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Abstract. We develop a fast phase retrieval method which can utilize a large class of local phaseless correlation-
based measurements in order to recover a given signal x ∈ Cd (up to an unknown global phase) in
near-linear O

(
d log4 d

)
-time. Accompanying theoretical analysis proves that the proposed algorithm

is guaranteed to deterministically recover all signals x satisfying a natural flatness (i.e., non-sparsity)
condition for a particular choice of deterministic correlation-based measurements. A randomized
version of these same measurements is then shown to provide nonuniform probabilistic recovery
guarantees for arbitrary signals x ∈ Cd. Numerical experiments demonstrate the method’s speed,
accuracy, and robustness in practice – all code is made publicly available.

In its simplest form, our proposed phase retrieval method employs a modified lifting scheme akin
to the one utilized by the well-known PhaseLift algorithm. In particular, it interprets quadratic
magnitude measurements of x as linear measurements of a restricted set of lifted variables, xixj , for
|j− i| < δ � d. This leads to a linear system involving a total of (2δ− 1)d unknown lifted variables,
all of which can then be solved for using only O(δd) measurements. Once these lifted variables, xixj
for |j − i| < δ � d, have been recovered, a fast angular synchronization method can then be used
to propagate the local phase difference information they provide across the entire vector in order to
estimate the (relative) phases of every entry of x. In addition, the lifted variables corresponding to
xjxj = |xj |2 automatically provide magnitude estimates for each entry, xj , of x. The proposed phase
retrieval method then approximates x by carefully combining these entry-wise phase and magnitude
estimates.

Finally, we conclude by developing an extension of the proposed method to the sparse phase retrieval
problem; specifically, we demonstrate a sublinear-time compressive phase retrieval algorithm which
is guaranteed to recover a given s-sparse vector x ∈ Cd with high probability in just O(s log5 s·log d)-
time using only O(s log4 s·log d) magnitude measurements. In doing so we demonstrate the existence
of compressive phase retrieval algorithms with near-optimal linear-in-sparsity runtime complexities.

Key words. Phase Retrieval, Ptychography, Angular Synchronization, Compressive Phase Retrieval, Sublinear-
time Algorithms
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1. Introduction. We consider the phase retrieval problem of recovering a vector x ∈ Cd,
up to an unknown global phase factor, from squared magnitude measurements

(1) b := |Mx|2 + n,

where b ∈ RD is the vector of phaseless measurements (with D ≥ d), M ∈ CD×d is a mea-
surement matrix, n ∈ RD denotes measurement noise, and, | · |2 : CD → RD computes the
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componentwise squared magnitude of each vector entry. Our objective is to design a compu-
tationally efficient and robust recovery method, AM : RD → Cd, which can approximately
recover x using the magnitude measurements b that result from any member of a relatively
large class of local correlation-based measurement matrices M ∈ CD×d.

Figure 1: A Typical Imaging Setup for Ptychography. 1

Phase retrieval problems of this form arise naturally in many crystallography and optics
applications (see, e.g., [52, 38, 27, 37]). As an illustrative example, Figure 1 presents a
typical imaging setup for a popular molecular imaging modality known as ptychography [45].
The figure shows a beam of electromagnetic radiation illuminating a small region of a test
specimen. Under certain conditions (for example, if the wavelength of the incident radiation
is of the same order as the atomic features in the specimen), the resulting diffraction pattern
contains information about the atomic structure of the region being imaged. Therefore, by
successively imaging shifts of the specimen, one might hope to deduce the complete atomic
structure from such measurements. Unfortunately, it can be shown that the diffraction pattern
measured by the detector corresponds to the (squared) magnitude of the Fourier transform of
the specimen being imaged, meaning, among other things, that all phase information is lost.
This is characteristic of many molecular imaging methods, where, either due to the underlying
physics or due to instrumentation challenges, the detectors are not capable of capturing phase
information. Therefore, a phase retrieval problem needs to be solved in order to recover the

1Image credits: Qian, Jianliang, et al. “Efficient algorithms for ptychographic phase retrieval.” Inverse
Problems and Applications, Contemp. Math 615 (2014): 261–280.
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underlying atomic structure. For ptychography applications, in particular, and restricting our
attention to one dimension, the acquired measurements are of the form

b`(ω) = |F [m̃ S`x] (ω)|2 ,

where x is the specimen of interest, m̃ is a localized illumination or window function (which
depends on the optical setup), S` denotes a shift/translation operator, and F denotes the
Fourier transform. Note that the Fourier intensity measurement b`(ω) corresponds to a specific
translate, or shift, ` of the unknown specimen x. Furthermore, we may assume that supp(m̃) ⊂
supp(x) since the imaging field of view is typically much smaller than the support of the
specimen.

Discretizing the problem on a uniform grid, we obtain

(bω)` =

∣∣∣∣∣
d−1∑
k=0

e
−2πiωk

d (m̃k xk+`)

∣∣∣∣∣
2

, ω, ` ∈ {0, 1, · · · , d− 1},

where x, m̃ ∈ Cd and (bω)` ∈ R is the analogous discrete measurement corresponding to
a (circular) `-shift of the unknown vector x. Due to the finite field of view of the imaging
system, we may also assume that m̃k = 0, k > δ, where δ ∈ Z+ and δ < d. Hence, we may
write2

(2) (bω)` =

∣∣∣∣∣
δ−1∑
k=0

(
e
−2πiωk

d m̃k

)
xk+`

∣∣∣∣∣
2

=

∣∣∣∣∣
δ−1∑
k=0

(mω)k xk+`

∣∣∣∣∣
2

, (mω)k := e
2πiωk
d m̃k.

The imaging process thus involves collecting measurements {(bω)`} for various Fourier frequen-
cies and overlapping image space shifts (ω, `) ⊆ Z2 ∩ [0, d− 1]2. Here, in (2), and throughout
the remainder of the paper, it is important to keep in mind that the parameter δ always
corresponds to the width of each window/mask mω. The fact that this support size, δ, is
significantly smaller that d is what leads to the locality of our proposed measurements.

As we will see in §2, our proposed measurement constructions are identical to (2) for
a specific collection of Fourier frequencies and spatial shifts. We also note that (2) can be
interpreted as squared magnitude correlation measurements of the unknown vector x with the
local (since δ � d) masks mω. In particular,

(3) bω = |corr(mω,x)|2 ,

where bω ∈ Rd denotes diffraction measurements corresponding to frequency ω and all possible
image space shifts of the unknown vector x.

1.1. Survey of Previous Work. Given the importance of phase retrieval in crystallo-
graphic and optical imaging methods, there is a rich history of research on this topic by
scientists and practitioners across diverse fields. With regard to computational algorithms
specifically, most popular methods in use today can trace their origins back to the alternating

2All indexing is considered mod d; x denotes the complex conjugate of x.
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projection algorithms developed in the 1970s by Gerchberg and Saxton [23], and Fienup [20].
These are iterative formulations which work by alternately requiring that the following two
sets of constraints be satisfied:

(i) (in data space) the current iterate has the same magnitude as that of the measured
data, and

(ii) (in image space) the current iterate satisfies certain problem-specific constraints such
as positivity or compact support.

These algorithms are conceptually simple, efficient to implement (FFT-time for certain mea-
surement constructions) and popular among the practitioners, despite the lack of a rigorous
mathematical understanding of their properties or global recovery guarantees. Indeed, given
the non-convex nature of the phase retrieval problem, the lack of global convergence results
for these methods is not surprising. The interested reader is referred to [36, 19] for some
recent developments and a review of this family of methods, while [44, 46, 35] contain some
specific applications of alternating projection algorithms to Ptychographic imaging.

More recently, there have been significant efforts devoted towards developing phase re-
trieval algorithms which are (i) computationally efficient, (ii) robust to measurement noise,
and (iii) theoretically guaranteed to reconstruct a given vector up to a global phase error
using a near-minimal number of magnitude measurements. For example, it has been shown
that robust phase retrieval is possible with D = O(d) magnitude measurements by solving a
semidefinite programming relaxation (PhaseLift) of a rank-1 matrix recovery problem [12, 8].
This allows polynomial-time convex optimization methods to be used for phase retrieval. Fur-
thermore, the runtimes of these convexity-based methods can be reduced with the use of
O(d log d) magnitude measurements [17]. Other phase retrieval approaches include the use
of spectral recovery methods together with magnitude measurement ensembles inspired by
expander graphs [2]. These methods allow the recovery of x up to a global phase factor using
O(d) noiseless magnitude measurements or O(d log d) noisy magnitude measurements, and run
in Ω(d2)-time in general.3 Finally, the recently proposed Wirtinger Flow algorithm [10] and
Truncated Wirtinger Flow (TWF) algorithm [15] employ stochastic gradient descent schemes
with special eigenvector-based initialization methods to recover x. The TWF algorithm, for
example, recovers x using O(d) magnitude measurements robustly with computational com-
plexity 4 O(Dd log 1/ε), where ε is an accuracy parameter. All of these approaches utilize
magnitude measurements |Mx|2 resulting from either (i) Gaussian random matrices M , (ii)
random masked Fourier-based constructions known as coded diffraction patterns (CDP) [26],
or (iii) unbalanced expander graph constructions, in order to prove their recovery guarantees.

1.2. Main Result. In this paper we demonstrate that a relatively general class of local
correlation-based magnitude measurements allow for phase retrieval in just O(d logc d)-time.5

In particular, we construct a well-conditioned set of Fourier-based measurements which are
theoretically guaranteed to allow for the phase retrieval of a given vector x ∈ Cd with high

3Their runtime complexity is dominated by the time required to solve an overdetermined linear system.
4The Wirtinger flow algorithms are known to empirically work with random masked measurement construc-

tions known as coded diffraction patterns (CDP) [9, 15] in essentially FFT-time, although no robust recovery
guarantees are available for such measurements.

5Herein c is a fixed absolute constant.
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probability in O(d log4 d)-time. These measurements are of particular interest given that they
are closely related to, e.g., ptychography [45]. In particular, we prove the following theorem:

Main Result. (Fast Phase Retrieval from Correlation-Based Measurements) Let
x ∈ Cd with d sufficiently large have ‖x‖22 ≥ C (d ln d)2 ln3(ln d) ‖n‖2.6 Then, one can select
a random measurement matrix M ∈ CD×d such that the following holds with probability at
least 1 − 1

C′·ln2(d)·ln3(ln d) :7 The proposed Phase Retrieval Algorithm 1 (BlockPR) will recover

an x̃ ∈ Cd with

min
θ∈[0,2π)

∥∥∥x− eiθx̃∥∥∥2
2
≤ C ′′(d ln d)2 ln3(ln d)‖n‖2

when given arbitrarily noisy input measurements b = |Mx|2 + n ∈ RD as per (1). Here D
can be chosen to be O(d · ln2(d) · ln3 (ln d)). Furthermore, the proposed Algorithm 1 will run
in O(d · ln3(d) · ln3 (ln d))-time.

To the best of our knowledge, this result provides the best existing error guarantee for
correlation-based measurements. Moreover, this result also guarantees exact recovery, up
to a global phase multiple, of x in the noiseless setting (i.e., when n = 0). Further, for a
particular class of flat8 vectors x, M can be chosen to be a deterministic matrix arising from
local correlation-based measurements, and D = 3d measurements suffice for recovery in the
noiseless setting.

