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Abstract—This paper studies the problem of recovering a
signal with a sparse representation in a given orthonormal basis
using as few noisy observations as possible. Herein, observations
are subject to the type of background clutter noise encountered
in radar applications. Given this model, this paper proves for the
first time that highly sparse signals contaminated with Gaussian
background noise can be recovered by adaptive methods using
fewer noisy linear measurements than required by any possible
recovery method based on non-adaptive Gaussian measurement
ensembles.

Index Terms—Adaptive compressed sensing, clutter noise,
compressed sensing (CS), information theory, radar

I. I

This paper considers adaptive acquisition strategies for
estimating a signal, f , which admits a sparse representation in
terms of a linear combination of k unknown elements from a
set of N orthonormal functions. Adaptive Bayesian techniques
for estimating the support of a sparse signal were proposed by
Ji et al. and Castro et al. (e.g., see [3] and [4], respectively).
These Bayesian methods have been demonstrated to work
well empirically, often requiring fewer noisy measurements
to recover sparse signals than non-adaptive competitors in
practice. Similarly, (compressive) distilled sensing techniques
[5], [6], [7] demonstrate that adaptive methods can improve
error bounds for sparse recovery problems over nonadaptive
techniques in other measurement noise models related to the
one considered herein. Finally, very recently Indyk et al.
demonstrated that adaptive compressed sensing methods can
outperform nonadaptive methods in the standard compressed
sensing context [8]. In this paper we develop additional theory
supporting the further use and consideration of such adaptive
methods by proving that a simple adaptive measurement
procedure can reliably recover sparse signals using fewer
linear measurements than any possible approach utilizing non-
adaptive Gaussian measurement matrices when the measure-
ments are contaminated with background noise.

A. The Noise Model

This paper deals with a slight variant of the standard sparse
approximation problem encountered in the compressed sensing
literature. To make the noise model more clear, we will begin
by presenting it in a standard sparse approximation setting. In
the process we will fix notation. Then, in Section I-C, we will
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present a closely related problem on which we focus for the
remainder of the paper.

Let Φ = {φi | 1 ≤ i ≤ N} be a set of real valued
orthonormal functions on [0, 1] which span a given function
space of interest. A generic observable signal (i.e., function on
[0, 1]) can have a component outside of Φ. However, sparse
approximation techniques generally only consider the signal’s
projection, f , onto Φ and, furthermore, assume that f has a
sparse representation in Φ. Suppose that

f =

N∑
i=1

fi · φi.

Given a sparsity assumption for f it makes sense to define the
support of f in Φ to be the positions where its coefficients,
fi, are nonzero (or otherwise larger in magnitude than an
application dependent threshold). The support of f is thus

supp( f ) =
{

j
∣∣∣ | f j| > 0

}
⊆ [1,N].

Note that in order to recover f one must identify supp( f ).
Thus, the primarily focus of this paper – signal recovery – is
integrally linked to support identification.

A solution to the sparse approximation problem necessi-
tates the design of a set of test, or measurement, functions
M j : [0, 1] −→ R, 1 ≤ j ≤ m. Each test function, M j, is a
specified linear combination of basis elements from Φ. In this
paper each of these test functions, M j, will generate noisy
observations of the form

y j = 〈M j, f + P j〉 = 〈M j, f 〉 + 〈M j, P j〉, (1)

where 〈 f , g〉 denotes the inner product between f , g : [0, 1]→
R. In the above equation P = {P j | 1 ≤ j ≤ m} is a sequence
of identically distributed measurement noise processes. Each
P j is assumed to be independent of all the other P j′ processes
whenever j , j′. In effect, every measurement of f is con-
taminated with background noise, or clutter noise, generated
by a rapidly varying random background signal.

In practice, measurement noise will consist of two com-
ponents. The first component will be due to environmental
or physical noise outside of the processing and acquisition
system (e.g., clutter in radar). This component will depend on
the measurement function. For example, using a wider beam
to cover a wider area in radar will increase the observed clutter
noise. The second noise component is due to thermal noise in
the acquisition and processing circuitry. This noise component
does not depend on the measurement function, and its effect
can be reduced by using more sophisticated electronics (e.g.,
by cooling a detector).
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In many previous studies (e.g., see [9], [10], [11] and refer-
ences therein) the measurements utilized for signal (support)
recovery were of the form

y j = 〈M j, f 〉 + w j, (2)

where w j ∼ N(0, 1) is independent Gaussian noise for each j,
f is considered as a sparse vector in RN (i.e., the problem is
discrete), and M j ∼ N(0, IN×N) is a random vector indepen-
dently drawn from the zero-mean isotropic Gaussian distribu-
tion for each j. The measurements provided by Equation 2
account for situations where the second (thermal) component
of measurement noise discussed in the preceding paragraph
dominates the first (clutter) noise component. In contrast,
the noise model considered herein (see Equation 1) focuses
on situations where the first noise component dominates the
second noise component.

The measurement model in the Equation 1 will be referred
to as non-adaptive if the generation of the jth measurement, y j,
is independent of all previous noisy observations, yn, 1 ≤ n ≤
j − 1. In effect, a set of measurements M = {M1, . . . , Mm}

is non-adaptive if it can be wholly instantiated before any
measurements are actually taken. If, on the other hand, any
single measurement may depend on the results of previous
measurements, M will be called adaptive. We will always
suppose that f =

∑N
i=1 fi ·φi is k-sparse with respect to Φ. The

value Cmin = min
{
|〈 f , φi〉|

∣∣∣ i ∈ supp( f )
}

will always be the
magnitude of the smallest of the k non-zero coefficients of f .

B. Results

Much of the previous work on solving sparse support
identification problems has concentrated on methods utiliz-
ing non-adaptive randomly generated Gaussian measurements
contaminated with zero mean Gaussian noise. The non-
adaptive Gaussian measurement ensembles, M j ∼ N(0, IN×N)
for 1 ≤ j ≤ m, are particularly relevant to study given
their near-optimal properties with respect to non-adaptive
compressive sensing measurement design (e.g., see [12], [13],
[14], [15]). Here, we will momentarily focus on the following
result concerning support recovery using noisy non-adaptive
Gaussian measurements contaminated with Gaussian noise.
The objective is to construct a lower bound on the number of
measurements, m, required by any sparse recovery algorithm
in order to correctly recover the support of f using the general
measurement model considered herein (see Equation 1).

