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Abstract. In this paper it is shown that the SVD of a matrix can be constructed efficiently in
a hierarchical approach. The proposed algorithm is proven to recover the singular values and left
singular vectors of the input matrix A if its rank is known. Further, the hierarchical algorithm can
be used to recover the d largest singular values and left singular vectors with bounded error. It is
also shown that the proposed method is stable with respect to roundoff errors or corruption of the
original matrix entries. Numerical experiments validate the proposed algorithms and parallel cost
analysis.

1. Introduction

The singular value decomposition (SVD) of a matrix,

A = UΣV ∗,(1)

has applications in many areas including principal component analysis [21], the solution to homo-
geneous linear equations, and low-rank matrix approximations. If A is a complex matrix of size
D × N , then the factor U is a unitary matrix of size D × D whose first nonzero entry in each
column is a positive real number 1, Σ is a rectangular matrix of size D×N with non-negative real
numbers (known as singular values) ordered from largest to smallest down its diagonal, and V ∗

(the conjugate transpose of V ) is also a unitary matrix of size N ×N . If the matrix A is of rank
d < min(D,N), then a reduced SVD representation is possible:

A = Û Σ̂V̂ ∗,(2)

where Σ̂ is a d × d diagonal matrix with positive singular values, Û is an D × d matrix with
orthonormal columns, and V̂ is a d×N matrix with orthonormal columns.

The SVD of A is typically computed in three stages: a bidiagonal reduction step, computation
of the singular values, and then computation of the singular vectors. The bidiagonal reduction
step is computationally intensive, and is often targeted for parallelization. A serial approach to the
bidiagonal reduction is the Golub–Kahan bidiagonalization algorithm [13], which reduces the matrix
A to an upper-bidiagonal matrix by applying a series of Householder reflections alternately, applied
from the left and right. Low-level parallelism is possible by distributing matrix-vector multiplies,
for example by using the cluster computing framework Spark [35]. Using this form of low-level
parallelism for the SVD has been implemented in the Spark project MLlib [29], and Magma [1],
which develops its own framework to leverage GPU accelerators and hybrid manycore systems.
Alternatively, parallelization is possible on an algorithmic level. For example, it is possible to
apply independent reflections simultaneously; the bidiagonalization has been mapped to graphical
processing (GPU) units [26] and to a distributed cluster [25]. Load balancing is an issue for such
parallel algorithms, however, because the number of off-diagonal columns (or rows) to eliminate
get successively smaller. More recently, two-stage approaches have been proposed and utilized in

1This last condition on U guarantees that the SVD of A ∈ CN×N will be unique whenever AA∗ has no repeated
eigenvalues.
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high-performance implementations for the bidiagonal reduction [27, 17]. The first stage reduces the
original matrix to a banded matrix, the second stage subsequently reduces the banded matrix to
the desired upper-bidiagonal matrix. Further, these algorithms can be optimized to hide latency
and cache misses [17]. The SVD of a bidiagonal matrix can be computed in parallel using divide
and conquer mechanisms based on rank one tearings [20]. Parallelization is also possible if one uses
a probabilistic approach to approximating the SVD [18].

In this paper, we are concerned with finding the SVD of highly rectangular matrices, N � D. In
many applications where such problems are posed, one typically cares about the singular values, the
left singular vectors, or their product. For example, this work was motivated by the SVDs required
in Geometric Multi-Resolution Analysis (GMRA) [2]; the higher-order singular value decomposition
(HOSVD) [10] of a tensor requires the computation of n SVDs of highly rectangular matrices, where
n is the number of tensor modes. Similarly, tensor train factorization algorithms [31] for tensors
require the computation of many highly rectangular SVDs. Indeed, the SVDs of distributed and
highly rectangular matrices of data appear in many big-data machine learning applications.

To find the SVD of highly rectangular matrices, many methods have focused on randomized
techniques [28]. Another approach is to compute the eigenvalue decomposition of the Gram matrix,
AA∗ [22]. Although computing the Gram matrix in parallel is straightforward using the block inner
product, a downside to this approach is a loss of numerical precision, and the general availability of
the entire matrix A, to which one may not have easy access (i.e., computation of the Gram matrix,
AA∗, is not easily achieved in an incremental and distributed setting). One can instead compute
the SVD of the matrix incrementally – such methods have previously been developed to efficiently
analyze data sets whose data is only measured incrementally, and have been extensively studied in
the machine-learning community to identify low-dimensional subspaces [33, 30, 11, 24, 32, 4]. In
early work, algorithms were developed to update an SVD decomposition when a row or column
is appended [7] using rank one updates [8, 14]. These scheme were potentially unstable, but were
later stablized [16, 15] and a fast version proposed [5]. An SVD-updating algorithm for low-rank
approximations was presented by Zha in Simon in 1990 [37]. If rank d approximation of A is known,

i.e. A = Û Σ̂V̂ ∗, rank d approximation of [A,B] can be constructed by taking

(1) The QR decomposition of (I − Û Û∗)B = QR,
(2) finding the rank d SVD of[

Σ̂ Û∗B
0 R

]
= Ũ Σ̃Ṽ ∗, and then

(3) forming the best rank d approximation:(
[Û , Q]Ũ

)
Σ̃

([
V̂ 0
0 I

]
Ṽ

)∗
.

This algorithm was adapted for eigen decompositions [23] and later utilized to construct incremental
PCA algorithms [38]. Another block-incremental approach for estimating the dominant singular
values and vectors of a highly rectangular matrix uses a QR factorization of blocks from the input
matrix, which can be done efficiently in parallel [3]. In fact, the QR decomposition can be computed
using a communication-avoiding QR (CAQR) factorization [12], which utilizes a tree-reduction
approach. Our approach is similar in spirit to the CAQR factorization above [12], but differs in
that we employ a block decomposition approach that utilizes a partial SVD rather than a full QR
factorization. This is advantageous if the application only requires the singular values and/or left
singular vectors of the input matrix A, as in tensor factorization [10, 31] and GMRA applications
[2].
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The remainder of the paper is laid out as follows: In Section 2, we motivate incremental ap-
proaches to constructing the SVD before introducing the hierarchical algorithm. Theoretical justi-
fications are given to show that the algorithm exactly recovers the singular values and left singular
vectors if the rank of the matrix A is known. An error analysis is also used to show that the
hierarchical algorithm can be used to recover the d largest singular values and left singular vectors
with bounded error, and that the algorithm is stable with respect to roundoff errors or corruption
of the original matrix entries. In Section 3, numerical experiments validate the proposed algorithms
and parallel cost analysis.