Numerical experiments both verify the speed and accuracy of the proposed phase retrieval
approach, as well as indicate that the approach is highly robust to measurement noise. Addi-
tionally, after establishing and analyzing our general phase retrieval method, we then utilize
it in order to establish the first known linear-in-sparsity compressive phase retrieval method
capable of recovering s-sparse vectors x (up to an unknown phase factor) in only O(s logc d)-
time.

1.2.1. An Overview of the Proposed Approach for Local Correlation-Based Measure-
ments. The proposed phase retrieval approach works in two stages in the ptychographic set-
ting: During the first lifting (see, e.g., [12, 8]) stage, the quadratic magnitude measurements
(3) are viewed as linear measurements of (2δ−1)d new lifted variables, the entry-wise products
xixj for |j − i| < δ � d.9 Given the correlation structure of the original measurements (3),
the resulting lifted linear system in the new lifted unknowns xixj is also highly structured.
In particular, the resulting coefficient matrix of the lifted linear system turns out to be block
circulant [50], which both allows explicit condition number bounds to be derived for particular
choices of windows mω, and also allows its fast numerical inversion using Fourier transforms.

6Herein C,C′, C′′ ∈ R+ are all fixed and absolute constants.
7Note that M is selected independently of both x and n. Furthermore, the nonuniform probability of

success can be boosted to 1− p for any p ∈ (0, 1) at the expense of introducing additional logarithmic factors
of 1/p into the runtime and measurement bounds. See §4.3 for additional details.

8Here, “flat” simply means that there are no long strings of consecutive entries of x all of whose magnitudes
are less than ‖x‖2

2
√
d

. See §4.2 for additional details.
9Here, i − j ∈ {−d/2, . . . ,−1, 0, 1, . . . , d/2} is always considered modulo d. Note that these particular

(2δ− 1)d entry-wise products are exactly all those that appear when the squared magnitude measurements (2)
are multiplied out for all shifts ` (treating x as periodic).
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Thus, we are generally always able to (rapidly) invert the lifted linear system in order to solve
for all local entry-wise products xixj with |j − i| < δ. As an immediate consequence, the
magnitude of each entry of x can also be estimated using, e.g., the products xjxj = |xj |2.

During the second angular synchronization (see, e.g., [49]) stage of the algorithm, the
local entry-wise products xixj , i 6= j, are used in order to estimate the relative phases of
each individual entry of x. This is done by noting that the phase of each lifted variable
xixj , arg (xixj), provides an estimate of the phase angle difference between the corresponding
entries’ phases arg(xi) and arg(xj). Hence, the relative phases between all pairs of entries of x
can be approximated by adding these local relative phase differences, provided by arg (xixj) for
|j − i| < δ, together in appropriate (telescoping) sums. The only potential difficulty with this
simple approach occurs when either xi or xj happens to be zero (or, more generally, very small
in magnitude). In this case the phase difference given by arg (xixj) is unreliable/unusable.
In the worst possible case, when, e.g., x contains ≥ δ consecutive zero entries in a row, the
available local phase differences can not span the corresponding gap in reliable phase difference
information, and signal recovery (up to a single global phase ambiguity) becomes impossible.
Much of the analysis of this stage focusses on categorizing and circumventing this fundamental
difficulty.

Combining both stages above allows one to obtain deterministic algorithms for recovering
all x that do not contain any long contiguous strings of ≥ δ small entries with local correlation
measurements. This result, which applies in the ptychographic setting, is ultimately developed
in §4.2 and stated in Theorem 5. Next, in §4.3, it is shown that the worst case set of signals
can still be recovered with high probability if one is allowed to precede one’s correlation
measurements with an initial randomized global masking operation. Combining this result
with Theorem 5 yields the main theorem stated above. Finally, once phase retrieval of sparse
signals has been allowed by the employment of randomized masking in §4.3, it becomes possible
to develop sparse phase retrieval algorithms with near-optimal runtimes in §6.

The remainder of this paper is organized as follows: In Section 2 we establish notation
and discuss important preliminary results. Next, in Section 3, we present our general phase
retrieval algorithm and discuss it’s runtime complexity. We then analyze our phase retrieval
algorithm and prove recovery guarantees for specific types of Fourier-based measurement
matrices in Section 4. In Section 5, we empirically evaluate the proposed phase retrieval
method for speed and robustness. Finally, in Section 6, we use our general phase retrieval
algorithm in order to construct a sublinear-time compressive phase retrieval method which is
guaranteed to recover sparse vectors (up to an unknown phase factor) in near-optimal time.
Section 7 concludes with several suggestions for future work.

2. Preliminaries: Notation and Setup. For any matrix X ∈ CD×d we will denote the jth

column of X by Xj ∈ CD. The conjugate transpose of a matrix X ∈ RD×d will be denoted
by X∗ ∈ Cd×D, and the singular values of any matrix X ∈ CD×d will always be ordered as
σ1(X) ≥ σ2(X) ≥ · · · ≥ σmin(D,d)(X) ≥ 0. Also, the condition number of the matrix X will
denoted by κ(X) := σ1(X)/σmin(D,d)(X). We will use the notation [n] := {1, . . . , n} ⊂ N for

any n ∈ N. Finally, given any x ∈ Cd, the vector x opt
s ∈ Cd will always denote an optimal

s-sparse approximation to x. That is, it preserves the s largest entries in magnitudes of x
while setting the rest of the entires to 0. Note that x opt

s ∈ Cd may not be unique as there



FAST PHASE RETRIEVAL FROM LOCAL CORRELATION MEASUREMENTS 7

can be ties for the sth largest entry in magnitude.

2.1. An Illustrative Example. Before we write down the setup for the general case, we
present a simple but illustrative example which highlights the structure of our proposed mea-
surements, and provides a general overview of the reconstruction algorithm. For simplicity,
let us assume that we are given noiseless measurements in this section so that

b = |Mx|2 ,

with x ∈ C4, b ∈ R12, and M ∈ C12×4. Further, let us assume that the measurement matrix
M has a block-circulant structure of the form

M =



(m1)1 (m1)2 0 0

0 (m1)1 (m1)2 0

0 0 (m1)1 (m1)2
(m1)2 0 0 (m1)1

(m2)1 (m2)2 0 0

0 (m2)1 (m2)2 0

0 0 (m2)1 (m2)2
(m2)2 0 0 (m2)1

(m3)1 (m3)2 0 0

0 (m3)1 (m3)2 0

0 0 (m3)1 (m3)2
(m3)2 0 0 (m3)1



=

M1

M2

M3

 ,

where M1,M2,M3 ∈ C4×4 are circulant matrices and m1,m2,m3 ∈ C4 are masks or window
functions with finite support. In particular10, (m`)i = 0 for i = 3, 4 and ` ∈ {1, 2, 3}.
The astute reader will note that this construction describes correlation measurements of the
unknown vector x with local masks m`; i.e., b = |corr(m`,x)|2 , ` ∈ {1, 2, 3}. Writing out the
correlation sum explicitly and setting δ = 2, we obtain

(4) (b`)i =

∣∣∣∣∣
δ∑

k=1

(m`)k · xi+k−1

∣∣∣∣∣
2

, (i, `) ∈ {1, 2, 3, 4} × {1, 2, 3}.

For a suitable choice of mask such as

(m`)k =

{
e−k/a
4√2δ−1 · e

2πi·(k−1)·(`−1)
2δ−1 if k ≤ δ

0 if k > δ
, with a := max

{
4,

δ − 1

2

}
,

we see that (4) is of the form of (2) in §1 which described ptychographic measurements. These
are exactly the measurements analyzed in §4.1.

10The notation (m`)i denotes the i-th entry of the `-th mask.
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Having summarized our measurement construction, we now turn our attention to describ-
ing the reconstruction algorithm, which can be conceptually divided into the following two
steps:

(i) Estimate (scaled) local phase differences of the form {xjxk | j, k ∈ [d], |j−k mod d|<δ}.
(ii) Recover the phases of each entry of x, and consequently x itself, by using the estimates

of the local phase differences from (i).
To obtain the phase differences in step (i) above, we start by rewriting the squared corre-

lation measurements (4) as follows:

(b`)i =

∣∣∣∣∣
δ∑

k=1

(m`)k · xi+k−1

∣∣∣∣∣
2

=

δ∑
j,k=1

(m`)j (m`)k xi+j−1 xi+k−1 :=

δ∑
j,k=1

(m`)j,k xi+j−1 xi+k−1,

where we have used the notation (m`)j,k := (m`)j(m`)k. This is a linear system of equations
for D = (2δ − 1)d = 12 phase differences, y ∈ C12, with

y =
[
|x1|2 x1x2 x2x1 |x2|2 x2x3 x3x2 |x3|2 x3x4 x4x3 |x4|2 x4x1 x1x4

]T
.

By defining b̃ ∈ R12 to be the interleaved vector of measurements (obtained by permuting
the entries of b)

b̃ =
[
(b1)1 (b2)1 (b3)1 (b1)2 (b2)2 (b3)2 (b1)3 (b2)3 (b3)3 (b1)4 (b2)4 (b3)4

]T
,

we may write the resulting linear system as M ′y = b̃, where

M ′=



(m1)1,1 (m1)1,2 (m1)2,1 (m1)2,2 0 0 0 0 0 0 0 0
(m2)1,1 (m2)1,2 (m2)2,1 (m2)2,2 0 0 0 0 0 0 0 0
(m3)1,1 (m3)1,2 (m3)2,1 (m3)2,2 0 0 0 0 0 0 0 0

0 0 0 (m1)1,1 (m1)1,2 (m1)2,1 (m1)2,2 0 0 0 0 0
0 0 0 (m2)1,1 (m2)1,2 (m2)2,1 (m2)2,2 0 0 0 0 0
0 0 0 (m3)1,1 (m3)1,2 (m3)2,1 (m3)2,2 0 0 0 0 0

0 0 0 0 0 0 (m1)1,1 (m1)1,2 (m1)2,1 (m1)2,2 0 0
0 0 0 0 0 0 (m2)1,1 (m2)1,2 (m2)2,1 (m2)2,2 0 0
0 0 0 0 0 0 (m3)1,1 (m3)1,2 (m3)2,1 (m3)2,2 0 0

(m1)2,2 0 0 0 0 0 0 0 0 (m1)1,1 (m1)1,2 (m1)2,1
(m2)2,2 0 0 0 0 0 0 0 0 (m2)1,1 (m2)1,2 (m2)2,1
(m3)2,2 0 0 0 0 0 0 0 0 (m3)1,1 (m3)1,2 (m3)2,1



.

We draw attention to the block-circulant structure of M ′, composed of two blocks M ′1,M
′
2 ∈

C3×3 highlighted using dashed lines. Much of the speed and elegance of the proposed algorithm
arises from this block-circulant structure: not only can such systems be inverted in essentially
linear-time, they also lend themselves to easy analysis. As we will see in Section 4.1, we
can explicitly write out condition number bounds for M ′ resulting from certain classes of
measurement masks.

Note that by solving this linear system, we automatically recover the magnitude of x. In
particular,

|x1|2 = y1, |x2|2 = y4, |x3|2 = y7, |x4|2 = y10.
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Additionally, after normalizing (to unit magnitude) the entries of y, we also recover phase
difference estimates,

φi,j := arg(xj)− arg(xi), i, j ∈ {1, 2, 3, 4}, |i− j mod 4| = 1.

