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Abstract

We consider the conjectured O(N2+ε) time complexity of multiplying any two N × N ma-
trices A and B. Our main result is a deterministic Compressed Sensing (CS) algorithm that
both rapidly and accurately computes A · B provided that the resulting matrix product is
sparse/compressible. As a consequence of our main result we increase the class of matrices
A, for any given N × N matrix B, which allows the exact computation of A · B to be carried
out using the conjectured O(N2+ε) operations. Additionally, in the process of developing
our matrix multiplication procedure, we present a modified version of Indyk’s recently pro-
posed extractor-based CS algorithm [12] which is resilient to noise.

Key words: algorithms, analysis of algorithms, approximation algorithms, computational
complexity

1 Introduction

Multiplying two arbitrary N × N matrices requires Ω(N2) operations (e.g., to read
the input matrices). Naive multiplication of two N × N matrices uses Θ(N3) oper-
ations. It is conjectured that for any ε > 0, one can multiply two N × N matrices
with O(N2+ε) operations, and this result would follow from various combinatorial
and algebraic conjectures [4,7].

Recent approaches to matrix multiplication include the use of tensor product con-
structions to produce algorithms to multiply two large matrices. The current best
algorithm for multiplying two N × N matrices [7] combines tensor product con-
structions with a result from additive combinatorics due to Salem and D. C. Spencer
[17] to derive an algorithm requiring O(N2.376) operations. For a survey of matrix
multiplication complexity and related geometry results see [15]. In this paper, we
generalize the following theorem of Coppersmith (see [6]).
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Theorem 1 Let β = .29462... and ε > 0. One can multiply matrices of size N × N
and N × Nβ with complexity O(N2+ε).

Theorem 1 provides the current best result in terms of maximizing the number of
rows, m, an m×N matrix may have while still being able to be multiplied by another
N ×N matrix with complexity O(N2+ε). In the next section we present an algorithm
for computing the product of two N × N matrices using O(N2+ε) operations under
the assumption that the product is sparse in each column. As a result, we generalize
Theorem 1 with respect to the types of N × N matrices A we may multiply by any
given N × N matrix B with the conjectured complexity.

2 Preliminaries

Throughout the remainder of this paper we will utilize the standard Frobenius ma-
trix norm. Let A be an N × N complex-valued matrix. A’s Frobenius norm, ‖A‖F, is
defined as

‖A‖F =

√√√ N∑
i=1

N∑
j=1

|Ai, j|
2. (1)

Here Ai, j is A’s ith row’s jth entry. Similarly, Ai will denote A’s ith row and A j will
denote A’s jth column.

Our main result deals with compressible matrices (i.e., matrices which consist of
a sparse representation contaminated with additional noise terms). We say that a
complex-valued vector, v ∈ CN , is (C, γ)-compressible for fixed C, γ ∈ R+, if there
exists an ordering of v’s elements by magnitude,

|v j1 | ≥ . . . ≥ |v jm | ≥ . . . ≥ |v jN |, (2)

such that |v jl | ≤ C · 2−γ·l for all 1 ≤ l ≤ N. Furthermore, we will say that a vector
containing only k nonzero-elements, uopt

k , is k-optimal with respect to vector v if

‖v − uopt
k ‖

2
2 =

N∑
l=k+1

|v jl |
2 = O

(
C2

γ
· 4−γ·k

)
. (3)

Note that the k-optimal error
‖v − uopt

k ‖
2
2 (4)

is unique for each v ∈ CN . Finally, we will say that an N×N complex-valued matrix
A is compressible, or (C, γ)-compressible, if all of A’s column (or row) vectors are
(C, γ)-compressible. For a compressible N × N matrix A, we will let Uopt

k denote
any N × N matrix minimizer of

‖A − Uk‖
2
F (5)
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over the class of matrices containing ≤ k non-zero entries per column (or row).
Without loss of generality we will assume column compressibility from now on.

2.1 Compressed Sensing

Let v ∈ CN and Ψ be a complex-valued N × N matrix. Furthermore, suppose that
Ψ · v is sparse/compressible (e.g., (C, γ)-compressible). Compressed Sensing (CS)
methods provide a K ×N measurement matrix,M, with K minimized such that the
k most significant entries of Ψ · v can be recovered from the K-element result of

M · Ψ · v. (6)

Standard algorithms for recovering/approximatingΨ ·v’s largest k entries in magni-
tude from the result of (6) include linear programming [9,3], orthogonal matching
pursuit [18], and various faster algorithms [11,16,8,14,12] for particular types of
measurement matricesM. For the purposes of this paper we will utilize a variant
of Theorem 2 (proved in [12]).