2. An Incremental (hierarchical) SVD Approach

The overall idea behind the proposed approach is relatively simple. We require a distributed and
incremental approach for computing the singular values and left singular vectors of all data stored
across a large distributed network. This can be achieved, for example, by occasionally combining a
previously computed partial SVD representation of each node’s past data with a new partial SVD
of its more recent data. As a result of this approach each separate network node will always contain
a fairly accurate approximation of its cumulative data over time. Of course, these separate nodes’
partial SVDs must then be merged together in order to understand the network data as a whole.
Toward this end, partial SVD approximations of neighboring nodes can also be combined together
hierarchically in order to eventually compute a global partial SVD of the data stored across the
entire network.

Note that the accuracy of the entire approach described above will be determined by the accuracy
of the (hierarchical) partial SVD merging technique, which is ultimately what leads to the proposed
method being both incremental and distributed. Theoretical analysis of this partial SVD merging
technique is the primary purpose of this section. In particular, we prove that the proposed partial
SVD merging scheme is numerically robust to both data and roundoff errors. In addition, the
merging scheme is also shown to be accurate even when the rank of the overall data matrix A is
underestimated and/or purposefully reduced.

2.1. Mathematical Preliminaries. Let A ∈ CD×N be a highly rectangular matrix, with N �
D. Further, let Ai ∈ CD×Ni with i = 1, 2, . . . ,M , denote the block decomposition of A, i.e.,
A =

[
A1|A2| · · · |AM

]
.

Definition 1. For any matrix A ∈ CD×N , (A)d ∈ CD×N is an optimal rank d approximation to A
with respect to Frobenius norm ‖ · ‖F if

inf
B∈CD×N

‖B −A‖F = ‖(A)d −A‖F , subject to rank (B) ≤ d.

If A has the SVD decomposition A = UΣV ∗, then (A)d =
∑d

i=1 uiσiv
∗
i , where ui and vi are

singular vectors that comprise U and V respectively, and σi are the singular values.

Remark 1. The Frobenius norm can be computed using ‖A‖2F =
∑D

i σ
2
i Consequently, ‖(A)d −

A‖2F =
∑D

d+1 σ
2
i .

This following lemma, Lemma 1 proves that partial SVDs of blocks of our original data matrix,
A ∈ CD×N , can be combined block-wise into a new reduced matrix B which has the same singular
values and left singular vectors as the original A. This basic lemma can be considered as the
simplest merging method for either constructing an incremental SVD approach (different blocks of
A have their partial SVDs computed at different times, which are subsequently merged into B), a
distributed SVD approach (different nodes of a network compute partial SVDs of different blocks
of A separately, and then send them to a single master node for combination into B), or both.
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Lemma 1. Suppose that A ∈ CD×N has rank d ∈ {1, . . . , D}, and let Ai ∈ CD×Ni , i = 1, 2, . . . ,M
be the block decomposition of A, i.e., A =

[
A1|A2| · · · |AM

]
. Since Ai has rank at most d, each

block has a reduced SVD representation,

Ai =
d∑
j=1

uijσ
i
j(v

i
j)
∗ = Û iΣ̂iV̂ i∗, i = 1, 2, . . . ,M.

Let B :=
[
Û1Σ̂1|Û2Σ̂2| · · · |ÛM Σ̂M

]
. If A has the reduced SVD decomposition, A = Û Σ̂V̂ ∗, and

B has the reduced SVD decomposition, B = Û ′Σ̂′V̂ ′
∗
, then Σ̂ = Σ̂′, and Û = Û ′W , where W is

a unitary block diagonal matrix. If none of the nonzero singular values are repeated then Û = Û ′

(i.e., W is the identity when all the nonzero singular values of A are unique).

Proof. The singular values of A are the (non-negative) square root of the eigenvalues of AA∗. Using
the block definition of A,

AA∗ =

M∑
i=1

Ai(Ai)∗ =

M∑
i=1

Û iΣ̂i(V̂ i)∗(V̂ i)(Σ̂i)∗(Û i)∗ =

M∑
i=1

Û iΣ̂i(Σ̂i)∗(U i)∗

Similarly, the singular values of B are the (non-negative) square root of the eigenvalues of BB∗.

BB∗ =
M∑
i=1

(Û iΣ̂i)(Û iΣ̂i)∗ =
M∑
i=1

Û iΣ̂i(Σ̂i)∗(Û i)∗

Since AA∗ = BB∗, the singular values of B must be the same as the singular values of A. Similarly,
the left singular vectors of both A and B will be eigenvectors of AA∗ and BB∗, respectively.
Since AA∗ = BB∗ the eigenspaces associated with each (possibly repeated) eigenvalue will also be

identical so that Û = Û ′W . The block diagonal unitary matrix W (with one unitary h × h block
for each eigenvalue that is repeated h-times) allows for singular vectors associated with repeated

singular values to be rotated in the matrix representation Û . �

We now propose and analyze a more useful SVD approach which takes the ideas present in
Lemma 1 to their logical conclusion.

2.2. An Incremental (Hierarchical) SVD Algorithm. The idea is to leverage the result in
Lemma 1 by computing (in parallel) the SVD of the blocks of A, concatenating the scaled left
singular vectors of the blocks to form a proxy matrix B, and then finally recovering the singular
values and left singular vectors of the original matrix A by finding the SVD of the proxy matrix. A
visualization of these steps are shown in Figure 1. Provided the proxy matrix is not very large, the
computational and memory bottleneck of this algorithm is in the simultaneous SVD computation
of the blocks Ai. If the proxy matrix is sufficiently large that the computational/memory overhead
is significant, a multi-level hierarchical generalization is possible through repeated application of
Lemma 1. Specifically, one could generate multiple proxy matrices by concatenating subsets of
scaled left singular vectors obtained from the SVD of blocks of A, find the SVD of the proxy
matrices and concatenate those singular vectors to form a new proxy matrix, and then finally
recover the singular values and left singular vectors of the original matrix A by finding the SVD of
the proxy matrix. A visualization of this generalization is shown in Figure 2 for a two-level parallel
decomposition. A general q-level algorithm is described in Algorithm 1.