For example, φ1,2 = arg(x2)− arg(x1) = arg(y2/|y2|). We can now recover arg(x) as required
by step (ii) of our two step recovery algorithm by using a greedy procedure.

Assume, without loss of generality, that |x1| ≥ |xi|, i ∈ {2, 3, 4}. We start by setting
arg(x1) = 0.11 We may now set the phase of x2 and x4 using the estimated phase differences
φ1,2 and φ1,4 respectively; i.e.,

arg(x2) = arg(x1) + φ1,2, arg(x4) = arg(x1) + φ1,4.

Similarly, we next set arg(x3) = arg(x2) +φ2,3, thereby recovering all of the entries’ unknown
phases. We note that the computational cost of this procedure is essentially linear in the
problem size d. Section 3 contains a more detailed description of the algorithm, while Section
4 includes theoretical recovery guarantees.

2.2. General Problem Setup. Hereafter we will assume that our measurement matrix
M ∈ CD×d has D := (2δ − 1)d rows corresponding to local correlation-based measurements,
where δ ∈ N represents the support size of the associated correlation masks. Furthermore, we
will utilize the decomposition of M into its (2δ − 1) circulant blocks, M1, . . . ,M2δ−1 ∈ Cd×d,
given by

(5) M =


M1

M2
...
M2δ−1

 .

Here each Ml ∈ Cd×d will be both circulant, with

(6) (Ml)i,j := (ml)(j−i) mod d + 1

for a mask ml ∈ Cd, and banded, so that (ml)i = 0 for all i > δ, and 1 ≤ l ≤ 2δ − 1.12

As a consequence of this structure, the squared magnitude measurements from the lth-
block, |Mlx|2 ∈ Rd, can be rewritten as

(7)
(
|Mlx|2

)
i

= (Mlx)i (Mlx)i =

δ∑
j,k=1

(ml)j(ml)k xj+i−1xk+i−1.

Let y ∈ CD be defined by

(8) yi := xd i+δ−1
2δ−1 exd i+δ−1

2δ−1 e+((i+δ−2) mod (2δ−1))−δ+1.

11Recall that we can only recover x up to an unknown global phase factor which, in this case, will be the
true phase of x1.

12Every integer modulo d is considered to be an element of {0, . . . , d− 1} in §2.2. Furthermore, all indexes
of vectors in Cd will be considered modulo d, + 1, as per (6) for the remainder of §2.2.
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Furthermore, let 0α ∈ R1×α be the row vector of α zeros for any given α ∈ N, and let
m̃(l,j) ∈ C1×δ be such that

(9)
(
m̃(l,j)

)
k

:= (ml)j(ml)k.

We can now re-express |Mlx|2 ∈ Rd from (7) as M̃ly, where M̃l ∈ Cd×D is a (2δ−1)-circulant
matrix defined by

m̃(l,1) 0δ−2 m̃(l,2) 0δ−2 m̃(l,3) . . . m̃(l,δ) 0 0 . . . 0

02δ−1 m̃(l,1) 0δ−2 m̃(l,2) 0δ−2 m̃(l,3) . . . m̃(l,δ) 0 . . . 0
. . .(

m̃(l,2)

)
2

. . .
(
m̃(l,2)

)
δ

0δ−2 m̃(l,3) 0δ−2 . . . 0 m̃(l,1) 0δ−2
(
m̃(l,2)

)
1

.

Finally, after reordering the entries of |Mx|2 via a permutation matrix P ∈ {0, 1}D×D, we
arrive at our final form

(10) P |Mx|2 = M ′y =


M ′1 M ′2 . . . M ′δ 0 0 . . . 0
0 M ′1 M ′2 . . . M ′δ 0 . . . 0

. . .

M ′2 . . . M ′δ 0 . . . 0 . . . M ′1

y.

Here M ′ ∈ CD×D is a block circulant matrix [50] whose blocks, M ′1, . . . ,M
′
δ ∈ C(2δ−1)×(2δ−1),

have entries

(11) (M ′l )i,j :=


(mi)l(mi)j+l−1 if 1 ≤ j ≤ δ − l + 1

0 if δ − l + 2 ≤ j ≤ 2δ − l − 1

(mi)l+1(mi)l+j−2δ+1 if 2δ − l ≤ j ≤ 2δ − 1, and l < δ

0 if j > 1, and l = δ

.

Let Iα denote the α×α identity matrix. We now note that M ′ can be block diagonalized
via the unitary block Fourier matrices Uα ∈ Cαd×αd, with parameter α ∈ N, defined by

(12) Uα :=
1√
d



Iα Iα . . . Iα

Iα Iαe
2πi
d . . . Iαe

2πi·(d−1)
d

. . .

Iα Iαe
2πi·(d−2)

d . . . Iαe
2πi·(d−2)·(d−1)

d

Iα Iαe
2πi·(d−1)

d . . . Iαe
2πi·(d−1)·(d−1)

d

 .

More precisely, one can see that we have

(13) U∗2δ−1 M
′ U2δ−1 = J :=


J1 0 0 . . . 0
0 J2 0 . . . 0

. . .

0 0 0 Jd−1 0
0 0 0 0 Jd
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where J ∈ CD×D is block diagonal with blocks J1, · · · , Jd ∈ C(2δ−1)×(2δ−1) given by

(14) Jk :=

δ∑
l=1

M ′l · e
2πi·(k−1)·(l−1)

d .

Not so surprisingly, the fact that any block circulant matrix can be block diagonalized by
block Fourier matrices will lead to more efficient computational techniques below.

2.3. Johnson-Lindenstrauss Embeddings and Restricted Isometries. Below we will uti-
lize results concerning Johnson-Lindenstrauss embeddings [32, 22, 1, 16, 3, 33] of a given finite
set S ⊂ Cd into Cm for m < d. These are defined as follows:

Definition 1. Let ε ∈ (0, 1), and S ⊂ Cd be finite. An m× d matrix A is a linear Johnson-
Lindenstrauss embedding of S into Cm if

(1− ε)‖ u− v ‖22 ≤ ‖ Au−Av ‖22 ≤ (1 + ε)‖ u− v ‖22

holds ∀u,v ∈ S ∪ {0}. In this case we will say that A is a JL(m,d,ε)-embedding of S into
Cm.

Linear JL(m,d,ε)-embeddings are closely related to the Restricted Isometry Property [13, 3, 21].

Definition 2. Let s ∈ [d] and ε ∈ (0, 1). The matrix A ∈ Cm×d has the Restricted Isometry
Property if

(15) (1− ε)‖ x ‖22 ≤ ‖ Ax ‖22 ≤ (1 + ε)‖ x ‖22

holds ∀x ∈ Cd containing at most s nonzero coordinates. In this case we will say that A is
RIP(s,ε).

In particular, the following theorem due to Krahmer and Ward [33, 21] demonstrates that a
matrix with the restricted isometry property can be used to construct a Johnson-Lindenstrauss
embedding matrix.

Theorem 1. Let S ⊂ Cd be a finite point set with |S| = M . For ε, p ∈ (0, 1), let A ∈
Cm×d be RIP(2s,ε/C1) for some s ≥ C2 · ln(4M/p).13 Finally, let B ∈ {−1, 0, 1}d×d be
a random diagonal matrix with independent and identically distributed (i.i.d.) symmetric
Bernoulli entries on its diagonal. Then, AB is a JL(m,d,ε)-embedding of S into Cm with
probability at least 1− p.

Below we will utilize Theorem 1 together with a result concerning the restricted isometry
property for sub-matrices of a Fourier matrix. Let F ∈ Cd×d be the unitary d × d discrete
Fourier transform matrix. The random sampling matrix, R′ ∈ Cm×d, for F is then

(16) R′ :=

√
d

m
·RF

13Here C1, C2 ∈ (1,∞) are both fixed absolute constants.
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where R ∈ {0, 1}m×d is a random matrix with exactly one nonzero entry per row (i.e., each en-
try’s column position is drawn independently from [d] uniformly at random with replacement).
The following theorem is proven in [21].14

Theorem 2. Let p ∈ (0, 1). If the number of rows in the random sampling matrix R′ ∈
Cm×d satisfies both

(17)
m

ln(9m)
≥ C3 ·

s ln2(8s) ln(8d)

ε2

and

(18) m ≥ C4 ·
s log(1/p)

ε2
,

then R′ will be RIP(2s,ε/C1) with probability at least 1− p.15

We are now prepared to present and analyze our phase retrieval method.

3. BlockPR: A Fast Phase Retrieval Algorithm. The proposed phase retrieval algorithm
(BlockPR) works in two stages. In the first stage, the vector y ∈ CD from (8) of local entrywise
products of x ∈ Cd with its conjugate is approximated by solving the linear system (10). That
is, we compute (M ′)−1Pb where b ∈ RD are our noisy local correlation-based measurements
from (1), and M ′ and P are as in (10). This yields

(19) ỹ := (M ′)−1Pb = (M ′)−1P |Mx|2 + (M ′)−1Pn = y + (M ′)−1Pn.

where y is as in (8).
Next, a greedy algorithm is used to recover the magnitudes and phases of each entry of

x (up to a global phase factor) from our estimate of y. To see how this works, note that
y will contain all of the products xixj for all i, j ∈ [d] with |(i − j) mod d| < δ.16 As a
result, the magnitude of each entry xj can be estimated using the entry of y corresponding
to xjxj = |xj |2. Similarly, as long as both xjxj > 0 and xixi > 0 hold, one can also compute
the phase difference arg(xi) − arg(xj) from arg (xixj). Thus, the phase of each xi can be
determined once arg(xj) is established for a neighboring entry. Repeating this process allows
one to determine a network of phase differences which all depend uniquely on the choice of a
single entry’s unknown phase. This entry’s phase becomes the global phase factor eiθ from
(1). See Algorithm 1 for additional details.

Recall from (19) that we have access to

(20) ỹ = y + ñ ∈ CD.

where ñ := (M ′)−1Pn results from the measurement noise, and D = (2δ − 1)d. Thus, from
(8) we have an index k(i, j) ∈ [D] for all i, j ∈ [d] with |(i− j) mod d| < δ such that

(21) ỹk(i,j) = xixj + ñk(i,j).

We will utilize the index function k for ỹ defined by (21) in Algorithm 2.

14See Theorem 12.32 in Chapter 12.
15Here C3, C4 ∈ (1,∞) are both fixed absolute constants.
16In §3 and below we always consider any integer modulo d to be in the set {−d d

2
e+1, . . . , b d

2
c}, for δ < b d

2
c.
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Algorithm 1 BlockPR

Input: Local Correlation Measurements b ∈ RD (Recall (1))
Output: x̃ ∈ Cd with x̃ ≈ e−iθx for some θ ∈ [0, 2π]

1: Compute ỹ := (M ′)−1Pb (see (19))
2: Use Algorithm 2 with input ỹ ∈ CD to compute φ̃j ≈ φj := arg(xj) for all j ∈ [d]

3: Set x̃j =
√
|ỹj′ |eiφ̃j ∀j ∈ [d], where ỹj′ (computed in line 1) is s.t. ỹj′ = xjxj +(

(M ′)−1Pn
)
j′

It is important to note that Algorithm 1 assumes that the block circulant matrix M ′

arising from our choice of measurements, M , is invertible. As we shall see in §4 and §5, this is
relatively easy to achieve. Similarly, Algorithm 2 implicitly assumes that ỹ does not contain
any strings of δ− 1 consecutive zeros (or, more generally, δ− 1 consecutive entires with “very
small” magnitudes). This assumption will also be discussed in §4 and §5, and justified for
measurements arising from arbitrary x by modifying the measurements M . For the time
being, then, we are left free to consider the computational complexity of Algorithm 1.

