSTs and then use them to classify all the test samples. Each ‘Top-
k’ column run time is the average time required for Top-k to mine
the top 10 covering rule groups (with minimum support 0.7) for
each training set.

Table 4’s ‘RCBT’ column gives average run times for RCBT
using a time cutoff value of 2 hours for all the training sets. For
each classification test, if RCBT was unable to complete the test
in less than the cutoff time, it was terminated and it’s run time was
reported as the cutoff time. Hence, the ‘RCBT’ column gives lower
bounds on RCBT’s average run time per training set test. Finally,
the ‘# RCBT DNF’ column gives the number of tests RCBT was
unable to finish in < the cutoff time, over the number of tests for
which Top-K finished mining rule group upper bounds.

Explanation for varying nl values: Run time cutoffs were a ne-
cessity to mitigate excessive cross-validation CAR-mining times.
Even with a cutoff of 2 hours these 100 PC experiments required

9

Median Mean Near outliers Far outliers

BSTC RCBT

Ac
cu

ra
cy

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1.0
40% Training

(a)
BSTC RCBT

0.6

0.7

0.8

0.9

1.0

DNF

60% Training

(b)
BSTC RCBT

0.6

0.7

0.8

0.9

1.0

DNF

80% Training

(c)
BSTC RCBT

0.6

0.7

0.8

0.9

1.0

DNF

1−52/0−50 Training

(d)

Median Mean Near outliers Far outliers

BSTC RCBT

Ac
cu

ra
cy

0.8

0.85

0.9

0.95

1.0
40% Training

(a)
BSTC RCBT

0.8

0.9

1.0

DNF

60% Training

(b)
BSTC RCBT

0.8

0.9

1.0

DNF

80% Training

(c)
BSTC RCBT

0.8

0.9

1.0

DNF

1−133/0−77 Training

(d)

Figure 6: PC Cross-Validation Results Figure 7: OC Cross-Validation Results

Training BSTC Top-k RCBT # RCBT DNF
40% 2.13 0.09 418.81 0/25
60% 4.93 5.06 ≥ 7110.00 24/25
80% 5.78 120.63 ≥ 7200 † 25/25†
1-52/0-50 5.57 21.32 ≥ 7200 † 25/25†

Table 4: Average Run Times for the PC Tests (in seconds). De-
fault cutoff time is 2 hours, and default nl value is 20. † indicates that
the nl parameter was lowered to 2.

about 11 days of computation time. For the 80% and 1-52/0-50
training set sizes RCBT with nl = 20 failed to finish lower bound
rule mining for all 50 tests within 2 hours. Thus, RCBT’s nl param-
eter was lowered from the default value of 20 to 2 in an attempt to
improve its chances of completing tests. Not surprisingly, decreas-
ing nl (i.e., mining fewer lower bound rules per Top-k rule group)
decreases RCBT’s runtime. However, RCBT was still unable to
finish lower bound rule mining for any tests.

Training BSTC RCBT
40% 75.08% 79.27%
60% 78.18% 85.45%
80% 84.98% —
1-52/0-50 81.65% —

Table 5: Mean Accuracies for the PC Tests that RCBT Fin-
ished. Both 40% and 60% results based on the tests that RCBT com-
pleted, namely 25 tests for 40% and 1 test for 60%.

Classification Accuracy: Figure 6 contains accuracy results for
BSTC on all four Prostate Cancer test sets. Prostate Cancer box-
plots for RCBT weren’t constructed for training set sizes RCBT
was unable to complete all 25 tests for within the time cutoffs. In
contrast, BSTC was able to complete each of the 100 PC classifica-
tion tests in less than 6 seconds. Table 5 contains mean accuracies
for the PC dataset with 40%, 60%, 80%, and 1-52/0-50 training.
For each training set, the average accuracies were taken over the
tests RCBT was able to complete within the cutoff time. Hence,
the 40% row means were taken over all 25 results. Since RCBT
was unable to complete any 80% or 1-52/0-50 training size tests we
report these BSTC means over all 25 tests. RCBT has slightly bet-
ter accuracy then BSTC on 40% training. For 60% training RCBT

outperforms BSTC on the single test it could finish by more then
7%, although it should kept in mind that RCBT’s results for the 24
unfinished tests could vary widely. Note that BSTC’s (mean) ac-
curacy increases monotonically with training set size as expected.
At 60% training BSTC’s accuracy behaves almost identically to
RCBT’s 40% training accuracy (see Figure 6).