Remark 2. The right singular vectors can be computed (in parallel) if desired, once the left singular
vectors and singular values are known. The master process broadcasts the left singular vectors and
singular values to each process containing block Ai. Then columns of the right singular vectors can
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A = [A 1|A 2| · · · | AM ]

Û 2, Σ̂ 2Û 1, Σ̂ 1 · · · ÛM , Σ̂M

[Û 1Σ̂ 1|Û 2Σ̂ 1A 2| · · · | ÛM Σ̂M ]

Û , Σ̂

S V D S V D S V D

S V D

Figure 1. Flowchart for a simple (one-level) distributed parallel SVD algorithm.
The different colors represent different processors completing operations in parallel.

Û 2i , Σ̂ 2i · · · Û ki +1 , Σ̂ ki +1 · · · ÛM , Σ̂M· · ·Û i+1 , Σ̂ i+1Û i , Σ̂ i· · ·Û 1, Σ̂ 1

[Û 1Σ̂ 1| · · · |Û i Σ̂ i ] [Û i+1 Σ̂ i+1 | · · · |Û 2i Σ̂ 2i ] · · · [Û k i+1 Σ̂ k i+1 | · · · | ÛM Σ̂M ]

Û 2,1, Σ̂ 2,1 Û 2,2, Σ̂ 2,2 · · · Û 2,k , Σ̂ 2,k

[Û 2,1Σ̂ 2,1| · · · |Û 2,k Σ̂ 2,k ]

Û , Σ̂

A = [A 1|A 2| · · · | AM ]

S V D S V D S V D S V D S V D S V D

S V DS V DS V D

S V D

Figure 2. Flowchart for a two-level hierarchical parallel SVD algorithm. The dif-
ferent colors represent different processors completing operations in parallel.

be constructed by computing 1
σj

(Ai)∗uj, were A
i is the block of A residing on process i, and (σj , uj)

is the jth singular value and left singular vector respectively.

2.3. Theoretical Justification. In this section we will introduce some additional notation for the
sake of convenience. For any matrix A ∈ CD×N with SVD A = UΣV ∗, we will let A := UΣ =
AV ∈ CD×N . It is important to note that A is not necessarily uniquely determined by A, for
example, if A is rank deficient and/or has repeated singular values. In these types of cases many
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Algorithm 1 A q-level, distributed SVD Algorithm for Highly Rectangular A ∈ CD×N , N � D.

Input: q (# levels),
n (# local SVDs to concatenate at each level),
d ∈ {1, . . . , D} (intrinsic dimension),
A1,i := Ai ∈ CD×Ni for i = 1, 2, . . . ,M (block decomposition of A; algorithm assumes M = nq

– generalization is trivial)
Output: U ′ ∈ CD×d ≈ the first d columns of U , and Σ′ ∈ Rd×d ≈ (Σ)d.

1: for p = 1, . . . , q do
2: Compute (in parallel) the SVDs of Ap,i = Up,iΣp,i

(
V p,i

)∗
for i = 1, 2, . . . ,M/n(p−1), unless

the Up,iΣp,i are already available from a previous run.

3: Set Ap+1,i :=
[(
Up,(i−1)n+1Σp,(i−1)n+1

)
d

∣∣∣ · · · ∣∣∣ (Up,inΣp,in
)
d

]
for i = 1, 2, . . . ,M/np.

4: end for
5: Compute the SVD of Aq+1,1

6: Set U ′ := the first d columns of U q+1,1, and Σ′ :=
(
Σq+1,1

)
d
.

pairs of unitary U and V may appear in a valid SVD of A. In what follows, one can consider A to
be AV for any such valid unitary matrix V . Similarly, one can always consider statements of the
form A = B as meaning that A and B are equivalent up to multiplication by a unitary matrix on
the right. This inherent ambiguity does not effect the results below in a meaningful way. Given
this notation Lemma 1 can be rephrased as follows:

Corollary 1. Suppose that A ∈ CD×N has rank d ∈ {1, . . . , D}, and let Ai ∈ CD×Ni , i = 1, 2, . . . ,M
be the block decomposition of A, i.e., A =

[
A1|A2| · · · |AM

]
. Since Ai has rank at most d for all

i = 1, 2, . . . ,M , we have that

(A)d = A =
[
A1
∣∣ A2

∣∣ · · · ∣∣ AM] =
[
(A1)d

∣∣ (A2)d
∣∣ · · · ∣∣ (AM )d

]
.

Proof. To begin, we apply Lemma 1 with A =
[
A1|A2| · · · |AM

]
and

B =
[
A1
∣∣ A2

∣∣ · · · ∣∣ AM]. As a result we learn that if A has the SVD A = UΣV ∗, then B also

has a valid SVD of the form B = (UW )ΣV ′∗, where W is a block diagonal unitary matrix with one
unitary h×h block associated with each singular value that is repeated h-times (this allows for left
singular vectors associated with repeated singular values to be rotated in the unitary matrix U).
Note that the special structure of W with respect to Σ allows them to commute. Hence, we have
that

B = (UW )ΣV ′
∗

= UΣWV ′
∗

= UΣ(V ′W ∗)∗.

As a result we can see that A = B(V ′W ∗V ∗) which, in turn, guarantees that A = B. Hence,

(3) [A1|A2| · · · |AM ] = A = B =
[
A1
∣∣ A2

∣∣ · · · ∣∣ AM].
To finish, recall that A has rank d. Thus, all it’s blocks, Ai for i = 1, 2, . . . ,M , are also of rank

at most d (to see why, consider, e.g., the reduction of A =
[
A1|A2| · · · |AM

]
to row echelon form).

As a result, both (i) A = (A)d, and (ii) Ai = (Ai)d for all i = 1, 2, . . . ,M , are true. Substituting
these equalities into (3) finishes the proof. �

We can now prove that Algorithm 1 is guaranteed to recover A when the rank of A is known.
The proof follows by inductively applying Corollary 1.
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Theorem 1. Suppose that A ∈ CD×N has rank d ∈ {1, . . . , D}. Then, Algorithm 1 is guaranteed

to recover an Aq+1,1 ∈ CD×N such that Aq+1,1 = A.