Theorem 1. Suppose that G =
{
G j

∣∣∣ 1 ≤ j ≤ m
}

is an ensem-
ble of m non-adaptive random standard Gaussian noise pro-
cesses independently drawn for each j. Create test functions
by setting

M =

M j =

N∑
i=1

〈G j, φi〉 · φi

∣∣∣ 1 ≤ j ≤ m

 .
Furthermore, let P j for 1 ≤ j ≤ m be m independent
Gaussian measurement noise processes with mean 0 so that
the accumulated noise for each Equation 1 measurement,
conditioned onM j, is 〈M j,P j〉 ∼ N(0, ‖M j‖

2
2 ·σ

2/N). Then,

there exists a constant c ∈ R+ such that any algorithm using

m < c ·
σ2

C2
min

· ln(N/k)

non-adaptive Gaussian measurements as input will asymptot-
ically fail to reliably recover supp( f ) and, therefore, f itself.
That is, for N sufficiently large any algorithm will fail to
recover supp( f ) with probability bounded above 0.

Proof: See the Appendix.1 �

In effect, Theorem 1 provides a non-adaptive Gaussian
measurement bound below which any recovery method must
fail to be asymptotically reliable for the support identification
of some sparse input vectors. In this paper ideas from group
testing [18] are utilized in combination with statistical binary
detection and estimation techniques [19] to produce the fol-
lowing theorem.

Theorem 2. Let P j for 1 ≤ j ≤ m be m independent Gaussian
measurement noise processes with mean 0 so that the accumu-
lated noise for each Equation 1 measurement, conditioned on
the adaptive test function M j, is 〈M j,P j〉 ∼ N(0, ‖M j‖

2
2 ·

σ2/N). Furthermore, suppose that σ2/C2
min is Ω

(
k · ln3 N

)
.2

Then, there exists a constant c ∈ R+ such that whenever the
number of allowed measurements, m, exceeds

c ·
σ2

C2
min

· ln2
(
k · ln3 N · ln2(k ln2 N)

)
Algorithm 2 will approximate f precisely enough to reliably
recover supp( f ) with probability → 1 as N → ∞.

Proof: Apply Corollary 2 from Section III-D with
p = 1 − 1/ ln N. �

In order to compare Theorems 1 and 2, consider the
following example. Suppose that k is lnO(1) N and σ2/C2

min
is Ω

(
k · ln3 N

)
. In this regime one can see that any asymp-

totically reliable non-adaptive Gaussian measurement scheme
will require the use of

Ω

 σ2

C2
min

· ln N


measurements. On the other hand, the adaptive methods de-
veloped below are asymptotically reliable using

O
 σ2

C2
min

· ln2 (ln N)


measurements. Hence, if f is sufficiently sparse and its mea-
surements sufficiently noisy, the adaptive methods presented
below will asymptotically outperform any sparse support re-
covery method utilizing non-adaptive Gaussian measurement
ensembles. That is, adaptive methods can outperform nonadap-
tive methods for target location in noisy environments.

Intuitively, it should not be surprising that methods uti-
lizing non-adaptive measurements are less effective under

1Since the initial appearance of Theorem 1 in [1], [2] similar results have
appeared independently in [16], [17].

2Let f , g : R+ → R+. Then, f is Ω(g) if and only if g is O( f ).
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the observational model in Equation 1 than methods based
on adaptive measurements. Every non-adaptive measurement
must necessarily allocate significant amounts of sensing energy
to a large fraction of the basis elements in Φ (i.e., to a large
fraction of the entire search area). This essentially guarantees
that every non-adaptive observation will be contaminated with
a large fraction of the additive observational noise from the
entire search area. Adaptive measurements, on the other hand,
can eventually avoid observational noise from large portions of
the search area by ignoring regions where signal components
are unlikely to be present. The end result is that any method
utilizing non-adaptive observations must ultimately deal with
higher collective noise levels from their measurement ensem-
bles than methods which adaptively focus their measurements
toward regions likely to contain signal components.

Finally, it is worth noting that lower bounds for the number
of adaptive measurements required in order to recover sparse
signals have been developed in the “thermal noise” setting
(i.e., for measurements provided by Equation 2 above) [20].
However, proving similar lower bounds for the types of
adaptive measurements considered herein (i.e., see Equation 1)
remains an open problem to the best of our knowledge.

C. A Simplified Problem Setup

As mentioned previously, the measurement noise model
considered in this paper is motivated by target location by
radar. In keeping with this motivation, below we develop an
adaptive method for recovering functions of the form

f (x) =

k∑
j=1

C j · δ(x − x j) (3)

where δ(x) is a Dirac delta function, each C j ∈ R, and x j ∈

[0, 1], for j ∈ Z∩[1, k]. This problem is a simplified model for
the problem of recovering an unknown number of ideal point
targets located at positions x j and with reflectivity C j. The
model assumes prior knowledge concerning the range of the
points x j. The given range is then normalized to the interval
[0, 1] without loss of generality. In this form the simplified
model also captures radar imaging of targets that consist of a
collection of point reflectors, a target model often considered
in the literature.

Selecting measurement functions, M j, corresponds to se-
lecting a radar beamform and illumination pattern. For the
remainder of this paper we restrict our attention to char-
acteristic measurement functions which are constructed for
sequences of adaptively refined unions of subsets of [0, 1].
These measurement functions, or test functions, will yield
noisy measurements of the signal f at each time t ∈ R+ as
follows. Let I be a subset of [0, 1] and define the indicator
function for I,

II : [0, 1] 7→ {0, 1},

to be

II(x) =

{
1 if x ∈ I
0 otherwise .

For any subset I ⊆ [0, 1] and time t ∈ R+ we assume that we
can measure

mI(t) :=
∫
II · f dx +

∫
II dPt, (4)

where Pt(x) represents stochastic measurement noise (i.e., a
diffusion process).

