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Introduction Background

Motivation

Applications: The phase-retrieval problem arises whenever the detectors
can only capture intensity measurements. For example,

X-ray crystallography
Diffraction imaging
Ptychographic Imaging
...

Our goals: Approaching realistic measurement designs compatible with,
e.g., ptychography, coupled with computationally efficient
and robust recovery algorithms.
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Introduction Background

Motivating Application

Figure: Ptychographic Imaging
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Introduction Background

Algorithms for Discrete Phase Retrieval

There has been a good deal of work on signal recovery from phaseless
STFT measurements in the discrete setting :

I First f and g are modeled as vectors ab initio,
I Then recovered from discrete STFT magnitude measurements.

Recovery techniques include
I Iterative methods (Alt. Proj. for STFT) along the lines of Griffin and

Lim [8, 12],
I Alternating Projections [7],
I Graph theoretic methods for Gabor frames based on polarization [11, 9],
I Semidefinite relaxation-based methods [5], and others [2, 1, 4, 3].
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Introduction Problem Statement and Specifications

Signal Recovery from STFT Measurements

In 1-D ptychography [10, 7], a compactly supported specimen
f : R→ C, is scanned by a focused beam g : R→ C which translates
across the specimen in fixed overlapping shifts l1, . . . , lK ∈ R.

At each such shift a phaseless diffraction image is sampled by a
detector.

The measurements are modeled as STFT magnitude measurements:

bk,j :=
∣∣∣∣∫ ∞
−∞
f (t)g (t− lk)e−2πiωjtdt

∣∣∣∣2 , 1≤ k ≤K, 1≤ j ≤N. (1)

We aim to approximate f (up to a global phase) using these bk,j
measurements.
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Introduction Problem Statement and Specifications

Given stacked spectrogram samples from (1),

~b=
(
b1,1, . . . , b1,N , b2,1, . . . , bK,N

)T
∈ [0,∞)NK , (2)

approximately recover a piecewise smooth and compactly supported
function f : R→ C up to a global phase.

WLOG assume that the support of f is contained in [−1,1].

Motivated by ptychography, we primarily consider the beam function
g to also be (effectively) compactly supported within [−a,a] ( [−1,1].

Assume also that g is smooth enough that its Fourier transform
decays relatively rapidly in frequency space compared to f̂ . Examples
of such g include both Gaussians, as well as compactly supported C∞
bump functions [6].
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Signal Recovery Method The Proposed Numerical Approach

Using techniques from [4, 3] on discrete PR adapted to continuous
PR, recover samples of f̂ at frequencies in Ω = {ω1, . . . ,ωN}, giving
~f ∈ CN with fj = f̂(ωj):

I First, a truncated lifted linear system is inverted in order to learn a
portion of the rank-one matrix ~f ~f∗.

I Then, angular synchronization is used to recover ~f from the portion of
~f ~f∗ above.

Reconstruct f̂ via standard sampling theorems.

Invert this approximation in order to learn f .

This linear system is banded and Toeplitz, with band size determined
by the decay of ĝ: if g is effectively bandlimited to [−δ,δ] the
computational cost is O

(
δN(logN + δ2)

)
- essentially FFT-time in

N for small δ.
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Signal Recovery Method Our Lifted Formulation

Lifted Formulation

Lemma (Lifting Lemma)
Suppose f : R→ C is piecewise smooth and compactly supported in
[−1,1]. Let g ∈ L2 ([−a,a]) be supported in [−a,a]⊂ [−1,1] for some
a < 1, with ‖g‖L2 = 1. Then for all ω ∈ R,

|F [f ·Slg] (ω)|= 1
2

∣∣∣∣∣∣
∑
m∈Z

e−πilmf̂

(
m

2

)
ĝ

(
m

2 −ω
)∣∣∣∣∣∣

for all shifts l ∈ [a−1,1−a].
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Signal Recovery Method Our Lifted Formulation

Proof.
Plancherel’s Theorem implies that

|F [f ·Slg] (ω)|2 =
∣∣∣∣∫ ∞
−∞
f̂ (ω−η) ĝ (−η)e−2πilηdη

∣∣∣∣2 .
Applying Shannon’s Sampling theorem to f̂ and recalling that
F [f ?g] = f̂ ĝ yield

|F [f ·Slg] (ω)|2 =

∣∣∣∣∣∣
∑
m∈Z

f̂

(
m

2

)[
ĝ (·)e−2πil(·) ? sincπ (m+ 2(·))

]
(−ω)

∣∣∣∣∣∣
2

= 1
4

∣∣∣∣∣∣
∑
m∈Z

f̂

(
m

2

)
e−πil(m−2ω)

∫ −l+1

−l−1
g (u)e−2πiu( m

2 −ω)du

∣∣∣∣∣∣
2

.

The result follows by noting the support of g and the Fourier type
integral in the last equality.
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Signal Recovery Method Our Lifted Formulation

Lifted Form
We write our measurements in a lifted form

|F [f ·Slg] (ω)|2 ≈ 1
4
~X∗l
~Yω~Y

∗
ω
~Xl

where ~Xl ∈ C4δ+1 and ~Yω ∈ C4δ+1 are the vectors

~Xl =



eπil(2δ)ĝ (−δ)
eπil(2δ−1)ĝ

(
1
2 − δ

)
...

eπil·0ĝ (0)
...

eπil(1−2δ)ĝ
(
δ− 1

2

)
eπil(−2δ)ĝ (δ)


, ~Yω =



f̂ (ω− δ)
f̂
(
ω− δ+ 1

2

)
...

f̂ (ω)
...

f̂
(
ω+ δ− 1

2

)
f̂ (ω+ δ)


.
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Signal Recovery Method Our Lifted Formulation

Lifted Form
We write our measurements in a lifted form

|F [f ·Slg] (ω)|2 ≈ 1
4
~X∗l
~Yω~Y

∗
ω
~Xl

Here, ~Yω~Y ∗ω is the rank-one matrix

∣∣∣f̂(ω− δ)
∣∣∣2 · · · f̂(ω− δ)f̂(ω) · · · f̂(ω− δ)f̂(ω+ δ)

... . . . ...
...