6.2.4 Ovarian Cancer (OC) Experiment
For the Ovarian Cancer dataset, which is the largest dataset in

this collection, the Top-k mining method that is used by RCBT
also runs into long computational times. Although Top-k is an ex-
ceptionally fast CAR group upper bound miner, it still depends on
performing a pruned exponential search over the training sample
subset space. Thus, as the number of training samples increases
Top-k quickly becomes computationally challenging to tune/use.

Table 6 contains four average classification test run times (in sec-
onds) for each Ovarian Cancer(OC) training size. As before, the
second column run times each give the average time required to
build both class 0/1 BSTs and then use them to classify all test’s
samples with BSTC. Note that BSTC was able to complete each OC
classification test in about 1 minute. In contrast, RCBT again failed
to complete processing most classification tests within 2 hours.

Training BSTC Top-k RCBT # RCBT DNF
40% 30.89 0.6186 273.37 0/25
60% 61.28 41.21 ≥ 5554.37 19/25
80% 71.84 ≥ 1421.80 ≥ 7205.43 † 21/22
1-133/0-77 70.38 ≥ 1045.65 ≥ 6362.86 † 20/23

Table 6: Average Run Times for the OC Tests (in seconds). De-
fault cutoff time is 2 hours, and default RCBT nl value is 20. † indicates
that the RCBT nl value was decreased to 2.

Table 6’s third column gives the average times required for Top-
k to mine the top 10 covering rule groups upper bounds for each
training set test (with the same 2 hour cutoff procedure as used
for PC testing). The fourth column gives the average run times
of RCBT on the tests for which Top-k finished mining rules (also
with a 2 hour cutoff). Finally, the ‘# RCBT DNF’ column gives
the number of tests that RCBT was unable to finish classifying in
< 2 hours each, over the number of tests for which Top-k finished.
Because RCBT couldn’t finish any 80% or 1-133/0-77 tests within
2 hours with nl = 20, we lowered nl to 2 for these training sizes.

10

Classification Accuracy: Figure 7 contains boxplots for BSTC
on all four OC classification test sets. Boxplots were not generated
for RCBT with 60%, 80%, or 1-133/0-77 training since it was un-
able to finish all 25 tests for all these training set sizes in < 2 hours
each. Table 7 lists the mean accuracies of BSTC and RCBT over
the tests on which RCBT was able to produce results. Hence, Ta-
ble 7’s 40% row consists of averages over 25 results. Meanwhile
Table 7’s 60% row results are from 6 tests, 80% contains a single
test’s result, and 1-133/0-77 results from 3 tests. RCBT has better
mean accuracy on the 40% training size, but the results are closer
on the remaining sizes (< 4% difference over RCBT’s completed
tests). Again, RCBT’s accuracy could vary widely on its uncom-
pleted tests.

Training BSTC RCBT
40% 92.05% 97.66%
60% 95.75% 96.73%
80% 94.12% 98.04%
1-133/0-77 93.80% 96.12%

Table 7: Mean Accuracies for the OC Tests that RCBT Fin-
ished. Results based on the tests that RCBT completed, namely 25
tests for 40%, 6 tests for the 60%, 1 test for 80%, and 3 tests for 1-
133/0-77.

CAR Mining Parameter Tuning and Scalability: We attempted
to run Top-k to completion on the 3 OC 80% training and 2 OC
1-133/0-77 training tests which it couldn’t finish mining rules for
within the 2 hour cutoff. Top-k finished two of the three 80% train-
ing tests in 775 min 43.64 sec (about 13 hours) and 185 min 3.29
sec. However, the third test ran for over 16,000 min (> 11 days)
without finishing. Likewise, Top-k finished one of the two 1-133/0-
77 tests in 126 min 45.15 sec but couldn’t finish the other in 16,000
min (> 11 days). After increasing Top-k’s support cutoff from 0.7
to 0.9 it was able to finish the two unfinished 80% and 1-133/0-77
training tests in 5 min 13.8 sec and 35 min 36.85 sec, respectively.
However, RCBT (with nl = 2) then wasn’t able to finish lower
bound rule mining for either of these two tests within 1,500 min.
(more than a day). Clearly, CAR-mining and parameter tuning on
large training sets is computationally challenging. As training set
sizes increase, so will CAR-mining difficulties.

7. RELATED WORK
While operating on a microarray dataset, current CAR [9, 10,

30, 34] and other pattern/rule [20, 27] mining algorithms perform a
pruned and/or compacted exponential search over either the space
of gene subsets or the space of sample subsets. Hence, they are
generally quite computationally expensive for datasets containing
many training samples (or genes as the case may be). Part of the
difficulty involved with mining CARs is that in addition to the ex-
ponentially large number of uninteresting rules that may be formed,
there are usually many interesting rules as well. This means CAR
miners such as CHARM [34] and CLOSET+ [30] may not only
end up having to wade through a prohibitive number of low quality
rules while discovering interesting CARs, but there may also be a
huge number of repetitive CARs that are discovered.