Proof. We prove the theorem by induction on the level p. To establish the base case we note that

A =
[
(A1,1)d

∣∣ (A1,2)d
∣∣ · · · ∣∣ (A1,M )d

]
=
[
A1,1

∣∣ A1,2
∣∣ · · · ∣∣ A1,M

]
holds by Corollary 1. Now, for the purpose of induction, suppose that

A =
[
(Ap,1)d

∣∣ (Ap,2)d
∣∣ · · · ∣∣ (Ap,M/n(p−1)

)d

]
=
[
Ap,1

∣∣ Ap,2 ∣∣ · · · ∣∣ Ap,M/n(p−1)
]

holds for some some p ∈ {1, . . . , q}. Then, we can use the induction hypothesis and repartition the
blocks of A to see that

A =
[
(Ap,1)d

∣∣ (Ap,2)d
∣∣ · · · ∣∣ (Ap,M/n(p−1)

)d

]
=
[
· · ·

∣∣∣ [(Ap,(i−1)n+1)d . . . (Ap,in)d
] ∣∣∣ · · · ], i = 1, . . . ,M/np

=
[
Ap+1,1

∣∣ Ap+1,2
∣∣ · · · ∣∣ Ap+1,M/np

]
,(4)

where we have utilized the definition of Ap+1,i from line 3 of Algorithm 1 to get (4). Applying
Corollary 1 to the matrix in (4) now yields

A =
[
Ap+1,1

∣∣ Ap+1,2
∣∣ · · · ∣∣ Ap+1,M/np

]
.

Finally, we finish by noting that each Ap+1,i will have rank at most d since A is of rank d. Hence,

we will also have A =
[
(Ap+1,1)d

∣∣ (Ap+1,2)d
∣∣ · · · ∣∣ (Ap+1,M/np)d

]
, finishing the proof. �

Our next objective is to understand the accuracy of Algorithm 1 when it is called with a value
of d that is less than rank of A. To begin, we need to better understand how accurate blockwise
low-rank approximations of a given matrix A are. The following lemma provides an answer.

Lemma 2. Suppose Ai ∈ CD×Ni , i = 1, 2, . . . ,M . Further, suppose matrix A has block components
A =

[
A1|A2| · · · |AM

]
, and B has block components B =

[
(A1)d|(A2)d| · · · |(AM )d

]
. Then, ‖(B)d −

A‖F ≤ ‖(B)d −B‖F + ‖B −A‖F ≤ 3‖(A)d −A‖F holds for all d ∈ {1, . . . , D}.
Proof. We have that

‖(B)d −A‖F ≤ ‖(B)d −B‖F + ‖B −A‖F
≤ ‖(A)d −B‖F + ‖B −A‖F
≤ ‖(A)d −A‖F + 2‖B −A‖F.

Now letting (A)id ∈ CD×Ni , i = 1, 2, . . . ,M denote the ith block of (A)d, we can see that

‖B −A‖2F =
M∑
i=1

‖(Ai)d −Ai‖2F

≤
M∑
i=1

‖(A)id −Ai‖2F

= ‖(A)d −A‖2F.
Combining these two estimates now proves the desired result. �

7



We can now use Lemma 2 to prove a theorem that will help us to bound the error produced by
Algorithm 1 for q = 1 when d is chosen to be less than the rank of A. It improves over Lemma 2
(in our setting) by not implicitly assuming to have access to any information regarding the right
singular vectors of the blocks of A. It also demonstrates that the proposed method is stable with
respect to additive errors by allowing (e.g., roundoff) errors, represented by Ψ, to corrupt the
original matrix entries. Note that Theorem 2 is a strict generalization of Corollary 1. Corollary 1
is recovered from it when Ψ is chosen to be the zero matrix, and d is chosen to be the rank of A.

Theorem 2. Suppose that A ∈ CD×N has block components Ai ∈ CD×Ni , i = 1, 2, . . . ,M , so that

A =
[
A1|A2| · · · |AM

]
. Let B =

[
(A1)d

∣∣ (A2)d
∣∣ · · · ∣∣ (AM )d

]
, Ψ ∈ CD×N , and B′ = B + Ψ.

Then, there exists a unitary matrix W such that∥∥∥(B′)d −AW
∥∥∥
F
≤ 3
√

2‖(A)d −A‖F +
(

1 +
√

2
)
‖Ψ‖F

holds for all d ∈ {1, . . . , D}.

Proof. Let A′ =
[
A1
∣∣ A2

∣∣ · · · ∣∣ AM]. Note that A′ = A by Corollary 1. Thus, there exists

a unitary matrix W ′′ such that A′ = AW ′′. Using this fact in combination with the unitary
invariance of the Frobenius norm, one can now see that∥∥(B′)

d
−A′

∥∥
F

=
∥∥(B′)

d
−AW ′′

∥∥
F

=
∥∥∥(B′)d −AW ′

∥∥∥
F

=
∥∥∥(B′)d −AW

∥∥∥
F

for some unitary matrixes W ′ and W . Hence, it suffices to bound ‖(B′)d −A′‖F.
Proceeding with this goal in mind we can see that∥∥(B′)

d
−A′

∥∥
F
≤
∥∥(B′)

d
−B′

∥∥
F

+
∥∥B′ −B∥∥

F
+
∥∥B −A′∥∥

F

=

√√√√ D∑
j=d+1

σ2j (B + Ψ) + ‖Ψ‖F +
∥∥B −A′∥∥

F

=

√√√√√dD−d
2 e∑
j=1

σ2d+2j−1(B + Ψ) + σ2d+2j(B + Ψ) + ‖Ψ‖F +
∥∥B −A′∥∥

F

≤

√√√√√dD−d
2 e∑
j=1

(σd+j(B) + σj(Ψ))2 + (σd+j(B) + σj+1(Ψ))2 + ‖Ψ‖F +
∥∥B −A′∥∥

F

where the last inequality results from an application of Weyl’s inequality to the first term [19].
Utilizing the triangle inequality on the first term now implies that

∥∥(B′)
d
−A′

∥∥
F
≤

√√√√ D∑
j=d+1

2σ2j (B) +

√√√√ D∑
j=1

2σ2j (Ψ) + ‖Ψ‖F +
∥∥B −A′∥∥

F

≤
√

2
(
‖(B)d −B‖F + ‖B −A′‖F

)
+
(

1 +
√

2
)
‖Ψ‖F.