3.1. Runtime Analysis. We will begin our analysis of the runtime complexity of Algo-
rithm 1 by considering the computation of ỹ ∈ CD in line 1. Recalling §2, we note that
the permutation matrix P is based on a simple row reordering that clusters the first rows
of M1, . . . ,M2δ−1 into a contiguous block, the second rows of M1, . . . ,M2δ−1 into a second
contiguous block, etc. (see (5) and (6)). Thus, Pb is simple to compute using only O(d · δ)-
operations. To finish calculating ỹ = (M ′)−1Pb we then use the decomposition of M ′ from
(13) and compute ỹ = U2δ−1J

−1U∗2δ−1Pb.
Recalling the definition of U2δ−1 (12), one can see that both U2δ−1 and U∗2δ−1 have fast

matrix-vector multiplies (i.e., because they can be computed by performing 2δ−1 independent
fast Fourier transforms on different sub-vectors of size d). Hence, matrix-vector multiplies with
both of these matrices can be accomplished with O(δ · d log d) operations. Finally, J is block-
diagonal with d blocks of size (2δ − 1) × (2δ − 1) (see (14)). Thus, J and J−1 can both be
computed using O(d · δ3) total operations. Putting everything together, we can now see that
line 1 of Algorithm 1 requires only O(d · δ3 + δ · d log d) operations in general. Furthermore,
these computations can easily benefit from parallelism due to the fact that the calculations
above are all based on explicitly defined block decompositions.

The second line of Algorithm 1 calls Algorithm 2 whose runtime complexity is dominated
by its main while-loop (lines 7 through 19). This loop will visit each entry of the input vector
y at most a constant number of times. Hence, it requires O(δ · d) operations. Finally, the
third line of Algorithm 1 uses only O(d) operations. Thus, the total runtime complexity of
Algorithm 1 is O(d · δ3 + δ · d log d) in general.

4. Error Analysis and Recovery Guarantees. In this section we analyze the performance
of the proposed phase retrieval method (see Algorithm 1), and demonstrate measurement
matrices which allow it to recover arbitrary vectors, up to an unknown phase factor, with
high probability. Our analysis proceeds in two steps. First, in §4.1 and §4.2, we demonstrate
the existence of a deterministic set of correlation-based measurements, M ∈ CD×d, which
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Algorithm 2 Greedy Angular Synchronization

Input: ỹk(i,j) = xixj + ñk(i,j) ∀i, j ∈ [d] with |(i− j) mod d| < δ.

Output: Phase angles: φ̃j ≈ φj := arg(xj) for all j ∈ [d] (up to a global phase).
1: % Estimate largest magnitude entry and set its phase to zero.

a := arg max
j

|ỹk(j,j)| = arg max
j

(∣∣ |xj |2 + ñk(j,j)
∣∣) , j = 0, . . . , d− 1.

2: φ̃a ← 0 % Note: We approximate unknown phases up to a global phase factor.

3: % Define a binary vector, phaseFlag ∈ {0, 1}d, to keep track of entries whose phase has
% already been set. This ensures that each phase is estimated once, and then not
% changed again.

phaseFlagi =

{
0, i = a,
1, else.

4: Initialize j ← a;

5: % Estimate phases of all entries of x

6: while
∑

i∈(j,j+δ)

phaseFlagi > 0 do

7: % Estimate phases of 2δ − 1 entries nearest current xj
8: for i = 1− δ, 2− δ, . . . , 0, . . . , δ − 1 do

9: % Do not over-write previously estimated phases
10: if phaseFlagj+i mod d == 1 then

11: %Use current reference phase, φ̃j, and input phase difference estimates,
% arg

(
ỹk(j+i mod d, j)

)
≈ arg (xj+i mod dxj) and arg

(
ỹk(j, j+i mod d)

)
≈

% arg (xjxj+i mod d), to estimate the phase of the entry xj+i mod d.

φ̃j+i mod d ← φ̃j +
1

2

(
arg
(
ỹk(j+i mod d, j)

)
− arg

(
ỹk(j, j+i mod d)

))
;

12: % Remember that the phase of entry xj+i mod d has now been estimated

phaseFlagj+i mod d ← 0;

13: end if
14: end for
15: % Update reference entry to be the largest neighboring entry of the current xj

j ←
(
j + arg max

0<i<δ

∣∣ỹk(j+i mod d, j+i mod d)

∣∣) mod d;

16: end while
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allow Algorithm 1 to recover all relatively flat (i.e., non-sparse) vectors x ∈ Cd. Herein, “flat”
simply means that there are no long strings of consecutive entries of x all of whose magnitudes
are less than ‖x‖2

2
√
d

. The proposed measurements M are Fourier-like, roughly corresponding to a

set of damped and windowed Fourier measurements of overlapping portions of x. In addition
to being well conditioned, these Fourier measurements also have fast inverse matrix-vector
multiplies via (an additional usage of) the FFT. Hence, they confer additional computational
advantages beyond those already enjoyed by our general block circulant measurement setup.

Next, in §4.3, we extend our deterministic recovery guarantee for flat vectors to a nonuni-
form probabilistic recovery guarantee for arbitrary vectors. This is accomplished by right-
multiplying M with a concatenation of several Johnson-Lindenstrauss embedding matrices,
each of which tends to “flatten out” vectors they are multiplied against. In particular, we
construct a set of such matrices which are both (i) collectively unitary, and (ii) rapidly in-
vertible as a group via (yet another usage of) the FFT. The fact that this flattening matrix is
unitary preserves the well conditioned nature of our initial measurements, M . Furthermore,
the fact that the flattening matrix enjoys a fast inverse matrix-vector multiply via the FFT
allows us to maintain computational efficiency. Finally, the fact that the flattening matrix
produces a flattened version of x with high probability allows us to apply our deterministic
recovery guarantee for flat vectors to vectors which are not initially flat. The end result of
this line of reasoning is the following recovery guarantee for noisy measurements.

Theorem 3. Let x ∈ Cd with d sufficiently large have ‖x‖22 ≥ C (d ln d)2 ln3(ln d) ‖n‖2.17

Then, one can select a random measurement matrix M̃ ∈ CD×d independently of both x and
n such that the following holds with probability at least 1 − 1

C′·ln2(d)·ln3(ln d) : Algorithm 1 will

recover an x̃ ∈ Cd with

(22) min
θ∈[0,2π]

∥∥∥x− eiθx̃∥∥∥2
2
≤ C ′′(d ln d)2 ln3(ln d)‖n‖2

when given arbitrarily noisy input measurements b = |Mx|2 + n ∈ RD as per (1). Here D
can be chosen to be O(d · ln2(d) · ln3 (ln d)). Furthermore, Algorithm 1 will run in O(d · ln3(d) ·
ln3 (ln d))-time.

Note that the error bound in (22) is probably sub-optimal due to, e.g., the appearance
of the d2 polylog d-term on its righthand side. It is certainly the case, at least, that stronger
error bounds are achievable using complex normal random measurements in combination
with optimization techniques (see, e.g., [8, 29]). None the less, Theorem 3 provides the best
existing error guarantee the authors are aware of for local correlation-based measurements,
and computational experiments indicate that Algorithm 1 is highly robust to measurement
noise in practice (see §5). Furthermore, it is important to point out that Theorem 3 also
guarantees exact recovery, up to a global phase multiple, of x by Algorithm 1 in the noiseless
setting (i.e., when n = 0). Finally, Algorithm 1 is fast, with a runtime complexity that is
near-linear in d. We are now ready to begin proving Theorem 3.

4.1. Well Conditioned Measurements. In this section we develop a set of deterministic
measurements M ∈ CD×d that lead to well conditioned block circulant matrices M ′ ∈ CD×D

17Herein C,C′, C′′ ∈ R+ are all fixed and absolute constants.
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in (10). To begin, we choose a ∈ [4,∞) and then set our local correlation masks to be

(23) (ml)i =

{
e−i/a
4√2δ−1 · e

2πi·(i−1)·(l−1)
2δ−1 if i ≤ δ

0 if i > δ

for 1 ≤ l ≤ 2δ − 1, and 1 ≤ i ≤ d. This leads to blocks M ′l ∈ C(2δ−1)×(2δ−1) from (11) with
entries given by

(M ′l )i,j :=


(mi)l(mi)j+l−1 = e−(2l+j−1)/a

√
2δ−1 · e−

2πi·(i−1)·(j−1)
2δ−1 if 1 ≤ j ≤ δ − l + 1

0 if δ − l + 2 ≤ j ≤ 2δ − l − 1

(mi)l+1(mi)l+j−2δ+1 = e−(2l+j−2(δ−1))/a
√
2δ−1 · e−

2πi·(i−1)·(j−2δ)
2δ−1 if 2δ − l ≤ j ≤ 2δ − 1, l < δ

0 if j > 1, and l = δ

.

We will now begin to bound the condition number of this block circulant matrix, M ′, by block
diagonalizing it via (13).

Considering the entries of each Jk ∈ C(2δ−1)×(2δ−1) from (14) results in two cases. First,
suppose that 1 ≤ j ≤ δ. In this case one can see that

(Jk)i,j =
e(1−j)/a√

2δ − 1
· e
−2πi·(i−1)·(j−1)

2δ−1 ·
δ−j+1∑
l=1

e
−2l/a · e

2πi·(k−1)·(l−1)
d ,

=
e−(j+1)/a

√
2δ − 1

· e
−2πi·(i−1)·(j−1)

2δ−1 · 1− e−2(δ−j+1)/a · e
2πi·(k−1)·(δ−j+1)

d

1− e−2/a · e
2πi·(k−1)

d

.

(24)

Second, suppose that δ + 1 ≤ j ≤ 2δ − 1. In this case one can see that

(Jk)i,j =
e−(j−2(δ−1))/a√

2δ − 1
· e
−2πi·(i−1)·(j−2δ)

2δ−1 ·
δ−1∑

l=2δ−j
e
−2l/a · e

2πi·(k−1)·(l−1)
d ,

=
e−(2(δ+1)−j)/a
√

2δ − 1
· e
−2πi·(i−1)·(j−1)

2δ−1 · e
2πi·(k−1)(2δ−j−1)

d · 1− e−2(j−δ)/a · e
2πi·(k−1)·(j−δ)

d

1− e−2/a · e
2πi·(k−1)

d

.

Let Fα ∈ Cα×α be the unitary α× α discrete Fourier transform matrix. Defining

sk,j :=


e
−(j+1)/a · 1− e−2(δ−j+1)/a · e2πi·(k−1)·(δ−j+1)/d

1− e−2/a · e2πi·(k−1)/d
if 1 ≤ j ≤ δ

e
−(2(δ+1)−j)/a · e2πi·(k−1)(2δ−j−1)/d · 1− e−2(j−δ)/a · e2πi·(k−1)·(j−δ)/d

1− e−2/a · e2πi·(k−1)/d
if δ + 1 ≤ j ≤ 2δ − 1

,

we now have that

(25) Jk = F2δ−1


sk,1 0 . . . 0
0 sk,2 0 . . .