We assume for each time t ∈ R+ that∫
II dPt and

∫
IJ dPt

are independent and identically distributed (i.i.d.) whenever
I ∩ J = ∅ and ∫

II dx =

∫
IJ dx. (5)

Similarly, we assume for every two times t1 , t2 that∫
II dPt1 and

∫
IJ dPt2

are i.i.d. as long as I,J ⊆ [0, 1] satisfy Equation 5. Let σ2
I

to be the variance of mI(t) for a given I ⊆ [0, 1]. Given the
assumptions above, σ2

I
will equal σ2

J
whenever I,J ⊆ [0, 1]

satisfy Equation 5. Finally, denote the variance of the noise
over the entire unit interval by σ2 = σ2

[0,1].
To recover f we must approximate both C j and x j for all

j ∈ Z ∩ [1, k]. In approximating each x j we will be satisfied
to locate x j to within 1

N -tolerance for a given N ∈ Z+ which
is guaranteed to have

1
N
< min

{
|x j − xl|

∣∣∣ j ∈ [1, k] ∩ Z, l ∈ Z ∩ [1, k] − { j}
}
. (6)

In other words, N gives a guaranteed separating distance
between the Dirac delta functions composing f . The separating
distance assumption allows us to recognize the measurements
defined in Equation 4 as a slight variation of the measurement
model described by Equation 1. This relationship ultimately
allows us to apply the adaptive targeting methods developed
below to the standard sparse approximation problem described
above in Section I-A. See [2] for a detailed description of how
the simplified setup presented in this section relates to the
standard sparse approximation setup discussed in Section I-A.

The remainder of this paper is structured as follows. In
Section II we present and analyze a simple binary search
procedure for recovering 1-sparse signals in background noise.
Then, in Section III, we describe a method for reducing
general sparse support recovery problems to a collection of
1-sparse support recovery problems. This allows us to use
multiple binary search procedures to recover the support of
any sparsely representable signal. Finally, we conclude with a
short discussion in Section IV.

II. S S T

In this section we assume that the function f consists of a
single Dirac delta function (i.e., k = 1 in Equation 3). Given
this assumption a simple adaptive binary search procedure will
be employed to locate the support of f . However, before the
procedure can be presented in detail we must first define the
left and right subsets of a given set I ⊆ [0, 1]. Given any
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I ⊆ [0, 1] with positive measure, define xmid ∈ [0, 1] to be the
unique point with∫ xmid

0
II dx =

∫ 1

xmid

II dx =
1
2

∫
II dx.

Let the left subset of I, denoted Il, be

Il = [0, xmid) ∩ I. (7)

Similarly, let the right subset of I, denoted Ir, be

Ir = [xmid, 1] ∩ I. (8)

We are ready to discuss Algorithm 1 for locating a single Dirac
delta function.

Assume that C1 is positive for the time being. If so, we can
begin looking for the support of f (i.e., x1) in [0, 1] using a
binary search strategy. As long as the additive measurement
noise is independent and identically distributed (i.i.d.) on
both [0, 1

2 ) and [ 1
2 , 1], the interval containing x1 will have

a larger mean than the interval not containing x1. Thus, the
measurements for the interval containing x1 will tend to be
larger more often. Using this observation to our advantage,
we can correctly choose the subinterval containing x1 with
high probability by choosing the subinterval that returns the
largest measurements most often. Repeated application of this
decision principle yields a binary search.

If C1 is negative the binary search is analogous. We simply
repeatedly choose the subinterval which returns the smaller
value more often. Finally, we deal with the fact that we don’t
have apriori knowledge of the sign of C1 by performing two
binary searches in parallel. One search assumes that C1 is
positive, while the other assumes it is negative. One of the
two searches must succeed with high probability since C1 is
nonzero (i.e., either positive or negative). If C1 is positive,
the search assuming positivity will locate the spike with high
probability. If C1 is negative, the search assuming negativity
will locate the spike with high probability. The problem is
thus reduced to deciding which search result (i.e., the interval
resulting from the search assuming C1 is positive versus
negative) is correct. We denote the interval resulting from the
binary search assuming C1 is positive by I+. Similarly, we let
I− denote the interval resulting from the binary search that
assumes C1 is negative. We are guaranteed to have I+∩I− = ∅.
To finish we must decide whether x1 ∈ I

+ or x1 ∈ I
−.

To help make the final decision we arbitrarily chose an
interval whose noise characteristics will be, by assumption,
distributed identically to the additive noise in both the resulting
positive/negative binary search intervals (i.e., I+ and I−).
The resulting positive/negative interval containing x1 should
yield measurements with a mean that is different from the
arbitrary interval measurements’ mean. Hence, we estimate
the measurement means of both the intervals resulting from
the two binary searches, and then compare them to the mean
of the arbitrary interval’s measurements. Whichever binary
search result differs most from the arbitrary interval in terms
of measurement mean will be the correct search result with
high probability. See Algorithm 1 for pseudocode.

Algorithm 1 I D
1: Input: Initial subset I ⊆ [0, 1], position tolerance N,

magnitude tolerance α, success probability p, total
measurement budget B, estimation measurement bud-
get γ

2: Output: Estimate of magnitude, C1, and position, x1
3: I+ ←− I

4: I− ←− I
5: Initialize K ← constant ∈ N (See the proof of Lemma 1)
6: Initialize B′ ← (B − 3γ) /8K

LOCATE x1

7: while
∫
II+ dx > 1

N do
8: Assuming C1 is positive, find x1...
9: if 1

K ·
∑K

k=1 mI+
l
(tk) > 1

K ·
∑K

k=1 mI+
r (tk) the majority of B′

trials then
10: I+ ←− I+

l
11: else
12: I+ ←− I+

r
13: end if
14: Assuming C1 is negative, find x1...
15: if 1

K ·
∑K

k=1 mI−l (tk) < 1
K ·

∑K
k=1 mI−r (tk) the majority of B′

trials then
16: I− ←− I−l
17: else
18: I− ←− I−r
19: end if
20: K ←− dK/2e
21: B′ ←− dB′/2e
22: end while

ESTIMATE C1

23: Choose arbitrary IN ⊂ I − (I− ∪ I+) with∫
IIN dx =

∫
II+ dx

24: C̃+ ←− Estimated mean from γ measurements of I+

25: C̃− ←− Estimated mean from γ measurements of I−

26: C̃N ←− Estimated mean from γ measurements of IN

27: Decide if C1 is positive or negative...
28: if

∣∣∣C̃+ − C̃N
∣∣∣ > ∣∣∣C̃− − C̃N

∣∣∣ then
29: C̃1 ←− C̃+ − C̃N

30: Ie ←− I+

31: else
32: C̃1 ←− C̃− − C̃N

33: Ie ←− I−

34: end if
35: Return x̃1 = midpoint of Ie, C̃1

Lemma 1. B−3γ = O
((
σ2
I

C2
1

+ ln N
)
· ln

(
ln N
1−p

))
initial measure-

ments in line 6 of Algorithm 1 are sufficient to allow lines 7
through 22 of Algorithm 1 to correctly locate x1 within either
I+ or I− with probability at least p.