The FARMER algorithm reduces the number of stored interest-
ing rules by utilizing the notion of a rule group. Rule groups allow
many interesting rules with similar sample support to be clustered
together in a more compact form. Although rule groups provide a
beneficial reduction in the number of interesting CARs which must
be saved, there are typically still a large number of interesting rule

groups. Hence, for large datasets it can still be prohibitively expen-
sive for FARMER to find and store all user targeted rule groups.

More recently, the Top-k algorithm has solved the problem of
generating an excessive number of interesting (i.e. high confi-
dence) user targeted rule groups. Top-k cleverly allows the user to
decide on the number of best rule groups to find and store. Hence,
a small number of non-redundant CAR rule groups may be stored
and used for dataset analysis and classification. Although a signif-
icant step forward, Top-k still depends on performing a pruned ex-
ponential search of the dataset’s training sample subset space. Fur-
thermore, the RCBT [9] classifier proposed by the Top-k authors
requires a potentially prohibitively expensive breadth-first search
on the subset space of antecedent genes in each discovered rule
group upper bound.

BSTC is also related to decision tree-based classifiers such as
random forest [6] and C4.5 family [26] methods. It is possible
to represent any generalized boolean association rule as a decision
tree and vice versa. However, it is generally unclear how the trees
generated by current tree-based classifiers are related to high confi-
dence/support CARs which are known to be particularly useful for
microarray data [9,10,14,18,22]. BSTC is explicitly related to, and
motivated by, CAR-based methods.

To the best of our knowledge there is no previous work on min-
ing/classifying with BARs of the form we consider here. Perhaps
the work closest to utilizing 100% BARs is the TOP-RULES [19]
miner. TOP-RULES utilizes a data partitioning technique to com-
pactly report item/gene subsets which are unique to each class set
Ci. Hence, TOP-RULES discovers all 100% confident CARs in
a dataset. However, the method must utilize an emerging pattern
mining algorithm such as MBD-LLBORDER [13], and so gener-
ally isn’t polynomial time.

8. CONCLUSIONS AND FUTURE WORK
To address the computational difficulties involved with preclas-

sification CAR mining (see Tables 4 and 6), we developed a novel
method which considers a larger subset of CAR-related boolean as-
sociation rules (BARs). These rules can be compactly captured in
a table called Boolean Structure Table (BST), which can then be
used to produce a BST classifier called BSTC. Comparison to the
current best CAR classifier, RCBT, on several benchmark microar-
ray datasets shows that BSTC is competitive with RCBT’s accu-
racy while avoiding the exponential costs incurred by CAR mining
(see Section 6.2). Hence, BSTC extends generalized CAR-based
methods to larger datasets then previously practical. Furthermore,
unlike other association rule-based classifiers, BSTC easily gener-
alizes to multi-class gene expression datasets.

BSTC’s per-query classification time: BSTC’s worst case the-
oretical per-query classification time is currently worse then a CAR-
based method’s after all exponential time CAR mining is completed
(O(|S|2 · |G|) versus O(|S| · |G|)). As future work we plan to in-
vestigate decreasing BSTC’s per-query classification time by care-
fully culling BST exclusion lists. For now we simply point out that
BSTC’s Section 6 run times are reasonable and will remain so for
larger problems on which CAR mining is infeasible (e.g., for OC
training sets containing several hundred samples).

Generalizing BSTC: As future work we also plan to experi-
ment with other boolean formula arithmetization procedures be-
sides those employed to evaluate BST satisfaction levels in Algo-
rithm 5. Multiple BST satisfaction level arithmetization procedures
could be used along with a heuristic classification confidence mea-
sure employed to select the best one. One potential confidence
measure is the normalized difference between the highest and sec-
ond highest BST satisfaction level returned by each arithmetization

11

procedure. The larger the normalized difference, the more “sure”
the procedure appears to be about its classification.

9. ACKNOWLEDGMENTS
We thank Anthony K.H. Tung and Xin Xu for sending us their

discretized microarray data files and Top-k/RCBT executables. This
research was supported in part by NSF grant DMS-0510203.

10. REFERENCES
[1] The dprep package.

http://cran.r-project.org/doc/packages/dprep.pdf.
[2] R. Agrawal, T. Imielinski, and A. Swami. Mining

associations between sets of items in large databases.
SIGMOD, pages 207–216, 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. VLDB, pages 487–499, 1994.

[4] Z. Bar-Joseph. Analysing time series gene expression data.
Bioinformatics, 20(16):2493–2503, 2004.