Applying Lemma 2 to bound the first two terms now concludes the proof after noting that ‖(A′)d−
A′‖F = ‖(A)d −A‖F. �

This final theorem bounds the total error of the general q-level hierarchical Algorithm 1 with
respect to the true matrix A (up to multiplication by a unitary matrix on the right). The structure
of its proof is similar to that of Theorem 1.
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Theorem 3. Let A ∈ CD×N and q ≥ 1. Then, Algorithm 1 is guaranteed to recover an Aq+1,1 ∈
CD×N such that (Aq+1,1)d = AW+Ψ, whereW is a unitary matrix, and ‖Ψ‖F ≤

((
1 +
√

2
)q+1 − 1

)
‖(A)d−

A‖F.

Proof. Within the confines of this proof we will always refer to the approximate matrix Ap+1,i from
line 3 of Algorithm 1 as

Bp+1,i :=
[(
Bp,(i−1)n+1

)
d

∣∣∣ · · · ∣∣∣ (Bp,in)d

]
,

for p = 1, . . . , q, and i = 1, . . . ,M/np. Conversely, A will always refer to the original (potentially
full rank) matrix with block components A =

[
A1|A2| · · · |AM

]
, where M = nq. Furthermore, Ap,i

will always refer to the error free block of the original matrix A whose entries correspond to the

entries included in Bp,i. 2 Thus, A =
[
Ap,1|Ap,2| · · · |Ap,M/n(p−1)

]
holds for all p = 1, . . . , q + 1,

where

Ap+1,i :=
[
Ap,(i−1)n+1

∣∣∣ · · · ∣∣∣ Ap,in]
for all p = 1, . . . , q, and i = 1, . . . ,M/np. For p = 1 we have B1,i = Ai = A1,i for i = 1, . . . ,M by

definition as per Algorithm 1. Our ultimate goal is to bound the renamed (Bq+1,1)d matrix from
lines 5 and 6 of Algorithm 1 with respect to the original matrix A. We will do this by induction
on the level p. More specifically, we will prove that

(1) (Bp,i)d = Ap,iW p,i + Ψp,i, where
(2) W p,i is always a unitary matrix, and

(3) ‖Ψp,i‖F ≤
((

1 +
√

2
)p − 1

)∥∥(Ap,i)d −Ap,i
∥∥
F
,

holds for all p = 1, . . . , q + 1, and i = 1, . . . ,M/n(p−1).
Note that conditions 1−3 above are satisfied for p = 1 since B1,i = Ai = A1,i for all i = 1, . . . ,M

by definition. Thus, there exist unitary W 1,i for all i = 1, . . . ,M such that

(B1,i)d = (A1,i)d =
(
A1,i

)
d
W 1,i = A1,iW 1,i +

((
A1,i

)
d
−A1,i

)
W 1,i,

where Ψ1,i :=
((
A1,i

)
d
−A1,i

)
W 1,i has

(5) ‖Ψ1,i‖F =
∥∥(A1,i

)
d
−A1,i

∥∥
F
≤
√

2
∥∥(A1,i

)
d
−A1,i

∥∥
F
.

Now suppose that conditions 1− 3 hold for some p ∈ {1, . . . , q}. Then, one can see from condition
1 that

Bp+1,i :=
[(
Bp,(i−1)n+1

)
d

∣∣∣ · · · ∣∣∣ (Bp,in)d

]
=
[
Ap,(i−1)n+1W p,(i−1)n+1 + Ψp,(i−1)n+1

∣∣∣ · · · ∣∣∣ Ap,inW p,in + Ψp,in
]

=
[
Ap,(i−1)n+1W p,(i−1)n+1

∣∣∣ · · · ∣∣∣ Ap,inW p,in
]

+
[
Ψp,(i−1)n+1

∣∣∣ · · · ∣∣∣ Ψp,in
]

=
[
Ap,(i−1)n+1

∣∣∣ · · · ∣∣∣ Ap,in] W̃ + Ψ̃,

2That is, Bp,i is used to approximate the singular values and left singular vectors of Ap,i for all p = 1, . . . , q + 1,
and i = 1, . . . ,M/np−1
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where Ψ̃ :=
[
Ψp,(i−1)n+1

∣∣∣ · · · ∣∣∣ Ψp,in
]
, and

W̃ :==


W p,(i−1)n+1 0 0 0

0 W p,(i−1)n+2 0 0

0 0
. . . 0

0 0 0 W p,in

.

Note that W̃ is unitary since its diagonal blocks are all unitary by condition 2. Therefore, we have
Bp+1,i = Ap+1,iW̃ + Ψ̃.

We may now bound
∥∥∥(Bp+1,i

)
d
−Ap+1,iW̃

∥∥∥
F

using a similar argument to that employed in the

proof of Theorem 2.∥∥∥(Bp+1,i
)
d
−Ap+1,iW̃

∥∥∥
F
≤
∥∥(Bp+1,i

)
d
−Bp+1,i

∥∥
F

+
∥∥∥Bp+1,i −Ap+1,iW̃

∥∥∥
F

=

√√√√ D∑
j=d+1

σ2j

(
Ap+1,iW̃ + Ψ̃

)
+ ‖Ψ̃‖F

≤

√√√√ D∑
j=d+1

2σ2j

(
Ap+1,iW̃

)
+

√√√√ D∑
j=1

2σ2j (Ψ̃) + ‖Ψ̃‖F

=
√

2
∥∥Ap+1,i −

(
Ap+1,i

)
d

∥∥
F

+
(

1 +
√

2
)
‖Ψ̃‖F.(6)

Appealing to condition 3 in order to bound ‖Ψ̃‖F we obtain

‖Ψ̃‖2F =

n∑
j=1

‖Ψp,(i−1)n+j‖2F ≤
((

1 +
√

2
)p
− 1
)2 n∑

j=1

∥∥∥(Ap,(i−1)n+j)d −Ap,(i−1)n+j
∥∥∥2
F

≤
((

1 +
√

2
)p
− 1
)2 n∑

j=1

∥∥∥(Ap+1,i)jd −Ap,(i−1)n+j
∥∥∥2
F
,

where (Ap+1,i)jd denotes the block of (Ap+1,i)d corresponding to Ap,(i−1)n+j for j = 1, . . . , n. Thus,
we have that