Proof: Assume that C1 is positive (the case for C1 negative
is analogous). For each iteration of the “while”-loop in line
7 let I+

c be the left or right subset of I+ containing x1, and
I+

w be the other subset not containing x1. Finally, let DI+
w :

R 7→ R
+ be the density function of the real random variable

mI+
w (t). Given our assumptions about the noise, mI+

c (t̃) will
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have density DI+
w (x −C1) for all t̃ ∈ R+.

Define εI+
w (C1) ∈ R+ to be∫ ∞

−∞

(∫ y

y−C1

DI+
w (x) dx

)
DI+

w (y) dy.

A straightforward calculation reveals that for each “while”-
loop iteration

P

[
mI+

c (t) > mI+
w (t)

]
=

1
2

+ εI+
w (C1).

We will compare several averaged measurements from I+
c to

several averaged measurements from I+
w in order to decide

which of these intervals contains the spike. This will ensure
that εI+

w (C1) is effectively larger than a constant c ∈ (0, 1
2 ).

Set M+
c = 1

K ·
∑K

k=1 mI+
c (tk), M+

w = 1
K ·

∑K
k=1 mI+

w (tk). In this
case we can see that

P
[
M+

c > M+
w
]

= P
[(

M+
c − M+

w
)
> 0

]
where E

[
M+

c − M+
w
]

= C1 and

Var
[
M+

c − M+
w
]

= 2 ·
σ2
I+

w

K
=
σ2
I+

K
.

Chebyshev’s Inequality then guarantees that

ε̃I+
w (C1) = P

[
M+

c > M+
w
]
−

1
2

≥
1
2
−P

[∣∣∣M+
c − M+

w −C1
∣∣∣ ≥ C1

]
≥

1
2
−

σ2
I+

K ·C2
1

> c (9)

whenever K >
(

1
2 − c

)−1
·
σ2
I+

C2
1

. Hence, we may assume hereafter
that εI+

w (C1) is larger than c = 1/4.

Applying the Chernoff bound we can see that
ln

( log2(N)
1−p

)
2·ε2
I+

w
(C1)

comparisons of M+
c with M+

w are sufficient to correctly decide
I+

c with error probability at most 1−p
log2(N) (see, e.g., [21]). The

union bound then implies that all O(ln(N)) iterations of line
7’s “while”-loop will succeed in locating x1 with probability
at least p. In order to bound the total number of required
measurements we note that after the nth iteration of line 7’s
loop we will have σ2

I+ =
σ2
I

2n . Hence, at the nth iteration of line
7 we will require no more than

B′ = O
(
(K + 1) · ln

(
ln(N)
1 − p

))
= O

1 +
σ2
I

2n ·C2
1

 · ln (
ln(N)
1 − p

)
measurements. When utilized for all O(ln N) binary search
levels to identify I+ and I− we will require a total of

B − 3γ =

O(ln N)∑
n=0

O
1 +

σ2
I

2n ·C2
1

 · ln (
ln N
1 − p

)
= O

σ2
I

C2
1

+ ln N
 · ln (

ln N
1 − p

)
measurements. The result follows. �

To finish the analysis of Algorithm 1 we address its esti-
mation portion (lines 23 through 34). In fact, this step is also
necessary to complete the location of the single spike if the
sign of C1 is unknown. The approach we use is to simply
estimate the mean of measurements from 3 different intervals
of the same size. One interval, I+, should contain the spike
if C1 is positive. Similarly, I− should contain the spike if
C1 is negative. Hence we compare the estimated means of
measurements from both these intervals with the estimated
measurement mean from another disjoint interval, IN , which
should contain no spike. Whichever interval, I+ or I−, has the
mean least like IN will contain the spike with high probability.
Furthermore, the estimates of the mean allow us to estimate
C1. Following this line of reasoning we obtain the following
lemma.

Lemma 2. Let I+,I−,IN ⊂ I be pairwise disjoint unions
of at most two intervals with m =

∫
II+ dx =

∫
II− dx =∫

IIN dx ≤

∫
II dx

N . Fix α ∈ (0, 1
2 ), and p ∈ (0, 1). Finally,

suppose that x1 ∈ I
+ ∪ I− and Var [mI(t)] = σ2

I
. Then,

Algorithm 1 (lines 23 through 34) can both determine which
set x1 belongs to (i.e., either I+ or I−) and estimate C1 to
precision α · C1 with probability at least p. The number of
required measurements is γ = O

((
1 +

σ2
I

N·α2C2
1

)
· ln 1

1−p

)
.

Proof: Let M+
K = 1

K ·
∑K

k=1 mI+ (tk). We know that both
E

[
M+

K

]
= E [mI+ (t·)] and Var

[
M+

K

]
= 1

K · Var [mI+ (t·)]

are true. Thus, if we let K be O
(
Var[mI+ (t·)]

α2·C2
1

)
, Chebyshev’s

inequality tells us that we can obtain∣∣∣M+
K −E [mI+ (t·)]

∣∣∣ < α

2
·C1

with constant probability larger than 1
2 (see, e.g., [21]). There-

fore, if we estimate E [mI+ (t·)] by taking the median of
O

(
log 1

1−p

)
i.i.d. M+

K variables, the Chernoff bound guarantees
we will estimate E [mI+ (t·)] to precision α

2 ·C1 with probability
at least 2+p

3 . The union bound tells us that if we also estimate
both E [mI− (t·)] and E [mIN (t·)] in a similar fashion we will
locate x1 with probability at least p.

Continuing, we note that the measurement assumptions
from Section I-B imply that Var [mI+ (t·)] is O

(
σ2
I
/N

)
.

Furthermore, if the subset I+/− containing x1 consists of two
intervals we may utilize this lemma again with fixed α ≈ 1

2
to determine which interval actually contains the spike. The
desired result follows. �

We are now able to conclude this section with a general
recovery guarantee for Algorithm 1.

Theorem 3. Suppose there is a single spike C1 · δ(x − x1)
in I ⊆ [0, 1]. Let σ2

I
= Var [mI(t)]. Fix α ∈ (0, 1

2 ), and
p ∈ (0, 1). Then, a variant of Algorithm 1 can output x̃1, C̃1
for which both

∣∣∣x̃1−x1
∣∣∣ ≤ 1

2N and
∣∣∣C̃1−C1

∣∣∣ ≤ α·C1 are true with
probability at least p. The number of required measurements
is

O
ln N +

σ2
I

C2
1

+
σ2
I

N · α2C2
1

 · ln (
ln N
1 − p

) .
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Proof: Lemma 1 guarantees the location of x1 within either
I+ or I− with probability at least 1 − (1 − p)/2 using the
stated number of measurements. An application of Lemma 2
using the discovered I+/− subsets in order to approximate
C1 to the desired α-tolerance also with probability at least
1 − (1 − p)/2 then finishes the proof. �

The proof of Theorem 3 follows easily from Lemmas 1
and 2. However, as one might expect, the performance of
Algorithm 1 can be calculated explicitly the characteristics
of the measurement noise are better known.

