
EMPIRICAL EVALUATION OF TWO DETERMINISTIC SPARSE FOURIER TRANSFORMS

M. A. Iwen

Institute for Mathematics and Its Applications (IMA)
University of Minnesota

http://www.ima.umn.edu/∼iwen/index.html
iwen@ima.umn.edu

ABSTRACT

This paper empirically evaluates a recently proposed Deter-
ministic Sparse Fourier Transform algorithm (hereafter
called DSFT) for the first time. Our experiments indicate
that DSFT is capable of guaranteed general frequency-sparse
signal recovery using subNyquist sampling for realistic band-
width values. Furthermore, we show that both variants
of DSFT have fast reconstruction runtimes. In fact, the
sublinear-time DSFT variant is shown to be faster than a
traditional Fast Fourier Transform (FFT) for highly-sparse
wideband signals.

Index Terms— Fourier transforms, Discrete Fourier
transforms, Algorithms, Signal Processing

1. INTRODUCTION

Compressed Sensing (CS) is an exciting signal acquisition
and recovery paradigm in which highly compressible signals
can be recovered from a few linear measurements [4]. In this
paper we focus on a particular type of compressible signal,
namely signals consisting of a small number of significant
Fourier modes. Thus, we sample a frequency-sparse signal f
on a small deterministic sample set and then reconstruct the
signal by returning a list of its predominant frequencies. This
sensing paradigm has proven useful in many areas, including
MR imaging [5, 6] and wideband analog-to-digital converter
(ADC) design [7, 8].

Existing CS-based Fourier algorithms [4, 9, 10, 11] are
all capable of producing incorrect results with some small
probability, making them inappropriate for failure intolerant
applications. Furthermore, the reconstruction algorithms of
[4, 9] (based on linear programming and orthogonal match-
ing pursuit, respectively) exhibit polynomial runtime depen-
dence on the signal’s bandwidth. Hence, their runtime re-
quirements can be prohibitively expensive for wideband sig-
nals. Recently proposed Deterministic Sparse Fourier Trans-
form (DSFT) [1, 2, 3] methods are both deterministic and
(sub)linear-time in bandwidth. Furthermore, DSFT is con-
sistent with recently proposed subNyquist ADC designs [7,

8]. These ADC designs, which are based on random sam-
pling, currently require the implementation of random clocks,
pseudo-random switches, etc.. Due to its deterministic nature,
DSFT would allow one to build similar circuits with fixed
sample sets in the hardware, thus simplifying circuit design.

DSFT is the first deterministic CS-based Fourier algo-
rithm guaranteed to exactly reconstruct every N-bandwidth
signal consisting of k � N non-zero frequencies. In this pa-
per, we empirically evaluate two variants of DSFT. Our ex-
periments show that DSFT can reconstruct Fourier-sparse sig-
nals using subNyquist sampling at modest bandwidth values.
Furthermore, we show that both DSFT variants are fast. The
sublinear-time DSFT variant is faster than a traditional Fast
Fourier Transform (FFT) for highly-sparse wideband signals.

The remainder of this paper is organized as follows. In
Section 2 we introduce necessary background and terminol-
ogy. Section 3 gives general information concerning our em-
pirical evaluation of DSFT. Sections 4 and 5 then give specific
sampling and runtime results, respectively. Finally, we con-
clude with a brief discussion in Section 6.

2. PRELIMINARIES

Throughout the remainder of this paper we will restrict our
attention to complex-valued signals, f : [0, 2π] → C, which
are band-limited and frequency-sparse. Hence, we assume
there exists an N ∈ N such that for each signal f ,

Ω f =
{
ω ∈ Z

∣∣∣ f̂ (ω) 0 0
}
(
(
−

⌈N
2

⌉
,
⌊N

2

⌋]
.