0 0
. . . 0

0 . . . 0 sk,2δ−1

 .
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Note that the condition number of J , and therefore of M ′, will be dictated by the singular
values of these Jk matrices. Thus, we will continue by developing bounds for the singular
values of each Jk ∈ C(2δ−1)×(2δ−1).

The fact that F2δ−1 is unitary implies that

(26) min
j∈[2δ−1]

|sk,j | ≤ σ2δ−1 (Jk) ≤ σ1 (Jk) ≤ max
j∈[2δ−1]

|sk,j |

for all k ∈ [d]. Thus, we will now devote ourselves to bounding the maximum and minimum
values of |sk,j | from above and below, respectively, over all k ∈ [d] and j ∈ [2δ − 1]. These
bounds will then collectively yield an upper bound on the condition number of our block
circulant measurement matrix M ′. The following simple technical lemmas will be useful.

Lemma 1. Let x ∈ [2,∞). Then, 1− e−1/x > 2−e1/x
x ≥ 2−

√
e

x > 7
20·x .

Proof: Note that 1 − e−1/x =
∑∞

n=1
(−1)n+1

xnn! > 1
x ·
(

2−
∑∞

n=0
1

xn(n+1)!

)
> 2−e1/x

x . Fur-

thermore, the numerator is a monotonically increasing function of x.

Lemma 2. Let a, b, c ∈ R+, and f : R→ R below. Then,
1. f(x) = b · e−x/a

(
1 + c · e2x/a

)
has a unique global minimum at x = −a

2 ln(c), and

2. f(x) = b · e−x/a
(
1− c · e2x/a

)
is monotonically decreasing.

Proof: In either case we have that f ′(x) = − b
a ·e
−x/a± bc

a ·e
x/a, and f ′′(x) = b

a2
·e−x/a± bc

a2
·ex/a.

For (1) we have a single critical point at x = −a
2 ln(c), which is a global minimum since

f ′′(x) > 0 ∀x ∈ R. For (2) we have f ′(x) < 0 for all x ∈ R.

Note that

(27) |sk,j | =


e
−(j+1)/a ·

√
1 + e−4(δ−j+1)/a − 2e−2(δ−j+1)/a cos (2π · [δ − j + 1] · (k − 1)/d)

1 + e−4/a − 2e−2/a cos (2π(k − 1)/d)
if 1 ≤ j ≤ δ

e
−(2(δ+1)−j)/a ·

√
1 + e−4(j−δ)/a − 2e−2(j−δ)/a cos (2π · [j − δ] · (k − 1)/d)

1 + e−4/a − 2e−2/a cos (2π(k − 1)/d)
if δ + 1 ≤ j ≤ 2δ − 1

.

Fix k ∈ [d]. When 1 ≤ j ≤ δ we have

(28) max
j∈[δ]
|sk,j | ≤ max

j∈[δ]

(
e
−(j+1)/a · 1 + e−2(δ+1−j)/a

1− e−2/a

)
≤ e

−2/a(1 + e−2δ/a)

1− e−2/a
,

where the second inequality follows from part one of Lemma 2. When δ + 1 ≤ j ≤ 2δ − 1 we
have
(29)

max
j∈[2δ−1]\[δ]

|sk,j | ≤ max
j∈[2δ−1]\[δ]

(
e
−(2(δ+1)−j)/a · 1 + e−2(j−δ)/a

1− e−2/a

)
≤ e

−3/a(1 + e−2(δ−1)/a)

1− e−2/a
,

where the second inequality again follows from part one of Lemma 2. Finally, combining (28)
and (29) one can see that

(30) σ1 (Jk) ≤
e−2/a(1 + e−2δ/a)

1− e−2/a
< a · e

−2/a(1 + e−2δ/a)

2(2− e2/a)
< a · 20e−2/a

7
< 3a · e−2/a,
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where the second inequality follows from Lemma 1 with a ∈ [4,∞).
Turning our attention to the lower bound, we note that part two of Lemma 2 implies that

(31) min
j∈[δ]
|sk,j | ≥ min

j∈[δ]

(
e
−(j+1)/a · 1− e−2(δ+1−j)/a

1 + e−2/a

)
≥ e

−(δ+1)/a(1− e−2/a)
1 + e−2/a

.

Similarly, part two of Lemma 2 also ensures that

(32) min
j∈[2δ−1]\[δ]

|sk,j | ≥ min
j∈[2δ−1]\[δ]

(
e
−(2(δ+1)−j)/a · 1− e−2(j−δ)/a

1 + e−2/a

)
≥ e

−(δ+1)/a(1− e−2/a)
1 + e−2/a

.

Combining (31) and (32) we see that

(33) σ2δ−1 (Jk) ≥
e−(δ+1)/a(1− e−2/a)

1 + e−2/a
>

7

20a
· e−(δ+1)/a,

where the second inequality follows from Lemma 1 with a ∈ [4,∞). We are now equipped to
prove the main theorem of this section.

Theorem 4. Define M ′ ∈ CD×D via (23) with a := max
{

4, δ−1
2

}
. Then,

κ
(
M ′
)
< max

{
144e2,

9e2

4
· (δ − 1)2

}
.

Proof: We have from (30) and (33) that

(34) κ
(
M ′
)

=
σ1 (M ′)

σD (M ′)
=

σ1 (J)

σD (J)
≤

maxk∈[d] σ1 (Jk)

mink∈[d] σ2δ−1 (Jk)
< 9a2 · e(δ−1)/a.

Minimizing the rightmost upper bound as a function of a yields the stated result.

Theorem 4 guarantees the existence of measurements which allow for the approximation
of the phase difference vector y ∈ CD defined in (8). In the next three subsections we analyze
the approximation of x ∈ Cd from ỹ ≈ y via the techniques discussed in §3.

4.2. A Recovery Guarantee for Flat Vectors. As mentioned above, Algorithm 2 implic-
itly assumes that ỹ ∈ CD does not contain any strings of δ − 1 consecutive entires (mod d)
all with very small magnitudes. In this section we will demonstrate that a general class of
non-sparse vectors x ∈ Cd lead to such ỹ whenever noise levels are low enough. As a result,
we will prove deterministic approximation guarantees for all sufficiently non-sparse vectors
x ∈ Cd in the high signal-to-noise setting. More specifically, we will utilize the following
concrete characterization of flatness (i.e., non-sparsity) for x hereafter.

Definition 3. Let m ∈ [d]. A vector x ∈ Cd will be called m-flat if can be partitioned into
at least

⌊
d
m

⌋
blocks of consecutive entries such that:

1. Every block contains either m or m+ 1 neighboring entries of x, and
2. Every such block of entries contains at least one entry whose magnitude is ≥ ‖x‖2

2
√
d

.
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The following simple lemma proves that Algorithm 1 accurately estimates the magnitude
of every entry of x. Both it and the next lemma use the notation from (20) and (21), and
implicitly assume the invertibility of M ′.

Lemma 3. Let |x̃j | =
√
|ỹk(j,j)| =

√
|xjxj + ñk(j,j)| be the estimate of |xj | utilized in line

3 of Algorithm 1, where ñ := (M ′)−1Pn . Then ||xj | − |x̃j ||2 ≤ 3‖ñ‖∞.

Proof: Let a := |xj | ∈ R+ and ε := ñk(j,j) ∈ C. We upper bound the righthand side of

||xj | − |x̃j ||2 = a2 + |a2 + ε| − 2a
√
|a2 + ε| ≤ 2a2 + |ε| − 2a2

√∣∣∣1 +
ε

a2

∣∣∣
by considering two cases: If a2 ≤ |ε| we may bound the rightmost negative term by zero in
order to obtain the desired result. If a2 > |ε| then

−2a2
√∣∣∣1 +

ε

a2

∣∣∣ ≤ − 2a2
√

1− |ε|
a2
≤ − 2a2

(
1− |ε|

a2

)
so that

||xj | − |x̃j ||2 ≤ 2a2 + |ε| − 2a2
(

1− |ε|
a2

)
= 3|ε|

again holds as desired.

The next lemma proves that Algorithm 2 will accurately estimate the phases of all entires
xj whose magnitudes are sufficiently large relative to the noise level. This lemma requires
that the vector x be m-flat for a sufficiently small m.

Lemma 4. Suppose that x ∈ Cd is
⌊
δ−3
2

⌋
-flat with d > 2 and ‖x‖22 ≥ 26d2‖ñ‖∞, where

ñ = (M ′)−1Pn as in (20). Let k ∈ [d] be such that |xk|2 ≥ 5
2 d ‖ñ‖∞, and φa ∈ [0, 2π] be

the true phase of the entry xa of x chosen in line 2 of Algorithm 2. Then, Algorithm 2 will
produce an estimate φ̃k of the true phase of xk, φk := arg(xk), satisfying∣∣∣eiφ̃k − ei(φk−φa)∣∣∣2 ≤ 10 d2 ‖ñ‖∞

‖x‖22
.

Proof: Let α := ‖x‖2
d
√

10‖ñ‖∞
and β := ‖x‖2

2
√
d

. Note that α > 1, |xk| ≥ β
α , ‖ñ‖∞ < 1

4
β2

dα , and

|xa| >
√
3
2 β all hold. Furthermore, the fact that x is

⌊
δ−3
2

⌋
-flat guarantees the existence of a

sequence of entries xb1 , . . . , xbq such that:
1. 0 < |(bl+1 − bl) mod d| ≤ δ − 1 for all l ∈ [q − 1],
2. 0 ≤ max{|(b1 − a) mod d|, |(k − bq) mod d|} ≤ δ − 1, and
3. |xbl | ≥ β for all l ∈ [q].

Thus, line 18 of Algorithm 2 is guaranteed to identify a sequence of entries xj1 , . . . , xjp such
that:

1. 0 < |(jl+1 − jl) mod d| ≤ δ − 1 for all l ∈ [q − 1],
2. 0 ≤ max{|(j1 − a) mod d|, |(k − jp) mod d|} ≤ δ − 1, and
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3. |xjl | >
√
3
2 β for all l ∈ [q].

These entries contribute to the estimate φ̃k of φk − φa given by Algorithm 2,

(35) φ̃k = φ̃k,jp +

(
p−1∑
l=1

φ̃jl+1,jl

)
+ φ̃j1,a ≈ (φk−φjp)+

(
p−1∑
l=1

φjl+1
−φjl

)
+(φj1−φa) = φk−φa,

where φ̃jl+1,jl := 1
2

(
arg
(
ỹk(jl+1,jl)

)
− arg

(
ỹk(jl,jl+1)

))
is used as an estimate in line 13 of

φjl+1,jl := arg
(
yk(jl+1,jl)

)
= φjl+1

− φjl .
To bound the approximation error in (35) we note that the law of sines implies that

sin
(
|φ̃jl+1,jl − φjl+1,jl |

)
≤
∣∣∣sin(φ̃jl+1,jl − φjl+1,jl

)∣∣∣ ≤ ‖ñ‖∞|ỹl′ | ,
where ỹl′ = xjl+1

xjl + ñl′ is, without loss of generality, the smaller of the two measurements

(in magnitude) that contribute to the estimate φ̃jl+1,jl . Using the facts from the previous
paragraph concerning |xa|, |xk|, and |xjl | for all l ∈ [p], one can show that every measurement

ỹl′ that contributes to an estimate φ̃jl+1,jl used in (35) will have |ỹl′ | > β2

2α . Hence, we have
that

sin
(
|φ̃jl+1,jl − φjl+1,jl |

)
≤ 2α

β2
‖ñ‖∞ <

1

4

holds for all l ∈ [p]. As a consequence, we can infer that∣∣∣φ̃jl+1,jl−(φjl+1
−φjl)

∣∣∣ =
∣∣∣φ̃jl+1,jl − φjl+1,jl

∣∣∣ ≤ 5

4
sin
(
|φ̃jl+1,jl − φjl+1,jl |

)
≤ 5

2

α

β2
‖ñ‖∞

also holds for all all l ∈ [p]. Combining this with (35) we learn that∣∣∣φ̃k − φk + φa

∣∣∣ ≤ d5

2

α

β2
‖ñ‖∞ <

5

8
.