‖Ψ̃‖2F ≤
((

1 +
√

2
)p
− 1
)2 n∑

j=1

∥∥∥(Ap+1,i)jd −Ap,(i−1)n+j
∥∥∥2
F

=
((

1 +
√

2
)p
− 1
)2 ∥∥(Ap+1,i)d −Ap+1,i

∥∥2
F
.(7)

Combining (6) and (7) we can finally see that∥∥∥(Bp+1,i
)
d
−Ap+1,iW̃

∥∥∥
F
≤
[√

2 + (1 +
√

2)
((

1 +
√

2
)p
− 1
)] ∥∥(Ap+1,i

)
d
−Ap+1,i

∥∥
F

=

((
1 +
√

2
)p+1

− 1

)∥∥(Ap+1,i
)
d
−Ap+1,i

∥∥
F
.(8)

Note that
∥∥∥(Bp+1,i

)
d
−Ap+1,iW̃

∥∥∥
F

=
∥∥∥(Bp+1,i)d −Ap+1,iW p+1,i

∥∥∥
F

where W p+1,i is unitary. Hence,

we can see that conditions 1 - 3 hold for p+ 1 with Ψp+1,i := (Bp+1,i)d −Ap+1,iW p+1,i. �
10



Theorem 3 proves that Algorithm 1 will accurately compute low rank approximations of A when-
ever q is chosen to be relatively small. Thus, Algorithm 1 provides a distributed and incremental
method for rapidly and accurately computing any desired number of dominant singular values/left
singular vectors of A. Furthermore, it is worth mentioning that the proof of Theorem 3 can be
modified in order to prove that the q-level hierarchical Algorithm 1 is also robust/stable with re-
spect to additive contamination of the initial input matrix A by, e.g., round-off errors. This can
be achieved most easily by noting that the inequality in (5) will still hold if Ai = A1,i is contami-

nated with arbitrary additive errors Ei ∈ CD×Ni having ‖Ei‖F ≤
√
2−1√

D−d+1

∥∥(A1,i
)
d
−A1,i

∥∥
F

for all

i = 1, . . . ,M . We summarize this modification in the next lemma.

Lemma 3. Let i ∈ [M ]. Suppose that B1,i = A1,i+Ei = Ai+Ei holds for B1,i, A1,i, Ai, Ei ∈ CD×Ni,

where ‖Ei‖F ≤
√
2−1√

D−d+1

∥∥(A1,i
)
d
−A1,i

∥∥
F
. Then, there exists a unitary matrix W 1,i ∈ CNi×Ni such

that ∥∥∥(B1,i)d −A1,iW 1,i
∥∥∥
F
≤
√

2
∥∥(A1,i

)
d
−A1,i

∥∥
F
.

In particular, the inequality in (5) will still hold with Ψ1,i :=
[(
B1,i

)
d
−A1,i

]
W 1,i.

Proof. We have that
(
B1,i

)
d

= A1,i +
[(
B1,i

)
d
−A1,i

]
such that there exists unitary matrix W 1,i

with

(B1,i)d = A1,iW 1,i +
[(
B1,i

)
d
−A1,i

]
W 1,i.

As a result we have that∥∥∥(B1,i)d −A1,iW 1,i
∥∥∥
F

=
∥∥(B1,i

)
d
−A1,i

∥∥
F

=
∥∥(A1,i + Ei

)
d
−A1,i

∥∥
F

≤
∥∥(A1,i + Ei

)
d
− (A1,i + Ei)

∥∥
F

+
∥∥Ei∥∥

F

=

√√√√ D∑
j=d+1

σ2j (A1,i + Ei) +
∥∥Ei∥∥

F

≤

√√√√ D∑
j=d+1

(σj (A1,i) + σ1 (Ei))2 +
∥∥Ei∥∥

F

≤
∥∥(A1,i

)
d
−A1,i

∥∥
F

+ (1 +
√
D − d)

∥∥Ei∥∥
F
,

where the last two inequalities utilize Weyl’s inequality and the triangle inequality, respectively.
The desired result now follows from our assumed bound on ‖Ei‖F. �

Combining Lemma 3 with the proof of Theorem 3 allows one to see that the statement of
Theorem 3 will continue to hold even when A is contaminated with small additive errors. Having
proven that Algorithm 1 is accurate, we are now free to consider its computational costs.

2.4. Parallel Cost Model and Collectives. To analyze the parallel communication cost of the
hierarchical SVD algorithm, the α – β – γ model for distributed–memory parallel computation [9]
is used. The parameters α and β respectively represent the latency cost and the transmission cost
of sending a floating point number between two processors. The parameter γ represents the time
for one floating point operation (FLOP).

The q-level hierarchical Algorithm 1 seeks to find the d largest singular values and left singular
vectors of a matrix A. If the matrix A is decomposed into M = nq blocks, where n being the

11



number of local SVDs being concatenated at each level, the send/receive communication cost for
the algorithm is

q (α+ d (n− 1)Dβ) ,

assuming that the data is already distributed on the compute nodes and no scatter command is
required. If the (distributed) right singular vectors are needed, then a broadcast of the left singular
vectors to all nodes incurs a communication cost of α+ dM β.

Suppose A is a D×N matrix, N � D. The sequential SVD is typically performed in two phases:
bidiagonalization (which requires (2N D2+2D3) flops) followed by diagonalization (negligible cost).
If M processing cores are available to compute the q-level hierarchical SVD method in Algorithm 1,
and the matrix A is decomposed into M = nq blocks, where n is again the number of local SVDs
being concatenated at each level. The potential parallel speedup can be approximated by

(2ND2 + 2D3)γ

γ [(2(N/M)D2 + 2D3) + q(2dnD2 + 2D3)] + q(α+ d(n− 1)Dβ)
. if nd > D

(2ND2 + 2D3)γ

γ [(2(N/M)D2 + 2D3) + q(2(dn)2D + 2(dn)3)] + q(α+ d(n− 1)Dβ)
. if nd < D

(9)

3. Numerical Experiments

The numerical experiments are organized into two categories. First, Theorems 1 and 3 are
validated – the numerical experiments will demonstrate that the incremental algorithms can recover
full rank and low rank approximations of A, up to rounding errors. Then, numerical evidence is
presented to show the weak and strong scaling behavior of the algorithms.