Theorem 2 Suppose that the vector Ψ · v ∈ CN contains ≤ k non-zero elements.
There exists a k · 2O(log2 log N) × N measurement matrix,M, which enables the exact
reconstruction ofΨ·v from the k·2O(log2 log N)-element result ofM·Ψ·v in k·2O(log2 log N)

time.

We concentrate on Theorem 2 for two reasons. First, the reconstruction method
outlined in [12] has a runtime complexity that is both sublinear in N (the vec-
tor dimension) and linear in k (the sparsity level). All deterministic variants of
[9,3,18,16,8,14] utilize reconstruction algorithms which are superlinear in either
N, k, or both. Furthermore, unlike fast CS methods with uniform error guaran-
tees (e.g., [11]), Indyk’s method is both deterministic and explicit (i.e., there is no
probability of failure). Although the uniformly random guarantees in [11] suffice
to demonstrate the existence of deterministic matrix multiplication algorithms, ver-
ifying any such algorithm’s correctness over all sparse signals is computationally
intractable.

3 Approximating Matrix Products

In this section we discuss how the combination of compressed sensing methods
with Coppersmith’s work (i.e., Theorem 1) can be used to (approximately) mul-
tiply two N × N matrices with O(N2+ε) operations when the product of the two
matrices is known to be sparse/compressible. However, in order to state our simple
CS based matrix multiplication method we must utilize a noise tolerant version of
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Theorem 2. By modifying Indyk’s recovery algorithm and measurement construc-
tion the following result can be obtained.

Theorem 3 Suppose that v ∈ CN , Ψ is a complex-valued N ×N matrix, and Ψ · v is
(C, γ)-compressible. Then, we may construct a

(
m + 1

γ

)
·2O(log2 log N)×N measurement

matrix,M, which allows a
(
m + 1

γ

)
·2O(log2 log N)-time reconstruction algorithm to use

the result ofM · Ψ · v and return a vector um such that

‖ Ψ · v − um ‖
2
2 ≤ ‖ Ψ · v − uopt

m ‖
2
2 +

∣∣∣ (Ψ · v) jm+1

∣∣∣2
N

.

Here,
∣∣∣ (Ψ · v) jm+1

∣∣∣ is the magnitude of the product’s (m + 1)st-largest entry/entries.

Theorem 3’s proof is analogous to Theorem 2’s proof, modulo complications due to
the presence of ‘noise’ (i.e., the exponentially decaying smaller magnitude entries
ofΨ·v). Due to the proof’s similarity to the work in [12] we will only sketch it here.

Proof Sketch:

If we want to recover the m largest magnitude entries of Ψ · v we will substitute

m + O

 log2 N + log
(

C
γ

)
γ

 (7)

for r (i.e., the sparsity level) everywhere in [12]. Furthermore, instead of using [8]’s
explicit CS construction we can just as easily use the related construction/theorems
in [14]. Thus, complex values are easily handled and each non-overflowing H row
can recover entries with enough accuracy to yield results along the lines of [14]’s
Theorems 2 and 3 (exponential decay).

We will consider the vector we want to recover, Ψ ·v, to consist of an exact r-sparse
vector (containing a few more than the m largest magnitude entries we ultimately
want to recover — see Equation 7) plus a noise vector containing all the remaining
entries (i.e., the exponentially decaying ‘noise’). As long as the sum of all the noise
terms is small enough, Indyk’s algorithm will work as before after it is modified as
follows:

First, we must modify [12]’s R procedure by replacing the line

“IF votes[ j] CONTAINS > dA/2 COPIES OF val THEN y j = val”
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with

“IF |votes[ j]| > 2dA/3 THENRe(y j) =MEDIAN OFRe(votes[ j]) AND Im(y j) =
MEDIAN OF Im(votes[ j])”.

This changes the proof of [12]’s Lemma 1 only in that now dA/3 vote changes are
needed to make any entry y j have a value more than the current cumulative noise
level from the true value (e.g., more than O(2−γ·m · N−2) from the correct value in
the final iterative call of R). Thus, if we set ε < 1/24, more than half of the
r-sparse portion of our input vector will be replaced by bounded noise after each
iteration.

Second, we note that the iterative nature of Indyk’s R procedure won’t de-
grade our final accuracy. Each iteration of R can multiply the additive noise
for every recovered entry by no more than N, resulting in R returning an
estimate y jl for each largest magnitude entry (Ψ · v) jl , 1 ≤ l ≤ m, with

|y jl − (Ψ · v) jl | = NO(log N) ·

 N∑
n=r+1

∣∣∣(Ψ · v) jn

∣∣∣ = NO(log N) ·
C · 2−γ·r

γ
. (8)

If r is replaced with Equation 7 we can maintain the additive error bounds needed
by [14]’s recovery algorithm to maintain its required accuracy during all O(log N)
iterative calls of the R procedure.