A. Special Case: Gaussian Measurement Noise

We now consider Lemma 1 in the context of Gaussian
white measurement noise with unknown mean µ. The goal of
this section is to derive explicit measurement bounds for this
special case (i.e., with explicit numerical constants). As above,
we assume that C1 is positive (C1 negative is analogous) and
let I+

c be the left or right subset of I+ containing x1 in the
current iteration of Algorithm 1 line 7’s “while”-loop. Call
the other subset I+

w and suppose that mI+
w (t) ∼ N

(
µ, σ2

I+
w

)
. As

in the proof of Lemma 1 we will define εI+
w (C1) to be the

probability (in excess of 1/2) that a measurement on the half
of the subset containing x1 is larger than a measurement on
the half of the subset not containing x1. Thus, we have

εI+
w (C1) =

1
2
−P

[
(mI+

c (t) − mI+
w (t)) < 0

]
. (10)

In the Gaussian noise case we know that (mI+
c (t) − mI+

w (t)) ∼
N

(
C1, 2σ2

I+
w

)
. Therefore, we know that

εI+
w (C1) =

−1
2
· erf

(
−C1

2σI+
w

)
=

C1

2
√
πσI+

w

 ∞∑
n=0

(−1)n

n!(2n + 1)

(
C1

2σI+
w

)2n .
Continuing, we bound εI+

w (C1) away from zero in the noisy
setting where C1 < 2σI+

w (i.e., when the spike’s magnitude is
less than 2 standard deviations). We have

εI+
w (C1) >

C1

2
√
πσI+

w

1 − 1
3

∞∑
n=1

(
C1

2σI+
w

)2n

n!


≥

C1

6
√
πσI+

w

4 − e

(
C1

2σ
I+

w

)2 .
Substituting this expression into the Chernoff bound we can
see that 2 ln

(
1

1−p

)
/erf 2

(
C1

2σI+
w

)
, which is itself less than

2 ·max


36π · σ2

I+
w
· ln

(
1

1−p

)
(
4 − exp

(
C2

1
4·σ2

I+
w

))2

·C2
1

,
ln

(
1

1−p

)
erf 2(1)

 , (11)

measurements suffice to correctly decide I+
c with error prob-

ability at most 1 − p for any magnitude C1 (see proof of
Lemma 1). Finally, we note that when the sign of C1 is

unknown we must we must perform two binary searches (one
in case C1 is positive, and another in case C1 is negative).
Thus, we have to double the measurement bound shown in
Equation 11 for all but the first iteration of Algorithm 1’s
line 7 – 22 loop. We can now bound the total number of
measurements required by Algorithm 1 to locate x1 within
either I+ or I− with probability at least p.

Let σ2 be the variance of the mean µ Gaussian white
measurement noise over the entire interval [0, 1]. Then, we
must utilize Equation 11 at most log2 N times to locate x1
within a sufficiently small I+ or I−. We are able to bound the
total number of sufficient measurements by

2 · ln
( log2 2N

1−p

)
erf 2

(
C1
2σ

) +

dlog2 Ne−1∑
n=1

4 · ln
( log2 2N

1−p

)
erf 2

( (√
2
)n
·C1

2σ

)
which in turn is bounded by

A := 2Aσ2 + 4

dlog2 Ne−1∑
n=1

A(
σ2
2n

)
 (12)

where

Aσ2 := max


36π · σ2 · ln

( log2 2N
1−p

)
(
4 − exp

(
C2

1
4·σ2

))2
·C2

1

,
ln

( log2 2N
1−p

)
erf 2(1)

 .
This number of measurements suffices to locate x1 to within
the given tolerance with probability at least p. We obtain the
following corollary of Lemma 1.

Corollary 1. Let σ2 be the variance of mean µ Gaussian
measurement noise over the interval [0, 1]. Fix p ∈ (0, 1). Then
Algorithm 1 can correctly locate a C1 magnitude spike within
either I+ or I− with probability at least p using less than

A = O
σ2

C2
1

+ ln(N)
 · ln (

ln(N)
1 − p

)
measurements (see Equation 12).

B. Summary: Single Spike Detection

To conclude, we note that by employing a binary search for
single spike recovery we are essentially transforming the spike
localization problem into O(ln N) binary detection problems.
Without loss of generality, at each stage of the binary search
we must decide whether measurements of the left subinterval
currently under consideration were generated by (i) a spike in
noise, or (ii) noise alone. The answer to this question entirely
determines whether the left or right subinterval becomes
the new interval of interest in the next stage of the binary
search. When viewed from this perspective, the single spike
recovery problem becomes equivalent to a series of statistical
detection/estimation problems (e.g., see [19], [22]). We simply
localize the spike by repeatedly detecting its presence in each
right/left subinterval. Hence, there are as many strategies for
recovering a single spike as there are strategies for detecting
the presence of a signal in noise. Other possible approaches
include the use of optimal sequential detection methods (e.g.,
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[23]) at each stage of the binary search. These methods could
be used to collect measurements dynamically until a decision
regarding the presence/absence of a spike can be made with
error probability below a user specified tolerance.

III. M S T

This section demonstrates how to utilize Algorithm 1 to
recover signals consisting of at most k spikes (i.e., how to
determine f in Equation 3). The solution approach will be
to partition [0, 1] into several smaller subsets of near-equal
length, so that each spike is isolated by itself in at least one
of the subsets. We then apply Algorithm 1 to each subset.
Algorithm 1 will recover each spike isolated in a subset by
Theorem 3. On subsets which don’t isolate a spike we will, at
worst, recover a “fake spike” with a magnitude small enough
to ignore. Thus, as long as Algorithm 1 succeeds with high
enough probability on each subset, we will recover good
estimates of all k spikes and nothing extra. An example of
a set of disjoint subsets of [0, 1] which isolates each spike
from all the others is constructed in the next section.