This, in turn, implies that∣∣∣eiφ̃k − ei(φk−φa)∣∣∣ =
∣∣∣ei(φ̃k−φk+φa) − 1

∣∣∣ = 2 sin

(
1

2

∣∣∣φ̃k − φk + φa

∣∣∣)
≤
∣∣∣φ̃k − φk + φa

∣∣∣ ≤ 5dα

2β2
‖ñ‖∞

proving the lemma.

We are now prepared to prove the main result of this section.

Theorem 5. There exist fixed universal constants C,C ′ ∈ R+ such that following holds:
Let M ∈ CD×d be defined as in §4.1, and suppose that x ∈ Cd is

⌊
δ−3
2

⌋
-flat with d > 2 and

‖x‖22 ≥ C (δ − 1)d2 ‖n‖2. Then, Algorithm 1 is guaranteed to recover an x̃ ∈ Cd with

(36) min
θ∈[0,2π]

∥∥∥x− eiθx̃∥∥∥2
2
≤ C ′d2(δ − 1)‖n‖2
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when given arbitrarily noisy input measurements b = |Mx|2 + n ∈ RD as per (1). Fur-
thermore, Algorithm 1 requires just O(δ · d log d) operations for this choice of M ∈ CD×d.

Proof: First, note that M ′ will be invertible by Theorem 4. Thus, we may set ñ = (M ′)−1Pn.
Furthermore, the proof of Theorem 4 tells us that there exists an explicit universal constant
C ′′ ∈ R+ such that

(37) C ′′(δ − 1)‖n‖2 ≥
‖n‖2

σD (M ′)
≥ ‖ñ‖2 ≥ ‖ñ‖∞.

Setting C = 26C ′′ now allows us to verify that

‖x‖22 ≥ 26C ′′ (δ − 1)d2 ‖n‖2 ≥ 26 d2 ‖ñ‖∞.

Hence, we will be able to apply both Lemmas 3 and 4 as desired.
Let φa ∈ [0, 2π] be as in Lemma 4, and let p, p̃ ∈ Cd be the vectors of phases of the

entries of e−iφax and x̃, respectively, so that pj = ei(φj−φa) and p̃j = eiφ̃j hold for all j ∈ [d].
Similarly, recall that |x|, |x̃| ∈ Rd denote the vectors of magnitudes of the entries of x and x̃,

respectively, so that |x|j = |xj | and |x̃|j =
√
|ỹk(j,j)| =

√
|xjxj + ñk(j,j)| hold for all j ∈ [d]

(here we are again using the notation from (20) and (21)). Thus, e−iφax = |x| ◦ p and
x̃ = |x̃| ◦ p̃ both hold, where ◦ denotes the entrywise (Hadamard) product.

To obtain (36) we bound

‖e−iφax− x̃‖2 ≤ ‖|x| ◦ p− |x| ◦ p̃‖2 + ‖|x| ◦ p̃− |x̃| ◦ p̃‖2

=

√√√√ d∑
j=1

|xj |2
∣∣∣eiφ̃j − ei(φj−φa)∣∣∣2 +

√√√√ d∑
j=1

||xj | − |x̃j ||2

≤
√∑

j∈S
|xj |2

∣∣∣eiφ̃j − ei(φj−φa)∣∣∣2+(38)

√√√√ ∑
j∈[d]\S

|xj |2
∣∣∣eiφ̃j − ei(φj−φa)∣∣∣2 +

√
3d‖ñ‖∞,

where S :=
{
k ∈ [d]

∣∣ |xk|2 ≥ 5
2 d ‖ñ‖∞

}
, and the last inequality results from an application

of Lemma 3. Bounding the first two terms of (4.2) using Lemma 4 and the properties of S
we can see that

‖e−iφax− x̃‖2 ≤

√√√√∑
j∈S
|xj |2

(
10 d2 ‖ñ‖∞
‖x‖22

)
+
√

10d2‖ñ‖∞ +
√

3d‖ñ‖∞

≤ 2d
√

10‖ñ‖∞ +
√

3d‖ñ‖∞ ≤ 3d
√

10‖ñ‖∞.

Using (37) now allows us to establish that

‖e−iφax− x̃‖2 ≤ 3d
√

10‖ñ‖∞ ≤ 3d
√

10C ′′(δ − 1)‖n‖2
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which implies (36).
We finish by noting that the runtime complexity of Algorithm 1 simplifies to O(δ · d log d)

operations when using the measurements defined in §4.1 because the matrix J also has a
simple block-diagonal factorization in this case (recall (13) and (25) in light of §3.1).

The following corollary easily follows from Theorem 5.

Corollary 1. Let M ∈ CD×d be defined as in §4.1, and suppose that x ∈ Cd is m-flat for
some m ≤

⌊
δ−3
2

⌋
. Then, Algorithm 1 will recover an x̃ ∈ Cd with x̃ = eiθx for some θ ∈

[0, 2π] when given noiseless input measurements b = |Mx|2 ∈ RD. Furthermore, Algorithm 1
requires just O(δ · d log d) operations in this case.

Of course, not all vectors are m-flat for a suitably small value of m. We will generalize
our results to arbitrary vectors x in the next section. This will be accomplished by showing
that a well chosen random unitary matrix W will have the property that Wx is m-flat with
high probability.

4.3. Flattening Arbitrary Vectors with High Probability. Let W ∈ Cd×d be the random
unitary matrix

(39) W := PFB,

where P ∈ {0, 1}d×d is a permutation matrix selected uniformly at random from the set of
all d × d permutation matrices, F is the unitary d × d discrete Fourier transform matrix,
and B ∈ {−1, 0, 1}d×d is a random diagonal matrix with i.i.d. symmetric Bernoulli entries
on its diagonal. For any given m ∈ [d], one can naturally partition W into

⌊
d
m

⌋
blocks of

contiguous rows, each of cardinality either m or m+ 1. This defines the
⌊
d
m

⌋
sub-matrices of

W , W1, . . . ,Wd−mb dmc ∈ C
(m+1)×d and Wd−mb dmc+1, . . . ,Wb dmc ∈ C

m×d, by

(40) W =


W1

W2
...
Wb dmc

 .

Note that each renormalized sub-matrix of W ,
√

d
m ·Wj for j ∈

[⌊
d
m

⌋]
, is almost a random

sampling matrix (16) times a random diagonal Bernoulli matrix. As a result, Theorems 1 and 2

suggest that each
√

d
m ·Wj should behave like a JL(m,d,ε)-embedding of our signal x into Cm

(or Cm+1). If true, it would then be reasonable to expect that each block of m consecutive
entries of Wx should have roughly the same `2-norm as one another. This, in turn, suggests
that the random unitary matrix W should effectively flatten x with high probability, especially
when m is small.

Of course, there are several small difficulties that must be addressed before the argument

above can be made rigorous. First, the rows of F contributing to
√

d
m ·Wj are effectively

independently sampled uniformly without replacement from the set of all rows of F by our
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choice of P .18 This means that Theorem 2 does not strictly apply in our situation since we
can not select any row of F more than once. Secondly, some care must be taken in order to
select the smallest value of m possible in (40), since Wx will become flatter, or less sparse, as
m decreases. As a result, m will effectively provide a theoretical lower bound on the size of
δ that one can utilize and still be guaranteed to accurately recover Wx via our §3 techniques
(recall also §4.2 above). We are now ready to begin proving our main result concerning W .

The following simple lemma will be used in order to help adapt Theorem 2 to the situation
where the rows of F are sampled uniformly without replacement.

Lemma 5. Let m ∈ N with m ≤
√
d. Independently draw x1, . . . , xm from [d] uniformly at

random with replacement. Then, P [|{x1, . . . , xm}| = m] ≥ 1/2.

Proof: A short induction argument establishes that

(41) P [|{x1, . . . , xm}| = m] =

m−1∏
j=1

(
1− j

d

)
≥ 1−

m−1∑
j=1

j

d
= 1− m2 −m

2d
.

The result now follows easily via algebraic manipulation.

The following corollary of Theorem 2 now demonstrates that a random sampling matrix
R′ formed by sampling a subset of rows of size m uniformly at random from F will still be
RIP(2s,ε/C1) with high probability.

Corollary 2. Let p ∈ (0, 1). Form a random sampling matrix R′ ∈ Cm×d by independently
sampling m rows from F uniformly without replacement. If the number of rows, m, satisfies
both

(42)
√
d ≥ m ≥ C3 ·

s ln2(8s) ln(8d) ln(9m)

ε2

and

(43)
√
d ≥ m ≥ C4 ·

s log(2/p)

ε2
,

then R′ will be RIP(2s,ε/C1) with probability at least 1− p.

Proof: Let S := {x1, . . . , xm}, where each xj ∈ [d] is selected independently and uniformly at
random from [d] (with replacement). Similarly, let S ′ ⊂ [d] be a subset of [d] chosen uniformly
at random from all subsets of [d] with cardinality m (i.e., let S ′ contain m elements sampled
independently and uniformly from [d] without replacement). Furthermore, let E denote the
event that the random sampling matrix whose rows from F are x1, . . . , xm is not RIP(2s,ε/C1).

18Note that W being unitary helps us to be able to guarantee both exact recovery of x in the noiseless
setting, and well behaved approximation of x in the noisy setting. If we had chosen rows of F with replacement
instead of without replacement in (39) we would not have a unitary (or even invertible) square matrix W with
probability → 1/e as d→∞. If one decides to make W rectangular instead of square simply in order to allow
sampling from the rows of F with replacement, then many other small difficulties and inefficiencies result.
Thus, we let P be a randomly selected permutation matrix instead of creating it by putting a one in each row
independently at random.
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Finally, let E′ denote the event that the random sampling matrix whose rows from F are the
elements of S ′ is not RIP(2s,ε/C1). Applying Lemma 5 we can now see that

(44) P [E] ≥ P
[
E
∣∣ |S| = m

]
·P [|S| = m] = P

[
E′
]
·P [|S| = m] ≥ 1

2
·P
[
E′
]
.

The stated result now follows from Theorem 2.