Furthermore, we assume that k = |Ω f | � N. We will re-
fer to any such f as a k-frequency superposition. For any
k-frequency superposition f , we will refer to the k non-zero
elements of Ω f as f ’s energetic frequencies. Furthermore, we
will refer to the process of either calculating or measuring f
at any t ∈ [0, 2π] as sampling from f . Finally, let p0 = 1 and
pl be the lth prime natural number. We define q ∈ N to be such
that

pq−1 < k ≤ pq.

Recently, a Deterministic Sparse Fourier Transform algo-
rithm (DSFT) [1, 2, 3] was developed by building upon the

Algorithm 1 L-T DSFT
1: Input: Signal pointer f , integers k ≤ N
2: Output: R̂s, a sparse representation for f̂
3: Initialize R̂s

← ∅

4: Set K = 2 · k · blogk Nc, q so that pq−1 < k ≤ pq

5: for j from 0 to K do
6: Apq+ j ← f (0), f

(
2π

pq+ j

)
, . . . , f

(
2π(pq+ j−1)

pq+ j

)
7: Âpq+ j ← FFT[Apq+ j]
8: end for
9: for ω from 1 −

⌈N
2
⌉

to
⌊N

2
⌋

do
10: Re {Cω} ← median

{
Re

{
Âpq+j (ω mod pq+j)

} ∣∣∣ 0 ≤ j ≤ K
}

11: Im {Cω} ← median
{
Im

{
Âpq+j (ω mod pq+j)

} ∣∣∣ 0 ≤ j ≤ K
}

12: end for
13: R̂s

← (ω,Cω) entries for k largest magnitude Cω’s

number theoretic hashing techniques first proposed in [12,
13]. For a given input signal f , DSFT outputs f ’s energetic
frequencies along with their Fourier coefficients. See Algo-
rithm 1 for a variant of DSFT with runtime linear in the input
signal f ’s bandwidth, N. We will hereafter refer to Algo-
rithm 1 as Linear-Time DSFT.

The following theorems are proven in [2]. Theorem 1
concerns Linear-Time DSFT. Theorem 2 concerns a more
complicated and faster variant of DSFT, hereafter called
Sublinear-Time DSFT.

Theorem 1. Suppose f is a k-frequency superposition. Then,
Linear-Time DSFT (i.e., Algorithm 1) can exactly recover f in

O
(
N · k · log2 N·log2(k log N)

log2 k

)
time. The number of samples taken

from f will be O
(
k2 · log2

k N · log(k log N)
)
.

Theorem 2. Suppose f is a k-frequency superposition. Then,
Sublinear-Time DSFT (see [2]) can exactly recover f in

O
(
k2 ·

log2 N·log2(k log N)·log2 N
k

log2 k·log log N
k

)
time. The number of samples

taken from f will be O
(
k2 ·

log2 N·log(k log N)·log2 N
k

log2 k·log log N
k

)
.

Suppose that k = Θ(Nα). In this case Theorem 1 tells
us that Linear-Time DSFT exactly recovers k-frequency su-
perpositions in O

(
N · k · log(N)

)
time using O

(
k2 log(N)

)
samples. Similarly, Theorem 2 guarantees that Sublinear-
Time DSFT exactly recovers k-frequency superpositions in
O
(
k2 log4 N

)
time using O

(
k2 log3 N

)
samples. In signal

processing applications the subNyquist sampling required to
compute either DSFT variant’s FFTs can be accomplished
via O(k · polylog(N)) parallel O(k · polylog(N))-rate analog-
to-digital converters. Finally, we note that both Linear-Time
and Sublinear-Time DSFT are tolerant to arbitrary bounded
noise. See [2] for details.

3. EMPIRICAL EVALUATION

Both DSFT variants were coded in C. All experiments
were run on a QuadCore2 2.4 Ghz Ubuntu Linux ma-
chine with 3 GB of RAM. We used FFTW 3.2 [14] with
an FFTW MEASURE plan as our FFT for runtime compar-
isons in Section 5. All bandwidth values (i.e., array lengths)
used for generating our graphs were powers of two.

All N-bandwidth k-frequency superpositions used for
tests below where constructed as follows. First, k frequencies
were selected uniformly at random from

(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
. Next,

each randomly selected frequency was given a uniformly
random phase. Their coefficient magnitudes were left as 1.