3.1. Accuracy. In this first experiment, we verify that singular values and the left singular vectors
of A can be recovered using the incremental SVD algorithm. A full rank matrix of size 400×128, 000
is constructed in MATLAB, and its SVD computed to form the reference solution. The numerical
experiment consists of partitioning the full matrix into various block configurations before applying
the incremental SVD algorithm and comparing the singular values and left singular vectors to the
reference solution. The scenarios and results are reported in Table 1: eσ refers to the maximum
relative error of the singular values, i.e.,

max
1≤i≤D

|σ̃i − σi|
|σi|

,

where σi is the true singular value and σ̃i is the singular value obtained using the hierarchical
algorithm. Similarly, ev refers to the maximum relative error of all the left singular vectors, i.e.,

max
1≤i≤D

‖ṽi − vi‖2
‖vi‖2

= max
1≤i≤D

‖ṽi − vi‖2,

where vi is the true singular value and ṽi is the singular vector obtained using the hierarchical
algorithm. The number of blocks is nq, where q is the number of levels, and n is the number of
sketches to merge at each level. The incremental algorithm recovers the singular values and left
singular vectors of a full rank matrix A, up to round-off errors.

In the second experiment, the incremental SVD algorithm is used to recover a rank d approx-
imation, (A)d, of a matrix, A. The matrix A is again of size 400 × 128, 000, and is formed by
taking the product UΣV ′, where U and V are random orthogonal matrices of the appropriate size.
The singular values are chosen so that ‖(A)d − A‖2F can be controlled. The scenarios and results
are reported in Table 2. Again, the hierarchical algorithm recovers largest d singular values and
associated left singular vectors to high accuracy.
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n levels # blocks block size eσ ev
2 1 2 400× 64, 000 2.4× 10−13 2.3× 10−12

2 4 400× 32, 000 1.4× 10−13 1.1× 10−12

3 8 400× 16, 000 6.1× 10−14 2.2× 10−12

4 16 400× 8, 000 5.3× 10−14 4.3× 10−12

5 32 400× 4, 000 6.4× 10−14 4.3× 10−12

6 64 400× 2, 000 5.1× 10−14 1.1× 10−12

7 128 400× 1, 000 1.5× 10−13 1.5× 10−12

8 256 400× 500 1.6× 10−13 4.8× 10−12

4 1 4 400× 16000 2.3× 10−14 3.0× 10−12

2 16 400× 1000 2.3× 10−14 2.0× 10−12

3 256 400× 125 1.2× 10−14 2.5× 10−12

Table 1. The number of blocks is nq, where q is the number of levels, and n is
the number of sketches to merge at each level. The maximum relative error of the
singular values σ and left singular vectors v are reported. The incremental algorithm
recovers the singular values and left singular vectors of a full rank matrix A, up to
round-off errors.

‖A− (A)d‖2F n levels # blocks block size eσ ev
0.1 2 1 2 400× 64, 000 2.3× 10−13 8.3× 10−9

2 4 400× 32, 000 1.5× 10−12 2.1× 10−8

3 8 400× 16, 000 1.0× 10−11 5.5× 10−8

4 16 400× 8, 000 3.7× 10−11 1.1× 10−7

5 32 400× 4, 000 1.4× 10−10 2.0× 10−7

6 64 400× 2, 000 3.8× 10−10 3.3× 10−7

7 128 400× 1, 000 2.7× 10−9 7.9× 10−7

8 256 400× 500 9.9× 10−9 1.3× 10−6

4 1 4 400× 16000 1.5× 10−12 2.1× 10−8

2 16 400× 1000 3.7× 10−11 1.3× 10−7

3 256 400× 125 3.7× 10−10 3.2× 10−7

0.01 2 1 2 400× 64, 000 2.1× 10−14 8.2× 10−12

2 4 400× 32, 000 8.9× 10−15 2.1× 10−11

3 8 400× 16, 000 5.7× 10−15 5.5× 10−11

4 16 400× 8, 000 7.4× 10−15 1.0× 10−10

5 32 400× 4, 000 1.6× 10−14 2.5× 10−10

6 64 400× 2, 000 3.7× 10−14 3.2× 10−10

7 128 400× 1, 000 2.8× 10−13 7.8× 10−10

8 256 400× 500 9.6× 10−13 1.2× 10−9

4 1 4 400× 32, 000 1.7× 10−14 2.1× 10−11

2 16 400× 8, 000 1.2× 10−14 1.0× 10−10

3 256 400× 500 1.4× 10−14 3.1× 10−10

Table 2. Low rank approximation of A computed using the incremental SVD al-
gorithm, compared against the true low rank approximation of A.
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3.2. Parallel Scaling. For the first scaling experiment, the left singular vectors and the singular
values of a matrix A (D = d = 800, N = 1, 152, 000) are found using an MPI implementation
of our hierarchical algorithm, and a threaded LAPACK SVD algorithm, dgesvd, implemented in
the threaded Intel MKL library. Computational nodes from the stampede cluster at the Texas
Advanced Computing Center (TACC) were used for the parallel scaling experiments. Each node
is outfitted with 32GB of RAM and two Intel Xeon E5-2680 processors for a total of 16 processing
cores per node. In a pre-processing step, the matrix A is decomposed, with each block of A stored
in separate HDF5 files; the generated HDF5 files are hosted on the high-speed Lustre server. The
observed speedup is summarized in Figure 3 3. In the blue curve, the observed speedup is reported
for a varying number of MKL worker threads. In the red curve, the speedup is reported for a
varying number of worker threads i, applied to an appropriate decomposition of the matrix. Each
worker uses the same Intel MKL library to compute the SVD of the decomposed matrices (each
using a single thread), the proxy matrix is assembled, and the master thread computes the SVD of
the proxy matrix using the Intel MKL library, again with a single thread. The parallel performance
of our distributed SVD is superior to the threaded MKL library, this in spite of the fact that our
algorithm was implemented using MPI 2.0 and does not leverage the inter-node communication
savings that is possible with newer MPI implementations.