We are now ready to prove that W will flatten the signal x ∈ Cd with high probability
provided that m can be chosen appropriately. We have the following theorem:

Theorem 6. Let W ∈ Cd×d be formed as per (39) for d ≥ 8. Then, Wx ∈ Cd will be
m-flat with probability at least 1− 1

m provided that
√
d ≥ m+ 1 ≥ C5 · ln2(d) · ln3 (ln d).19

Proof: Our first goal will be to show that each W1, . . . ,Wb dmc from (40) is a is a rescaled

JL(m,d,1/2)-embedding of {x} into Cm (or Cm+1). This will guarantee that each consecutive
block of m (or m+ 1) entries of Wx has roughly the same `2-norm.

To achieve this goal we will apply Theorem 1 to each
√

d
m ·W1, . . . ,

√
d
m ·Wb dmc in order

to show that each one embeds {x} into Cm (or Cm+1) with probability at least 1− 1
2d . The

union bound will then imply that {x} is embedded by all the
√

d
m ·Wj with probability at

least 1− 1
2m . This argument will go through as long as each

√
d
m ·W1B

−1, . . . ,
√

d
m ·Wb dmcB

−1

is RIP(2s,1/2C1) for some s ≥ C2 · ln(8d). Hence, we will now focus on determining the range
of m which guarantees that all

⌊
d
m

⌋
of these matrices are RIP(d2C2 · ln(8d)e,1/2C1).

To demonstrate that each
√

d
m ·WjB

−1 is RIP(d2C2 · ln(8d)e,1/2C1) with probability at

least 1− 1
2d one may apply Corollary 2 with m (or m+ 1) chosen as above (assuming d ≥ 8).

Another application of the union bound then establishes that all of
√

d
m ·W1B

−1, . . . ,
√

d
m ·

Wb dmcB
−1 will be RIP(d2C2 · ln(8d)e,1/2C1) with probability at least 1 − 1

2m . One final

application of the union bound then establishes our first goal: All of
√

d
m ·W1, . . . ,

√
d
m ·Wb dmc

will be JL(m,d,1/2)-embeddings of {x} with probability at least 1− 1
m .

To finish the proof, we now note that Wx will be m-flat whenever all
⌊
d
m

⌋
of the

√
d
m ·Wj

matrices are JL(m,d,1/2)-embeddings of {x}. To see why, suppose that

1

2
‖ x ‖22 ≤

d

m
‖Wjx‖22 ≤

3

2
‖ x ‖22.

This implies that 3m
2d ‖ x ‖22 ≥ ‖Wjx‖22 ≥ m

2d‖x‖
2
2, which can only happen if both of the fol-

lowing hold: (i) at least one entry of Wjx has magnitude at least ‖x‖2
2
√
d

= ‖Wx‖2
2
√
d

, and (ii)

all entires of Wjx have magnitude less than
√

3m+3
2d ‖x‖2 =

√
3m+3
2d ‖Wx‖2. This proves the

theorem.

19Here C5 ∈ R+ is a fixed absolute constant.
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Theorem 6 now allows us to alter our measurements so that we can recover arbitrary
vectors. We are now ready to prove Theorem 3.

4.4. Proof of Theorem 3. We set our measurement matrix M̃ ∈ CD×d to be M̃ := MW
where M ∈ CD×d is defined as in §4.1, and W ∈ Cd×d is as defined as in (39). Theo-
rem 6 guarantees that Wx will be m = O(ln2(d) · ln3 (ln d))-flat with probability at least
1 − 1

C5·ln2(d)·ln3(ln d)
provided that d is sufficiently large. Furthermore, if Wx is m-flat and

δ ≥ 2m+ 3, then Theorem 5 guarantees that Algorithm 1 will recover an x′ ∈ Cd satisfying

(45) min
θ∈[0,2π]

∥∥∥Wx− eiθx′
∥∥∥
2
≤ C ′d2(δ − 1)‖n‖2

when given the noisy input measurements b = |MWx|2 + n ∈ RD. Hence, choosing δ =
O(ln2(d) · ln3 (ln d)) allows us to recover x′ ≈W

(
eiφx

)
, for some unknown phase φ ∈ [0, 2π],

with probability at least 1− 1
C5·ln2(d)·ln3(ln d)

.20 Setting x̃ = W ∗x′ we can see that

min
θ∈[0,2π]

∥∥∥x− eiθx̃∥∥∥
2

= min
θ∈[0,2π]

∥∥∥W ∗ (Wx− eiθx′
)∥∥∥

2

= min
θ∈[0,2π]

∥∥∥Wx− eiθx′
∥∥∥
2
≤ C ′d2(δ − 1)‖n‖2

by (45) since W is always unitary.
Considering the runtime complexity, we note that x′ can be obtained in O(δ · d log d)

= O(d · ln3(d) · ln3 (ln d)) operations by Theorem 5. Computing W ∗x′ can then be done in
O(d log d) operations via an inverse fast Fourier transform. The stated runtime complexity
follows.

It is interesting to note that alternate constructions of flattening matrices, W , with fast
inverse-matrix vector multiplies can also be created by using sparse Johnson-Lindenstrauss
embedding matrices in the place of our Fourier-based matrices (see, e.g., [7]). Thus, one has
several choices of matrices W to use in concert with a given block-circulant measurement
matrix M in principle.

5. Empirical Evaluation. We now present numerical results demonstrating the efficiency
and robustness of the BlockPR algorithm. We test our algorithm on i.i.d. zero-mean complex
random Gaussian test signals. To test noise robustness, we add i.i.d random Gaussian noise to
the squared magnitude measurements at desired signal to noise ratios (SNRs). In particular,
the noise vector n ∈ RD in (1) is chosen to be i.i.d. N (0, σ2ID). The variance σ2 is chosen
such that

SNR (dB) = 10 log10

(
‖Mx‖22
Dσ2

)
.

Errors in the recovered signal are also reported in dB with

Error (dB) = 10 log10

(
‖x̃− x‖22
‖x‖22

)
,

20The probability estimate in Theorem 3 follows immediately with C = C5.
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where x̃ denotes the recovered signal. Matlab code used to generate the numerical results is
freely available at [31].
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Figure 2: Computational Efficiency of the BlockPR Phase Retrieval Algorithm (WF denotes
the Wirtinger Flow algorithm; parentheses are used to denote the type of measurements used)

We start by presenting numerical simulations demonstrating the efficiency of the BlockPR
algorithm. In particular, we plot the execution time for solving the phase retrieval problem
(averaged over 100 trials) from perfect (noiseless) measurements in Figure 2. Simulations
were performed on a laptop computer with an Intelr CoreTMi3-2350M processor, 6GB RAM
and Matlab R2015a. For comparison, we also plot execution times for the Gerchberg–Saxton
alternating projection algorithm, semidefinite programming-based PhaseLift algorithm21 and
the recently introduced Wirtinger Flow algorithm. Simulation results with PhaseLift and the
Gerchberg–Saxton alternating projection algorithm use random complex Gaussian measure-
ments. We note that even though alternating projection algorithms are known to empirically
work with certain FFT-time measurement constructions, recovery guarantees are only avail-
able for random Gaussian measurements (see for example [42]). Simulation results for the
Wirtinger Flow algorithm are generated using either random complex Gaussian measure-
ments or coded diffraction patterns(CDPs). We remark here that the motivating application
typically determines the type of measurements used. For example, random Gaussian mea-
surements or coded diffraction patterns – such as those employed by PhaseLift and Wirtinger
Flow – are not directly applicable in local correlation-based applications, which are of primary
interest in this discussion. Nevertheless, Figure 2 provides a useful comparison for evaluat-

21The PhaseLift algorithm was implemented as a trace-regularized least-squares problem using CVX [25, 24],
a package for specifying and solving convex programs in Matlab.
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ing the efficiency of different phase retrieval algorithms. Figure 2a plots the execution time
for solving the phase retrieval problem using 7d measurements. We observe that PhaseLift
and alternating projections have computational complexities which scale cubically with the
problem dimension, thereby limiting their applicability to small-scale problems. On the other
hand, both BlockPR and Wirtinger Flow (with coded diffraction pattern measurements) have
essentially FFT-time computational complexities, with BlockPR observed to have a smaller
constant than Wirtinger Flow. Similar speedup is observed in Figure 2b, where the number
of measurements used by BlockPR and Wirtinger Flow grows log-linearly in the problem size
d. For reference, execution times for phase retrieval from O(d) random complex Gaussian
magnitude measurements using PhaseLift and Wirtinger Flow are also provided. These plots
confirm the significant speedup offered by the proposed BlockPR algorithm over other com-
parable methods and corroborate the efficiency of the proposed computational framework for
solving large-scale phase retrieval problems.
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Figure 3: Robustness of the Proposed BlockPR Phase Retrieval Algorithm to Additive Noise

We next demonstrate robustness of the proposed framework to additive noise. Figure
3a plots the reconstruction error in recovering a d = 64 complex random Gaussian signal at
different SNRs, with each data point computed as the average of 100 trials.22 We include
reconstruction results using Gerchberg–Saxton, PhaseLift and Wirtinger Flow algorithms for
comparison. In all cases, the algorithms recover the unknown signal x upto (or slightly better
than) the added noise level. As opposed to the other algorithms in Figure 3a, BlockPR uses
local measurements as prescribed in (23), with each measurement only providing information
about a corresponding local region of the underlying signal. Hence, we expect BlockPR to

22A few iterations of the Gerchberg–Saxton alternating projection algorithm were used to post-process the
reconstructions.
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require more measurements than the other algorithms in Figure 3a to achieve the same noise
robustness. Indeed, this is confirmed in the figure with BlockPR requiring roughly twice the
number of measurements to achieve the same noise robustness. We note, however, that the
number of additional measurements is typically a small constant irrespective of the problem
size. Similar results are provided in Figure 3b for a larger problem size (d = 1024). Until now,
the deterministic Fourier-based measurement masks of (23) have been utilized to generate
simulation results. In Figure 3b, we additionally provide robustness results using oversampled
random local masks. Specifically, we choose the non-zero entries of each of the ` measurement
masks m` ∈ Cd in (6) to be i.i.d. complex random Gaussian entries for ` = 1, 2, · · · , γ ·(2δ−1),
where γ ≥ 1 is an oversampling factor. The dashed line in Figure 3b was generated using
γ = 1.5, while the solid line was generated using γ = 2. In either case, the block length δ
was chosen so as to achieve a total of D = d6d log2 de and D = d12d log2 de measurements
respectively. This plot confirms the graceful degradation of reconstruction error with added
noise. Moreover, the block length δ and oversampling factor γ may be suitably chosen to
achieve desired noise robustness.
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Figure 4: Well Conditioned Measurements – Condition Number as a Function of the Block
Length δ

Finally, Figure 4 plots the condition number of the system matrix used to solve for the
phase differences (matrix M ′ in §2). The figure plots the condition number as a function of the
block length δ for d = 64.23 It confirms that the condition number scales as a small multiple
of δ2. The figure also includes a plot of the condition number when using random masks at
an oversampling factor of 1.5. Empirical simulations suggest that the use of oversampling
can lead to essentially-linear growth in the condition number κ(M ′) with block length δ.
Analyzing the performance of such an oversampled measurement construction and explicitly

23 The condition number is independent of the problem dimension d and depends only on the block length
δ.
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writing down associated condition number bounds would be an interesting avenue for future
research.
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Figure 5: Evaluation of Phase Retrieval Algorithms for Local Correlation Measurements

We conclude this section by presenting representative numerical results highlighting the
superior performance of the proposed BlockPR algorithm for local measurements. Specifically,
we use the windowed Fourier-like local correlation measurements described in Section 4.1 with
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the BlockPR, PhaseLift and Gerchberg-Saxton alternating projection algorithms. We note
that there are no theoretical recovery guarantees with PhaseLift and the Gerchberg-Saxton
algorithm for such measurements; however, empirical simulations suggest that for sufficiently
large numbers of measurements, both algorithms recover the unknown signal. Indeed, this is
illustrated in Figure 5b, where the reconstruction error in recovering a d = 64 length complex
vector is plotted as a function of the number of measurements required. For global (random
Gaussian) measurements, it is known that PhaseLift recovers signals upto the noise level with
about 6d measurements (see, for example [12]). Yet, for the local measurements studied here,
significantly larger numbers of measurements are necessary for successful phase retrieval by
PhaseLift (and indeed the Gerchberg-Saxton alternating projection algorithm). Figure 5b
shows that the proposed BlockPR algorithm compares well with PhaseLift and almost always
outperforms alternating projections. We note that the PhaseLift error plots are only shown
for upto D = 15d measurements due to memory issues in implementing the algorithm for
larger D with CVX on a laptop computer.