Despite the fact that both DSFT variants are guaranteed to
deterministically recover any such superposition, every data
point in the next two sections’ graphs is the result of 1000
runs on randomly generated superpositions. During all runs
the errors of both DSFT variants were monitored. Their pre-
cisions were within an order of magnitude of FFTW’s for all
energetic superposition frequency coefficients in all tests re-
ported on below. Hence, in the noise-free case DSFT behaves
as expected in terms of ‘exactly reconstructing’ sparse super-
positions.

4. DSFT SAMPLING REQUIREMENTS

Figure 1 contains graphs of our DSFT implementations’ sam-
pling requirements. The left graph contains the number of
samples (i.e., function evaluations) used by Sublinear-Time
DSFT to recover k-frequency superpositions at four different
bandwidth values. The left graph’s vertical axis is in terms of
bandwidth-fraction sampled

(
i.e., DSFT samples

bandwidth N for each curve
)
.

Thus, for example, we can see that Sublinear-Time DSFT can
recover any 8-frequency superposition with bandwidth 219 by
sampling the superposition less than 218 times (i.e., by using
less than half the samples a full FFT requires).

The right graph in Figure 1 compares the sampling re-
quirements of Linear-Time and Sublinear-Time DSFT. This
graph plots, for various bandwidth values, the maximum
number of frequencies a superposition can contain and still
be recovered by (Sub)Linear-Time DSFT using subNyquist
sampling. Looking at Figure 1’s right graph we can see
that Linear-Time DSFT can use a sublinear number of sam-
ples to recover superpositions containing (roughly) an order
of magnitude more frequencies than can be recovered by
Sublinear-Time DSFT using sublinear sampling. For exam-
ple, Sublinear-Time DSFT can recover superpositions con-
taining at most 14 frequencies at bandwidth 219 using fewer
than 219 samples, whereas Linear-Time DSFT can recover
superpositions containing over 100 frequencies.

Figure 2 explores the sampling required for both DSFT
variants’ coprime FFTs (i.e., the signals’ sizes whose FTs
we must calculate). In the left graph of Figure 2 we fixed
the bandwidth at 1024 and plotted, as the number of super-

Fig. 1. Sublinear-Time DSFT Sampling Requirements, and Both Variants’ Maximum Sparsity with subNyquist Sampling

Fig. 2. Largest FT Required for 1024-bandwidth Superpositions, and Largest FT Required for 8-Frequency Superpositions

position frequencies varied for both variants of DSFT, the
maximum signal’s size whose FT we had to calculate. FFTW
is also included for reference. In the right graph we fixed the
number of superposition frequencies at 8 and plotted, as band-
width size varied, the maximum signal’s size whose FT we
had to calculate. Looking at Figure 2 we note that for highly-
sparse signals with bandwidths larger than 128, both DSFT
variants’ parallel FFTs are all of sublinear-size signals (i.e.,
their parallel ADCs would all sample at subNyquist rates).
Furthermore, as before, we note that Linear-Time DSFT has
milder sampling (rate) requirements than Sublinear-Time
DSFT.

5. DSFT RUNTIME

Figure 3 contains graphs of both DSFT variants’ runtimes
(averaged over 1000 runs per data point as per Section 3).
The left graph compares Linear-Time and Sublinear-Time
DSFTs’ runtimes (in milliseconds) for 1024-bandwidth su-
perpositions containing various numbers of energetic fre-
quencies. FFTW’s runtime is included for reference. As we

can see, Sublinear-Time DSFT is indeed faster than Linear-
Time DSFT for all sparsity levels. However, both variants
required less than 5 ms for all recorded runs.

The right graph of Figure 3 plots the runtimes of both
DSFT variants for 8-frequency superpositions with vari-
ous bandwidths. Looking at the left graph we can see that
Sublinear-Time DSFT is faster than Linear-Time DSFT for all
bandwidth values greater than 128. Likewise, Sublinear-Time
DSFT is faster than FFTW for all bandwidth values greater
than 218. More generally, Sublinear-Time DSFT will be faster
than FFTW for all highly-sparse wideband superpositions.