A. Recovering Multiple Spikes One at a Time

Given that any two distinct spike locations, x j1 and x j2 , are
assumed to have |x j1 − x j2 | >

1
N , one may represent [0, 1] by

its N subintervals,

s0 =

[
0,

1
N

)
, . . . , sN−1 =

[
1 −

1
N
, 1

]
, (13)

only k of which contain spikes (i.e., one may consider [0, 1]
to be a k-sparse array of length N). Keeping this in mind we
will demonstrate how to create q disjoint unions of these s j-
subsets, each of length O

(
1
q

)
, which will isolate each spike

from all the other (k−1) spikes with fixed probability. Several
of these disjoint unions can then be used to separate each of
the spikes from all the others with arbitrarily high probability.3

We begin by describing these disjoint unions of s j-subsets.
Let q be one of the first 2kblogk Nc prime numbers larger

than k. These primes are easily found via standard sieving
algorithms (see [24]). For each h ∈ [0, q) ∩ Z form the set

Iq,h =
⋃

j≡h mod q

s j (14)

and then set

Iq =
{
Iq,0, Iq,1, . . . , Iq,q−1

}
. (15)

The following Lemma demonstrates that a randomly con-
structed Iq is likely to contain many subsets of [0, 1] that
isolate a given spike from all the others.

Lemma 3. Fix an f containing at most k spikes (see Equa-
tion 3). Choose one of the first 2kblogk Nc prime numbers
larger than k uniformly at random. Then each x j, with prob-
ability at least 1

2 , is isolated in its associated Iq,h ∈ Iq. In
other words, for each x j there exists an Iq,h ∈ Iq so that

3In fact, using Ω(k2 ln N) of these disjount unions guarantees separation of
all k spikes from one another deterministically (i.e., with probability 1).

{x1, . . . , x j, . . . , xk} ∩ Iq,h = {x j} is true with probability at
least 1

2 .

Proof: We prove this result along the lines of similar work
in [25]. Each x j may collide with one of the other at most
(k − 1) spikes in a Iq,h-subset for at most blogk Nc values
of q by the Chinese Remainder Theorem (see [24]). Thus,
x j may collide with any of the other ≤ (k − 1) spikes for at
most (k − 1) · blogk Nc values of q. Hence, more than half
of the 2kblogk Nc potential q-values must isolate x j from
the other at most k−1 spike supports in one of its Iq-subsets. �

Looking at Lemma 3 we can see that if we select log2

(
k

1−p

)
q-primes independently and uniformly at random, and then
form their related Iq- subsets, we will isolate all of f ’s spikes
at least once with probability at least p. Hence, we can utilize
log2

(
2k

1−p

)
q-primes in order to guarantee that we fail in iso-

lating all spikes with probability at most 1−p
2 . Let qmax be the

largest of the randomly selected primes. If we also guarantee
that Algorithm 1 will fail (in the presence of an isolated spike)
on any of these at most qmax · log2

(
2k

1−p

)
total Iq,h-subsets with

probability at most 1−p
2 , we will assure the overall desired

success probability p. This can be accomplished by using
Algorithm 1 with enough measurements to ensure that it fails
in correctly locating an isolated spike at each binary search
stage with probability at most

1 − p

2 · qmax · log2

(
2k

1−p

)
· log2 N

. (16)

The end result will be that we correctly locate all spikes at
least once with probability at least p. We can then estimate
each located spike’s magnitude using Lemma 2.

To finish recovering all spikes, we simply return all the
spikes Algorithm 1 outputs (allowing only one x̃ j from each
s j interval) which have estimated magnitudes that are larger
than half the smallest spike magnitude we care to detect.
By not reporting spikes with smaller estimated magnitudes
we exclude the recovery of ‘fake’ or ‘insignificant’ spikes.
If we have prior knowledge of the smallest spike magnitude,
Cmin, in f (see Equation 3) we can guarantee f ’s approximate
recovery with high probability. If we have no prior knowledge
of the smallest spike magnitude, then all at most k spikes
with magnitude larger than any given Cmin value will be
returned. Thus, in general, we can guarantee the recovery of
all sufficiently large (i.e., at least Cmin in magnitude) spikes
in f with arbitrarilly high probability p.4 See Algorithm 2 for
multiple spike recovery pseudocode.

B. Bounding the Required Measurements

We are now ready to consider the measurements required to
locate all k spikes and estimate their magnitudes. Let σ2

[0,1] be
the variance of the measurement noise over [0, 1]. Then we can
see that Var

[
mIq,h (t)

]
will be O

(
σ2

[0,1]

q

)
. Applying Theorem 3

to each of the O
(
qmax · ln

(
2k

1−p

))
Iq,h-subsets with the required

4In particular, we may allow p to depend on N. For the purposes of proving
Theorem 2 we let p = 1 − 1/ log N.



8

Algorithm 2 NM T  D
1: Input: Maximum number of spikes k, Position toler-

ance N, magnitude tolerance α, smallest spike mag-
nitude of interest Cmin, success probability p, total
measurement budget B

2: Output: Estimates of magnitudes > 1
2Cmin, {C1, . . . ,Ck},

and their positions, {x1, . . . , xk}

3: Find all spikes at least once...
4: S PIKES ←− ∅
5: for j = 1, j < P = O

(
ln

(
k

1−p

))
, j + + do

6: q ←− Randomly select one of the 2kblogk Nc primes
> k

7: Form Iq (see Equation 15)
8: for each Iq,h ∈ Iq do
9: (x̃, C̃) ←− Algorithm 1 with input (Iq,h, 2N, α,

O
(
1 − Equation 16

)
, O (B/qP), γ from Lemma 2)

10: if |C̃| > 1
2Cmin then

11: S PIKES ←− S PIKES ∪ {(x̃, C̃)}
12: end if
13: end for
14: end for
15: Remove excess spike approximations...
16: {(x̃0, C̃0), (x̃1, C̃1) . . . } ←− Sort S PIKES by x̃’s
17: for n = 0, n < |S PIKES |, n + + do
18: while |xn − xn+1| ≤

N
2 do

19: S PIKES ← S PIKES − {(x̃n+1, C̃n+1)}
20: end while
21: end for
22: Return S PIKES

Algorithm 1 success probability guarantee from Equation 16,
we can see that we will need

O


qmax · ln N +

σ2
[0,1]

C2
min

 · ln2

qmax · ln2
(

N
1−p

)
1 − p




measurements whenever α = Ω
(
1/
√

N
)
.