...
f̂(ω)f̂(ω− δ) · · ·

∣∣∣f̂(ω)
∣∣∣2 · · · f̂(ω)f̂(ω+ δ)

...
...

... . . . ...
f̂(ω+ δ)f̂(ω− δ) · · · f̂(ω+ δ)f̂(ω) · · ·

∣∣∣f̂(ω+ δ)
∣∣∣2


.

Note the occurrence of the magnitudes of f̂ on the diagonal, and the
relative phase terms elsewhere.
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Signal Recovery Method Our Lifted Formulation

Let F ∈ CN×N be defined as

Fi,j =

f̂
(
i−2n−1

2

)
f̂
(
j−2n−1

2

)
, if |i− j| ≤ 2δ,

0, otherwise,
, where n= N −1

4 .

F is composed of overlapping segments of matrices ~Yω~Y ∗ω for
ω ∈ {−n, . . . ,n}.

Thus, our spectrogram measurements can be written as

~b≈ diag(GFG∗), (3)

where G ∈ CNK×N is a block Toeplitz matrix encoding the ~Xl’s.

We consistently vectorize (3) to obtain a linear system which can be
inverted to learn ~F , a vectorized version of F.
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Signal Recovery Method Our Lifted Formulation

In particular, we have
~b≈M~F , (4)

where M ∈ CNK×N2 is computed by passing the canonical basis of
CN×N through (3).
We solve the linear system (4) as a least squares problem.

Experiments have shown that M is of rank NK.

The process of recovering the Fourier samples of f from ~F is known
as angular synchronization.
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Signal Recovery Method Our Lifted Formulation

Angular Synchronization

Angular synchronization is the process recovering d angles
φ1,φ2, . . . ,φd ∈ [0,2π) given noisy and possibly incomplete difference
measurements of the form

φij := φi−φj , (i, j) ∈ {1,2, . . . ,d}×{1,2, . . . ,d}.

We are interested in angular synchronization problems that arise when
performing phase retrieval from local correlation measurements
[4, 3].
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Signal Recovery Method Our Lifted Formulation

Leading Eigenvector ↔ Phase Vector for δ = 1/2[
|~f1|2 ~f1 ~f

∗
2
~f2 ~f

∗
1 |~f2|2 ~f2 ~f

∗
3
~f3 ~f

∗
2 |~f3|2 ~f3 ~f

∗
4
~f4 ~f

∗
3 |~f4|2

]Ty(re-arrange)
|~f1|2 ~f1 ~f

∗
2 0 0

~f2 ~f
∗
1 |~f2|2 ~f2 ~f

∗
3 0

0 ~f3 ~f
∗
2 |~f3|2 ~f3 ~f

∗
4

0 0 ~f4 ~f
∗
3 |~f4|2

(F,4δ+ 1 entries in band)

y(normalize entrywise)
1 ei(φ1−φ2) 0 0

ei(φ2−φ1) 1 ei(φ2−φ3) 0
0 ei(φ3−φ2) 1 ei(φ3−φ4)

0 0 ei(φ4−φ3) 1


y(top eigenvector)

≈ [eiφ1
e
iφ2

e
iφ3

e
iφ4 ]T

(Reconstruction of f̂ samples)
[
|~f1|eiφ1 |~f2|eiφ2 |~f3|eiφ3 |~f4|eiφ4

]T
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Signal Recovery Method Our Lifted Formulation
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Signal Recovery Method Our Lifted Formulation
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Numerical Results Smooth f

Consider the Oscillatory Gaussian f (x) = 2
1
4 e−8πx2 cos(24x)χ[−1,1].

Take as window the Gaussian g (x) = c ·e−16πx2
χ[− 1

2 ,
1
2 ].

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

3.5

x

We use a total of 11 shifts of g, and choose 61 values of ω from
[−15,15] sampled in half-steps, and set δ = 7.
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Numerical Results Smooth f

The reconstruction in physical space is shown at selected grid points in the
figure below.

The relative `2 error in physical space is 1.872×10−2.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

f
(x

)
True
Approx.
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Numerical Results Piecewise-Constant f

Consider the Characteristic Function f (x) = χ[− 1
5 ,

1
5 ].

Take as window the Gaussian g (x) = c ·e−32πx2
χ[− 1

2 ,
1
2 ].

We use a total of 21 shifts of g, and choose 293 values of ω from
[−73,73] sampled in half-steps, and set δ = 10.
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Numerical Results Piecewise-Constant f

The reconstruction in physical space is shown in the figure below.

The relative `2 error in physical space is 1.509×10−1.
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Numerical Results Piecewise-Smooth f

Consider the Peicewise Smooth Function
f (x) = 1

2χ[− 3
20 ,0] +

(
−10

3 x+ 1
)
χ[0, 3

20 ].

Take as window the Gaussian g (x) = c ·e−32πx2/5χ[− 1
2 ,

1
2 ].

We use a total of 41 shifts of g, and choose 281 values of ω from
[−70,70] sampled in half-steps, and set δ = 10.
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Numerical Results Piecewise-Smooth f

The reconstruction in physical space is shown in the figure below.

The relative `2 error in physical space is 1.162×10−1.
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Numerical Results Piecewise-Smooth f
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