6. CONCLUSION

In this paper we empirically evaluated two variants of DSFT,
a recently proposed Fourier Transform method for frequency-
sparse signals. During the course of our evaluation we
demonstrated that DSFT is capable of guaranteed sparse su-
perposition recovery using subNyquist sampling for realistic
bandwidth sizes.

We conclude by noting that Monte-Carlo versions of both

Fig. 3. Runtime of DSFT at Various Sparsity Levels, and Runtime of DSFT at Various Bandwidths

DSFT variants exist. If the user is willing to incorrectly cal-
culate an N-bandwidth k-frequency superposition’s FT with
probability 1

NΘ(1) , the number of samples required by Linear-
Time DSFT can be reduced to O(k · logk N · log2 N). It’s run-
time will be O(N · logk N · log3 N). Similarly, Sublinear-Time
DSFT’s runtime/number of required samples can be reduced
to O(k · polylog N). See [2] for details.

7. REFERENCES

[1] M. A. Iwen, “A deterministic sub-linear time sparse
fourier algorithm via non-adaptive compressed sensing
methods,” in Proc. of ACM-SIAM symposium on Dis-
crete algorithms (SODA’08), 2008.

[2] M. A. Iwen, “Combinatorial sublinear-time
fourier algorithms,” Submitted. Available at
http://www.ima.umn.edu/∼iwen/index.html, 2008.

[3] M. A. Iwen and C. V. Spencer, “Improved bounds
for a deterministic sublinear-time sparse fourier algo-
rithm,” Conference on Information Sciences and Sys-
tems (CISS), 2008.

[4] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty
principles: Exact signal reconstruction from highly in-
complete frequency information,” IEEE Trans. Inform.
Theory, vol. 52, pp. 489–509, 2006.

[5] M. Lustig, D. Donoho, and J. Pauly, “Sparse MRI: The
application of compressed sensing for rapid MR imag-
ing,” Submitted for publication, 2007.

[6] R. Maleh, A. C. Gilbert, and M. J. Strauss, “Signal re-
covery from partial information via orthogonal match-
ing pursuit,” IEEE Int. Conf. on Image Processing,
2007.

[7] Jason Laska, Sami Kirolos, Yehia Massoud, Richard
Baraniuk, Anna Gilbert, Mark Iwen, and Martin Strauss,

“Random sampling for analog-to-information conver-
sion of wideband signals,” Proc. IEEE Dallas Circuits
and Systems Conference, 2006.

[8] Sami Kirolos, Jason Laska, Michael Wakin, Marco
Duarte, Dror Baron, Tamer Ragheb, Yehia Massoud,
and Richard Baraniuk, “Analog-to-information conver-
sion via random demodulation,” Proc. IEEE Dallas Cir-
cuits and Systems Conference, 2006.

[9] J. Tropp and A. Gilbert, “Signal recovery from partial
information via orthogonal matching pursuit,” Submit-
ted for Publication, 2005.

[10] A. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and
M. Strauss, “Near-optimal sparse Fourier estimation via
sampling,” ACM STOC, pp. 152–161, 2002.

[11] A. Gilbert, S. Muthukrishnan, and M. Strauss, “Im-
proved time bounds for near-optimal sparse Fourier rep-
resentations,” SPIE, 2005.

[12] S. Muthukrishnan, “Data Streams: Algorithms and
Applications,” Foundations and Trends in Theoretical
Computer Science, vol. 1, 2005.

[13] G. Cormode and S. Muthukrishnan, “Combinatorial Al-
gorithms for Compressed Sensing,” Technical Report
DIMACS TR 2005-40, 2005.

[14] M. Frigo and S. Johnson, “The design and implementa-
tion of fftw3,” Proceedings of IEEE 93 (2), pp. 216–231,
2005.