To finish, we bound qmax in terms of k and N. Using results
from [26] it is not difficult to prove that the 2kblogk Ncth prime
larger than k is itself at most the[

2k logk N ·
(
2 +

1.2762
2 ln k ln N

+
1

2k logk N

)]th

prime number. Therefore, we can see that qmax is at most the(
5k · logk N

)th prime for all N ≥ k ≥ 3. Appealing again to
results from [26] we can see that

qmax ≤ 10k · logk N log2(5k · logk N). (17)

In fact, this bound is fairly pessimistic (especially for large k
and N). However, it is good enough to assert that we need no
more than

O
[ k · ln2 N · logk(k logk N) +

σ2
[0,1]

C2
min

+
σ2

[0,1]

N · α2C2
min

 ·
ln2

k · ln2
(

k ln N
1−p

)
· ln2 N

1 − p


]

(18)

measurements to find and estimate all k spikes with probability
at least p. We obtain the following theorem.

Theorem 4. Fix α ∈ (0, 1
2 ), p ∈ (0, 1), and Cmin ∈ R

+. Let
σ2 be the variance of m[0,1](t). Finally, suppose that there are
at most k spikes, C1 · δ(x − x1), . . . ,Ck · δ(x − xk), in [0, 1].
Then Algorithm 2 will, with probability at least p, output a
(x̃ j, C̃ j)-pair for every spike with |C j| ≥ Cmin such that both∣∣∣x̃ j − x j

∣∣∣ ≤ 1
2N and

∣∣∣C̃ j − C j

∣∣∣ ≤ α · Cmin are true. The number
of required measurements is bounded above by Equation 18.

C. Discussion

It is worth mentioning that the measurement bounds for
Theorem 4 can be improved slightly by using adaptive group
testing methods from [27] together with Algorithm 1. How-
ever, the related constructions are less straightforward and
have universal separation guarantees which yield unnecessarily
complicated theorems in the presence of measurement noise.
Furthermore, a careful comparison of these bounds reveals that
Equation 18’s work is only slightly improved, if at all, in the
noisy case (i.e., when σ2

[0,1] is relatively large). In the no noise
case (i.e., when σ2

[0,1] = 0, p fixed) Equation 18 is improved
by roughly a O

(
ln

(
k ln N
1−p

))
factor. However, we are primarily

interested in sublinear-time noisy sparse recovery here. Hence,
we have focused on deriving the best achievable bounds with
respect to the

σ2
[0,1]

C2
min

-term using the simplest possible methods.
Note that the Iq-sets (see Equation 15) can be created non-

adaptively before any measurements are taken. As presented
here, Algorithm 1 requires the fast adaptive bisection of
its initial input subset. Assuming that both bisecting and
measuring intervals can be done at unit cost, Algorithm 2
runs in O

((
σ2

[0,1]

C2
min

+
σ2

[0,1]

N·α2C2
min

+ k
)
· lnO(1)

(
N

1−p

))
-time. Hence, the

required runtime is sublinear in N for reasonable noise levels.
We finish the present discussion by noting that Algorithm 2

can be improved in several respects in practice. First, if we
adaptively select and create the Iq-subsets with smaller q-
values as more spikes are discovered, we should be able to
reduce the measurement costs of Algorithm 2 significantly
on average. Furthermore, if measurements are also fast to
construct on the fly, adaptive creation of the Iq-subsets should
also decrease the runtime in practice. Lastly, Algorithm 2
as presented here is highly parallel. That is, each line 9
application of Algorithm 1 can effectively be carried out
independently of all the others at the same scale. In practice
far fewer measurements will be utilized overall if the subsets
of [0, 1] that are identified as most likely containing no
spikes after the ith application of Algorithm 1 in line 9 are
subsequently removed from consideration in all Iq,h subsets
thereafter. Similarly, removing identified spike locations from
consideration as they are discovered should also reduce mea-
surement usage in practice.

D. Special Case: Gaussian Measurement Noise

In this section we derive explicit upper bounds for the
number of measurements required in order to recover all k
spikes in the special case of Gaussian measurement noise.
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Appealing to Section II-A we can see that the number of
required Algorithm 1 measurements for each Iq,h-subset is
always bounded above by

Ã :=
2 · ln

(
1

1− p̃

)
erf 2

( √
k·Cmin
2σ

) +

dlog2(N/k)e∑
n=1

4 · ln
(

1
1− p̃

)
erf 2

( (√
2
)n
·
√

k·Cmin

2σ[0,1]

) (19)

when the q-primes are chosen as per Lemma 3. All that
remains for us to do is to bound (i) the number of Iq,h-
subsets to which we will have to apply Algorithm 1, and (ii)
the probability p̃ with which each Algorithm 1 binary search
decision must succeed.

Let q j be the jth prime number. Thus, q1 = 2, q2 = 3, q3 =

5, . . . Let M be such that qM = qmax. From Section III-B
we know that M is bounded by 5k · logk N for all N ≥ k ≥
3. Assuming that we choose

⌈
log2

(
2k

1−p

)⌉
primes uniformly

without replacement as per Section III, we can see that the total
number of Iq,h-subsets to which we must apply Algorithm 1
is bounded by

S 1 :=
M∑

j=M−
⌊
log2

(
2k

1−p

)⌋ q j

< 10k log2

(
4k

1 − p

)
logk N log2(5k logk N). (20)

Similarly, the total number of required binary search decisions
over the course of these Algorithm 1 executions is bounded
above by

S 2 :=
M∑

j=M−
⌊
log2

(
2k

1−p

)⌋ q j · log2(2N/q j)

< S 1 · log2

(
2N
k

)
. (21)

Hence, in order to guarantee that an incorrect binary search
decision is made with probability at most 1−p

2 , it suffices
to set 1 − p̃ =

1−p
2·S 2

in Equation 19. Combining Equa-
tions 19, 20, and 21 brings us to the following Corollary to
Theorem 4.

Corollary 2. Let σ2 be the variance of mean µ Gaussian
measurement noise over the interval [0, 1]. Fix α ∈ (0, 1

2 ),
p ∈ (0, 1), and Cmin ∈ R

+. Finally, suppose that there are at
most k spikes, C1 ·δ(x− x1), . . . ,Ck ·δ(x− xk), in [0, 1]. Then, at
most S 1 · Ã measurements are required in order to locate all
spikes with magnitude at least Cmin to within 1

N -tolerance with
probability at least p. Furthermore, the number of required
measurements is bounded above by Equation 18.

IV. C

The adaptive algorithm (i.e., Algorithm 2) described and
analyzed throughout the majority of this paper is only one
of many potential recovery methods that can be created by
combining combinatorial group testing constructions (e.g., see
[18], [27]) with signal estimation and detection methods (e.g.,
see [19], [22]). More specifically, any k-disjunct group testing
matrix (see [18]) will be guaranteed to isolate the k nonzero

signal components of f from one another. Thus, they can be
used to segment the search space (i.e., [0, 1]) into smaller
regions each containing only one signal component or target.
Signal detection and estimation methods can then be used to
search each of these smaller regions for a single isolated signal
component.