Finally, after we collect the output from the R procedure, we sort the output
entries by their magnitude and return the largest m of them as our sparse representa-
tion um. Because we are able to maintain the required accuracy of R’s output
(see preceding paragraph), an argument analogous to the proof of [14]’s Theorem
2 will give us our final result. �

With Theorem 3 in hand we are ready to consider matrix multiplication. Let A and
B denote two N × N matrices with complex entries. Furthermore, we suppose that
A · B is (C, γ)-compressible. To construct an approximate product matrix Um with

‖A · B − Um‖F = O
(
‖A · B − Uopt

m ‖F

)
(9)

we proceed as follows:

(1) Use a
(
m + 1

γ

)
· 2O(log2 log N) × N measurement matrix,M, as per Theorem 3 to

compute
P = (M · A) · B (10)

using Theorem 1. Provided that there exists some δ > 0 so that both m and 1
γ

are O(Nβ−δ) this can be accomplished in O(N2+ε) time.
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(2) Apply Theorem 3 to P j for all 1 ≤ j ≤ N to recover Um.

The total recovery time will be O(N1+β). We quickly obtain our main theorem.

Theorem 4 Let β− < .29462..., ε > 0, and A, B be N × N matrices. If A · B is
(C, γ)-compressible and both m and 1

γ
are O(Nβ

−

), then one can obtain an N × N
matrix Um such that

‖(A · B) − Um‖
2
F ≤ ‖(A · B) − Uopt

m ‖
2
F +

N∑
i=1

∣∣∣ (A · B)i
jm+1

∣∣∣2
N

in O(N2+ε) time.

Note that in the special case where A · B has ≤ m non-zero elements per column,
we have

N∑
i=1

∣∣∣ (A · B)i
jm+1

∣∣∣2
N

= 0. (11)

We obtain the following corollary.

Corollary 5 Let β− < .29462... and c, ε ∈ R+. Furthermore, let A and B denote
N × N matrices. If the product A · B has at most cNβ

−

non-zero elements in each
column, then A · B can be computed using O(N2+ε) operations.

Let A and B denote square N × N matrices, ε > 0, and c > 0. If A · B is compress-
ible in each column, we can use Theorem 4 to obtain a near-optimal best cN .29462

element-per-column approximation to A ·B using O(N2+ε) operations. More specif-
ically, if each column of the product A · B has at most cN .29462 non-zero elements,
then we can use Corollary 5 to calculate the product A · B exactly using O(N2+ε)
operations.

4 Discussion

In this paper we discussed how compressed sensing methods can be used to (ap-
proximately) multiply two square matrices quickly if the product is known to be
sparse. In the process, we have increased the class of N × N matrices A, for any
given N ×N matrix B, which allow A · B to be calculated exactly using O(N2+ε) op-
erations (see Corollary 5). Provided that A ·B contains at most O(Nβ

−

) non-zero en-
tries per column, it can be calculated exactly using O(N2+ε) operations. In contrast,
previous results [5,6] required that A contain O(Nβ) non-empty (i.e., non-sparse)
rows to achieve the same bound.

Furthermore, we have also provided results concerning the approximation of the
product of two (dense) N × N matrices in O(N2+ε) time. Any two matrices may be
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approximately multiplied using our method, and the result will be accurate to the
extent that the true product is compressible. The required measurement acquisition
(i.e., Equation 10) can either be accomplished via traditional matrix multiplication
or via lower complexity methods (e.g., Theorem 1). In the later case It is worth
mentioning that any additional advances in rapid matrix multiplication similar to
Theorem 1 will automatically strengthen our results. This is due to the reconstruc-
tion algorithm in Theorem 3 having O(m · Nε) runtime.

We finish by noting that in practice we may not know when a matrix product is
going to be column/row-sparse. Thus, although we have given a deterministic algo-
rithm which is guaranteed to accurately approximate such products, we won’t nec-
essarily know when our answers are accurate. Existing streaming algorithm tech-
niques [10,1] allow us to predict the sparsity (i.e., number of non-zero entries) of all
the matrix product’s columns/rows to within a small constant factor (e.g., 4) with
probability

(
1 − 1

NO(1)

)
in O(N2 · log N)-time [13]. Thus, in the general case (where

the matrix product’s sparsity is unknown) a Monte-Carlo variant of Corollary 5
holds.
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