The performance of the proposed BlockPR algorithm is particularly noteworthy since it
has an essentially FFT-time computational cost as illustrated in Figure 5a. Unsurprisingly,
the computational cost of PhaseLift scales as O(d3). Note that we had to use the Matlab
software package TFOCS [4, 5] to implement PhaseLift for large problem sizes. TFOCS
implements fast first-order conic solvers which trade off some accuracy for efficiency gains,
thereby enabling the solution of large problems. We also note that the computational cost of
the Gerchberg-Saxton alternating projections algorithm scales quadratically despite the use of
FFT-based linear system solvers in each iteration. Numerical experiments suggest that the
number of alternating projection iterations grows with the problem size, thereby resulting in
the quadratic scaling.

For completeness, Figures 5c and 5d plot the reconstruction error versus added noise level
using D = 7d and D = 15d measurements respectively for all three algorithms using local
correlation measurements. In each plot, we recover a d = 64 length complex vector from
i.i.d Gaussian noise corrupted phaseless measurements. With D = 15d measurements, both
BlockPR and PhaseLift recover the unknown signal to the level of noise, while for D = 7d
measurements, there is a roughly 10dB error in the reconstructed signal. Note the increased
number of measurements necessary for PhaseLift to achieve the same error performance as in
Figure 3a – this highlights the challenging nature of reconstructing signals from local phaseless
measurements.

6. Extension: Sublinear-Time Phase Retrieval for Compressible Signals. In this section
we briefly focus on the compressive phase retrieval setting, (see, e.g., [43, 47, 34, 53, 18, 48]),
where one aims to approximate a sparse or compressible x ∈ Cd using fewer magnitude mea-
surements than required for the recovery of general x. It is known that robust compressive
phase retrieval for s-sparse vectors is possible using only O(s log(d/s)) magnitude measure-
ments [18, 30]. In this section we prove that it is also possible to recover s-sparse vectors
x ∈ Cd up to an unknown phase factor in only O(s log6 d)-time using O(s log5 d) magnitude
measurements. Thus, we establish the first known nearly runtime-optimal (i.e., essentially
linear-time in s) compressive phase retrieval recovery result. In particular, we prove the
following theorem.
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Theorem 7. There exists a deterministic algorithm A : RD → Cd for which the following
holds: Let ε ∈ (0, 1], x ∈ Cd with d sufficiently large, and s ∈ [d]. Then, one can select a
random measurement matrix M̃ ∈ CD×d such that

(46) min
θ∈[0,2π]

∥∥∥eiθx−A(|M̃x|2
)∥∥∥

2
≤
∥∥x− x opt

s

∥∥
2

+
22ε
∥∥∥x− xopt

(s/ε)

∥∥∥
1√

s

is true with probability at least 1− 1
C·ln2(d)·ln3(ln d) .24 Here D can be chosen to be O

(
s
ε · ln

3( sε ) ·
ln3
(
ln s

ε

)
· ln d

)
. Furthermore, the algorithm will run in

O
(
s
ε · ln

4( sε ) · ln
3
(
ln s

ε

)
· ln d

)
-time in that case.25

We prove Theorem 7 by following the generic compressive phase retrieval recipe presented
in [30]. Let C ∈ Cm×d be any compressive sensing matrix with an associated sparse approx-
imation algorithm ∆ : Cm → Cd (see, e.g., [11, 14, 51, 39, 6, 40, 41]), and let P ∈ CD×m

be any phase retrieval matrix with an associated recovery algorithm Φ : RD → Cm. Then,
∆ ◦ Φ : RD → Cd will approximately recover compressible vectors x ∈ Cd up to an unknown
phase factor when provided with the magnitude measurements |PCx|. That is, one may first
use Φ to recover eiφ(Cx) = C(eiφx) for some unknown φ ∈ [0, 2π] from |PCx|, and then use
∆ to recover eiφx from C(eiφx). If both Φ and ∆ are efficient, the result will be an efficient
sparse phase retrieval method.

Herein we will utilize Algorithm 1 as our phase retrieval method. Note that it’s runtime is
only O(m log4m), making it optimal up to log factors (recall Theorem 3). For the compressive
sensing method we will utilize the following algorithmic result from [28].

Theorem 8. Let ε ∈ (0, 1], σ ∈ [2/3, 1), x ∈ Cd, and s ∈ [d]. With probability at least σ the
deterministic compressive sensing algorithm from [28] will output a vector z ∈ Cd satisfying

(47) ‖x− z‖2 ≤
∥∥x− x opt

s

∥∥
2

+
22ε
∥∥∥x− xopt

(s/ε)

∥∥∥
1√

s

when executed with random linear input measurements Mx ∈ Cm. It suffices to choose m =

O
(
s
ε · ln

(
s/ε
1−σ

)
ln d
)

. The required runtime of the algorithm is O
(
s
ε · ln

(
s/ε
1−σ

)
ln
(

d
1−σ

))
in

this case.26

Theorem 7 now follows easily from Theorem 3 with n = 0, and Theorem 8.

7. Future Work. This paper provides the first known global robust recovery guarantees
for ptychographic phase retrieval problems, as well a new numerical lifting+angular synchro-
nization solution approach which is applicable with correlation-type measurements resulting
from a wide class of locally supported masks mω. In doing so, it opens up many additional
avenues of research. Examples include, e.g., questions associated with the use of different

24Here C ∈ R+ is a fixed absolute constant.
25For the sake of simplicity, we assume s = Ω(log d) when stating the measurement and runtime bounds

above.
26For the sake of simplicity, we assume s = Ω(log d) when stating the measurement and runtime bounds

above.
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boundary conditions for x. Herein, x is assumed to be periodic, which leads to the lifted
linear system matrix M ′ in (10) being block circulant. It would be interesting to derive condi-
tion number bounds, as well as specialized numerical solution techniques, for the lifted linear
system matrices that result from alternate boundary condition assumptions. More generally,
it would be interesting to derive theoretical condition number bounds for the types of lifted
linear systems that arise from more general classes of masks mω under various sets of boundary
condition assumptions for x.

It would also be interesting to explore alternate approaches, besides Algorithm 2, for
solving the angular synchronization problem via local phase differences that appears in the
second stage of our proposed phase retrieval approach. In particular, it would be interesting
to develop theoretical error bounds for other solution methods (e.g., [49]) in the presence
of noise for these types of local angular synchronization problems. Finally, it would also be
instructive to carefully consider the optimality (or lack thereof) of the robustness guarantees
derived herein for m-flat signals (i.e., Theorem 5) under various noise models.

Acknowledgements. The authors would like to thank the anonymous reviewers for many
helpful suggestions and interesting ideas regarding possible directions for future work.

REFERENCES

[1] D. Achlioptas, Database-friendly random projections, in Proceedings of the ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, ACM, 2001, pp. 274–281.

[2] B. Alexeev, A. S. Bandeira, M. Fickus, and D. G. Mixon, Phase retrieval with polarization, SIAM
J. Imaging Sci., 7 (2014), pp. 35–66.

[3] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, A simple proof of the restricted isometry
property for random matrices, Constr. Approx., 28 (2008), pp. 253–263.

[4] S. Becker, E. J. Candes, and M. Grant, Templates for convex cone problems with applications to
sparse signal recovery, Math. Program. Comput., 3 (2011), pp. 165–218.

[5] S. Becker, E. J. Candes, and M. Grant, TFOCS: Templates for first-order conic solvers, version
1.4. http://cvxr.com/tfocs, Mar. 2016.

[6] T. Blumensath and M. E. Davies, Iterative hard thresholding for compressed sensing, Appl. Comput.
Harmon. Anal., 27 (2009), pp. 265–274.

[7] J. Bourgain and J. Nelson, Toward a unified theory of sparse dimensionality reduction in Euclidean
space, Geom. Funct. Anal., 25 (2015), pp. 1009–1088.

[8] E. J. Candes and X. Li, Solving quadratic equations via PhaseLift when there are about as many
equations as unknowns, Found. Comput. Math., 14 (2014), pp. 1017–1026.

[9] E. J. Candes, X. Li, and M. Soltanolkotabi, Phase retrieval from coded diffraction patterns, Appl.
Comput. Harmon. Anal., 39 (2015), pp. 277–299.

[10] E. J. Candes, X. Li, and M. Soltanolkotabi, Phase retrieval via Wirtinger flow: Theory and algo-
rithms, IEEE Trans. Inform. Theory, 61 (2015), pp. 1985–2007.

[11] E. J. Candes, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489–509.

[12] E. J. Candes, T. Strohmer, and V. Voroninski, Phaselift: Exact and stable signal recovery from
magnitude measurements via convex programming, Comm. Pure Appl. Math., 66 (2013), pp. 1241–
1274.

[13] E. J. Candes and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 51 (2005),
pp. 4203–4215.

[14] E. J. Candes and T. Tao, Near optimal signal recovery from random projections: Universal encoding
strategies?, IEEE Trans. Inform. Theory, 52 (2006), pp. 5406–5425.

[15] Y. Chen and E. J. Candes, Solving random quadratic systems of equations is nearly as easy

http://cvxr.com/tfocs


FAST PHASE RETRIEVAL FROM LOCAL CORRELATION MEASUREMENTS 33

as solving linear systems, Comm. Pure Appl. Math., (2016), doi:10.1002/cpa.21638. In Press,
DOI:10.1002/cpa.21638.

[16] S. Dasgupta and A. Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss, Random
Structures Algorithms, 22 (2003), pp. 60–65.

[17] L. Demanet and P. Hand, Stable optimizationless recovery from phaseless linear measurements, J.
Fourier Anal. Appl., 20 (2014), pp. 199–221.

[18] Y. C. Eldar and S. Mendelson, Phase retrieval: Stability and recovery guarantees, Appl. Comput.
Harmon. Anal., 36 (2014), pp. 473–494.

[19] A. Fannjiang and W. Liao, Phase retrieval with random phase illumination, J. Opt. Soc. Amer. A, 29
(2012), pp. 1847–1859.

[20] J. R. Fienup, Reconstruction of an object from the modulus of its Fourier transform, Opt. Lett., 3 (1978),
pp. 27–29.

[21] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Basel: Birkhäuser,
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