As previously mentioned, this type of search and recovery
scheme is very easy to parallelize since each disjoint region
of the search space dictated by the group testing construction
can be searched independently. This essentially follows from
the fact that the group testing methods we have considered
here to segment the search space are themselves non-adaptive,
despite the fact that each smaller resulting region is itself
searched adaptively. Although this non-adaptive partitioning
of the search space promotes parallelism, it may ultimately
hurt performance. In practice the total number of utilized
measurements can probably be reduced further by adaptively
partitioning the search space into smaller regions.

Another potential path toward improving the search space
partitioning scheme utilized herein would be to adapt the tech-
niques recently proposed in [8] to our adaptive measurement
model (i.e., see Equation 1). In particular, the method utilized
in [8] to extend their 1-sparse recovery technique to a k-
sparse recovery scheme might allow a modest reduction in
Equation 18 (e.g., by a multiplicative logarithmic factor). This
would improve the results reported herein concerning noisy
recovery. However, we will leave more careful consideration
of such improvements and modifications to future work.
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A

It suffices to consider the discrete case where a k-sparse
f ∈ RN is known a priori to have f j = Cmin for all j ∈ supp( f ).
We sketch the proof here (see appendix A of [2] for a detailed
proof). The non-adaptive measurements are given by an m×N
random matrix, M, with each row, M j, independently drawn
from the zero-mean isotropic Gaussian distributionN(0, IN×N).
We define the background noise, P, to be an m × N random
real-valued noise matrix consisting of m ·N independently and
identically distributed (i.i.d.) normal random variables. Finally,
we assume that we have a single detector which, at time t j ∈

R
+, returns a noisy linear measurement (i.e., a discrete dot

product along the lines of Equation 1) of the form

〈M j, f + P j〉 = 〈M j, f 〉 + 〈M j,P j〉. (22)

Let ~1k be the k length vector of ones and IN×N be the N×N
identity matrix. We then define ~v to be Cmin ·~1k. Next, for each
U ⊂ [1,N] ∩ N with |U | = k, we will define MU to be the
m × k matrix formed by selecting the columns of M indexed
by U. Finally, we define the random vectors ~p, ~w ∈ Rm to
have p j = 〈M j,P j〉 ∼ N(0, ‖M j‖

2
2 · σ

2/N), conditioned on
M, and w j ∼ N(0, σ2), respectively, for all j ∈ [1,m] ∩N.

Order the k-element subsets of [1,N]∩N lexicographically
and then index them from 1 to Ñ =

(
N
k

)
. For any i ∈ [1, Ñ]∩N

we will let U[i] denote the ith subset in this ordering. Next, let
D be an m ×m diagonal matrix with D j, j = ‖M j‖

2
2 ·σ

2/N for
each j ∈ [1,m]∩N. From above we know that D → σ2 ·Im×m

as N → ∞ almost surely. It is not difficult to see that non-
adaptive Gaussian measurements of f will produce a random
vector of the form Pi =MU[i]~v + ~p ∼ N

(
MU[i]~v,D

)
for some

i ∈ [1, Ñ] ∩N. The Kullback-Leibler divergence between two
such potential non-adaptive measurement distributions is

D (Pi‖Pi′ ) =
1
2

((
MU[i]~v −MU[i′]~v

)T
D−1 (

MU[i]~v −MU[i′]~v
))
.

Furthermore, this divergence is a function of the random non-
adaptive measurement matrix M. Hence, we have that

D (Pi‖Pi′ ) =

C2
min

σ2

 · (k − ∣∣∣U[i] ∩ U[i′]
∣∣∣) · m∑

j=1

N
Y j
· Z2

j

where Y j = ‖M j‖
2
2 ∼ χ

2
N and Z j ∼ N (0, 1) are dependent for

each j ∈ [1,m] ∩N.
More carefully considering the dependence of Y j ∼ χ

2
N

and Z j ∼ N (0, 1) for each j ∈ [1,m] ∩ N we can see
that it is entirely due to the at most 2k standard normal
variables making up the entries ofM j indexed by U[i]∪U[i′].
Furthermore, the net contribution of these at most 2k variables
to Y j will always be nonnegative. Therefore we will have

E [D (Pi‖Pi′ )] ≤
C2

min

σ2

 (k − ∣∣∣U[i] ∩ U[i′]
∣∣∣) · m

1 − 2k−2
N

. (23)

The remainder of the proof depends on employing the
following weakened form of Fano’s inequality (see Lemma
2 in [9]). That is, the average probability of error, perror, in
performing a hypothesis test over a family of distributions
{P1, . . . ,PÑ} is bounded by

perror ≥ 1 −
1

Ñ2 ·
∑Ñ

i,i′=1 D (Pi‖Pi′ ) + log 2

log
(
Ñ − 1

) .

Considering the expected average probability of success as a
function of the random non-adaptive measurement matrix we
can see that

E
[
1 − perror

]
≤

k

log
(
Ñ − 1

) C2
min

σ2

 m
1 − 2k−2

N

+
log 2

log
(
Ñ − 1

)
by Equation 23. Applying Markov’s Inequality we have

P

[
1 − perror ≥

1
2

]
≤

2k

log
(
Ñ − 1

) C2
min

σ2

 m
1 − 2k−2

N

+
2 · log 2

log
(
Ñ − 1

) .
If the right hand side of the inequality above is less than one
then the probability of choosing a Gaussian measurement ma-
trix capable of “almost always” decoding the correct support
of most sparse vectors, f , will also be less than one.

Finishing, we can see that P
[
1 − perror ≥

1
2

]
< 1

2 whenever

m <

1 − 2k−2
N

8

 · σ2

C2
min

·
log

(
Ñ − 1

)
k

with N ≥ 2k ≥ 32. Theorem 1 follows.
Note that methods above can be used even more directly

to prove that non-adaptive Bernoulli measurement matrices,
M ∈ {−1, 1}m×N , can also only accommodate reliable sparse
recovery in the presence of Gaussian background noise if m is
Ω

(
σ2

C2
min
· log(N/k)

)
. Similarly, we expect that more complicated

modifications of this argument can also be used to prove that
this scaling for m is also required for other random non-
adaptive measurement ensembles utilized for sparse recovery
problems.