1 2 4 8 16
0

5

10

15

Number of Cores

S
p

ee
d

u
p

(MKL) Actual Speedup
Distributed SVD

Ideal Speedup

Figure 3. Strong scaling study of the dgesvd function in the threaded Intel MKL
library (blue) and the proposed distributed SVD algorithm (red). The input matrix
is of size 800× 1, 152, 000.

The second parallel scaling experiment is a weak scaling study, where the size of the input matrix
A is varied depending on the number of computing cores, A = 2000 × 32, 000M , where M is the
number of compute cores. The theoretical peak efficiency is computed using equation 9, assuming
negligible communication overhead (i.e., we set α = β = 0). There is slightly better efficiency if one
merges for larger n (more sketches are merged together at each level). This behavior will persist
until the size of the proxy matrix is comparable or larger than the original blocksize. The asymptotic
behavior of the efficiency curves agree with the theoretical peak efficiency curve if M > 16.

In the last experiment, we repeat the weak scaling study (where the size of the input matrix A
is varied depending on the number of worker nodes, A = 2000× 32, 000M , where M is the number
of compute cores, but utilize a priori knowledge that the rank of A is much less than the ambient

3The raw data used to generate the speedup curves for Figure 3 is presented in Tables 3 and 4 in the Appendix.
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Figure 4. Weak scaling study of the one-level SVD algorithm. The input matrix is
of size 2000× (32000M), where M is the processing cores used in the computation.
The observed efficiency is plotted for various n’s (number of scaled singular vec-
tors concatenated at each hierarchical level). There is a slight efficiency gain when
increasing n.

dimension. Specifically, we construct a data set with d = 200 � 2000. The hierarchical SVD
performs more efficiently if the intrinsic dimension of the data can be estimated a priori. Similar
observations can be made to the previous experiment: the asymptotic behavior of the efficiency
curves agree with the theoretical peak efficiency curve if M > 16.

4. Concluding Remarks and Acknowledgments

In this paper, we show that the SVD of a matrix can be constructed efficiently in a hierarchical
approach. Our algorithm is proven to recover exactly the singular values and left singular vectors
if the rank of the matrix A is known. Further, the hierarchical algorithm can be used to recover
the d largest singular values and left singular vectors with bounded error. We also show that
the proposed method is stable with respect to roundoff errors or corruption of the original matrix
entries. Numerical experiments validate the proposed algorithms and parallel cost analysis.

The authors note that the practicality of the hierarchical algorithm is questionable for sparse
input matrices, since the assembled proxy matrices as posed will be dense. Further investigation in
this direction is required, but beyond the scope of this paper. Lastly, the hierarchical algorithm has
a map–reduce flavor that will lend itself well to a map reduce framework such as Apache Hadoop
[34] or Apache Spark [36].
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Appendix A. Raw data from numerical experiments

This section contains raw data used to generate the speedup curves in Section 3 for the parallel
scaling studies. The simulations were conducted on the stampede cluster at the Texas Advanced
Computing Center (TACC). Each node is outfitted with 32GB of RAM and two Intel Xeon E5-2680
processors for a total of 16 processing cores per node. The performance application programming
interface (PAPI) [6] was used to obtain an estimate of the computational throughput obtained by
the implementations.
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# threads Walltime (s) Speedup MFLOP/µs∗

1 245 – 40
2 151 1.6 68
3 110 2.2 100
4 91 2.6 126
8 71 3.5 194
16 71 3.5 224

Table 3. Raw data used to compute the speedup curve for Figure 3 using the
threaded MKL dgesvd implementation. The reported MFLOP/µs is estimated by
scaling the throughput of the master thread reported by PAPI. PAPI is unable to
report the total MFLOP/µs since the MKL library uses pthreads to spawn and
remove threads as needed.

n levels # blocks block size Walltime (s) Speedup MFLOP/µs
1 1 1 800× 1, 152, 000 245 – 40
2 1 2 800× 768, 000 126 1.9 81
3 1 3 800× 512, 000 97 2.5 105
4 1 4 800× 384, 000 76 3.2 136
8 1 8 800× 192, 000 52 4.7 204
16 1 16 800× 96, 000 25 9.8 447

Table 4. Raw data used to compute the speedup curve for Figure 3 using the
incremental SVD implementation.
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n levels # blocks Walltime (s) Efficiency MFLOP/µs
2 0 1 32 1 25

1 2 41 0.78 46
2 4 58 0.55 74
3 8 84 0.38 110
4 16 101 0.32 185
5 32 121 0.26 314
6 64 138 0.23 552
7 128 172 0.19 907
8 256 195 0.16 1641
9 512 218 0.15 2928

3 0 1 32 1 25
1 3 46 0.70 63
2 9 74 0.43 127
3 27 94 0.34 305
4 81 113 0.28 767
5 243 148 0.22 1819

4 0 1 32 1 25
1 4 49 0.65 78
2 16 77 0.42 209
3 64 99 0.32 660
4 256 131 0.24 2041

Table 5. Raw data used to compute the efficiency curves for Figure 4 using the
hierarchical SVD implementation. Each block is of size 2000 × 32, 000. In this
experiment, all 2000 singular values and left singular vectors are computed.
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n levels # blocks Walltime (s) Efficiency MFLOP/µs
2 0 1 28 1 29

1 2 32 0.88 51
2 4 38 0.74 90
3 8 51 0.55 135
4 16 52 0.54 268
5 32 53 0.53 528
6 64 53 0.53 1041
7 128 54 0.52 2056
8 256 55 0.51 4065
9 512 58 0.48 7889

3 0 1 28 1 29
1 3 35 0.80 72
2 9 51 0.55 151
3 27 52 0.54 445
4 81 53 0.53 1322
5 243 54 0.52 3905

4 0 1 28 1 29
1 4 38 0.74 89
2 16 53 0.53 264
3 64 54 0.52 1021
4 256 56 0.50 3940

Table 6. Raw data used to compute the efficiency curves for Figure 5 using the
hierarchical SVD implementation. Each block is of size 2000 × 32, 000. In this
experiment, the input matrix is of rank d = 200; the hierarchical algorithm finds
the 200 singular values and left singular vectors.
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