[5] R. Bayardo and R. Agrawal. Mining the most interesting
rules. SIGKDD, 1999.

[6] L. Breiman. Random forests. Mach. Learn., 45(1):5–32,
2001.

[7] C. Chang and C. Lin. Libsvm: a library for support vector
machines, 2001.

[8] Y. Cheng and G. Church. Biclustering of expression data.
Proc. of the 8th Int. Conf. on Intelligent Systems for
Molecular Biology (ISMB), 2000.

[9] G. Cong, K. L. Tan, A. K. H. Tung, and X. Xu. Mining top-k
covering rule groups for gene expression data. SIGMOD,
2005.

[10] G. Cong, A. K. H. Tung, X. Xu, F. Pan, and J. Yang. Farmer:
Finding interesting rule groups in microarray datasets.
SIGMOD, 2004.

[11] C. Cortes and V. Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995.

[12] C. Creighton and S. Hanash. Mining gene expression
databases for association rules. Bioinformatics, 19, 2003.

[13] G. Dong and J. Li. Efficient mining of emerging patterns:
discovering trends and differences. KDD, pages 43–52, 1999.

[14] G. Dong, X. Zhang, L. Wong, and J. Li. Caep: Classification
by aggregating emerging patterns. Proc. 2nd Int. Conf.
Discovery Science (DS), 1999.

[15] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. SIGMOD, 2000.

[16] A. Icev, C. Ruiz, and E. F. Ryder. Distance-enhanced
association rules for gene expression. SIGKDD Workshop on
Data Mining in Bioinformatics (BIOKDD), 2003.

[17] J. Li, R. Topor, and H. Shen. Construct robust rule sets for
classification. KDD, pages 564–569, 2002.

[18] J. Li and L. Wong. Identifying good diagnostic genes or gene
groups from gene expression data by using the concept of
emerging patterns. Bioinformatics, 18:725–734, 2002.

[19] J. Li, X. Zhang, G. Dong, K. Ramamohanarao, and Q. Sun.
Efficient mining of high confidence association rules without
support thresholds. Principles of Data Mining and
Knowledge Discovery (PKDD), pages 406 – 411, 1999.

[20] W. Li, J. Han, and J. Pei. Cmar: Accurate and efficient
classification based on multiple class-association rules.
ICDM, 2001.

[21] B. Liu, W. Hsu, and Y. Ma. Integrating classification and
association rule mining. KDD, 1998.

[22] T. McIntosh and S. Chawla. On discovery of maximal
confident rules without support pruning in microarray data.
SIGKDD Workshop on Data Mining in Bioinformatics
(BIOKDD), 2005.

[23] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[24] F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. J. Zaki.
Carpenter: Finding closed patterns in long biological
datasets. KDD, 2003.

[25] J. Pei, X. Zhang, M. Cho, H. Wang, and P. S. Yu. Maple: A
fast algorithm for maximal pattern-based clustering. ICDM,
pages 259–266, 2003.

[26] J. R. Quinlan. Bagging, boosting, and c4.5. AAAI,
1:725–730, 1996.

[27] F. Rioult, J. F. Boulicaut, B. Cremilleux, and J. Besson.
Using transposition for pattern discovery from microarray
data. DMKD, pages 73–79, 2003.

[28] R. Srikant and R. Agrawal. Mining quantitative association
rules in large relational tables. SIGMOD, 1996.

[29] S. Sudarsky. Fuzzy satisfiability. International Conference
on Industrial Fuzzy Control and Intelligent Systems (IFIS),
1993.

[30] J. Wang, J. Han, and J. Pei. Closet+: Searching for the best
strategies for mining frequent closed itemsets. KDD, 2003.

[31] G. I. Webb. Discovering associations with numeric variables.
KDD, pages 383–388, 2001.

[32] G. I. Webb and S. Zhang. k-optimal-rule-discovery. In Data
Mining and Knowledge Discovery, 10(1):39–79, 2005.

[33] X. Xu, Y. Lu, A. K. Tung, and W. Wang. Mining
shifting-and-scaling co-regulation patterns on gene
expression profiles. ICDE, 2006.

[34] M. Zaki and C. Hsiao. Charm: An efficient algorithm for
closed association rule mining. Proc. of the 2nd SIAM Int.
Conf. on Data Mining (SDM), 2002.

[35] H. Zhang, B. Padmanabhan, and A. Tuzhilin. On the
discovery of significant statistical quantitative rules. KDD,
pages 374–383, 2004.

[36] L. Zhao and M. Zaki. Tricluster: An effective algorithm for
mining coherent clusters in 3d microarray data. SIGMOD,
pages 694–705, 2005.

12

