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Chapter I

Some Motivating Problems Involving Big Data

1.1 Approximate Counting (CMSE 890 Lecture 1)

As way of introduction, in order provide some interesting and relevant examples

that are illustrative of the larger course content, we consider three by now quotidian

problems in big data settings.

Counting objects is a common challenge in settings involving very large data sets.

Memory efficient methods are needed in order to make object counts feasible for

routine use on these data. This type of problem and the ensuing discussion will also

serve as an introduction to some key ideas for the course. In it we see a deterministic,

simple sounding task (counting in the case) which under further study shows the

need for fast and memory efficient algorithms that give good approximations to well

constructed statistics questions.

A formal statement of the problem is as follows: Given a sequence {zj}Nj=1 where

∀j, zj ∈ U and some item w ∈ U of interest, count the number of occurrences of

term w in the sequence {zj}Nj=1.

Goal. Estimate the count of w occurring in the sequence using dlog2dlog2Nee bits

of memory. We require our estimate of the count be larger than the actual count, but

no more than twice the actual count.

1
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The source of the overestimate error on the count will be made clear shortly.

Examples abound for data sets for which counts of this sort are useful

Example 1.1.1. U is the set of all possible phone numbers, and {zj}Nj=1 is a list

of phone numbers which have communicated with a particular cellphone tower over

some period of time. The term w is a phone number of interest, perhaps a known

spammer.

Example 1.1.2. U is all possible pairs of words in the English language. So

hello world or thank you are members of U . The sequence {zj}Nj=1 is a list of

all pairs of words that appear in emails contained in some user’s inbox. The term w

then could be buy pepsi which is of interest to perhaps stock traders or advertisers.

Example 1.1.3. U is all possible IP addresses and {zj}Nj=1 is a list that contains the

originating IP address for all packets received by a certain router. The term w is the

IP address of a server used by a movie streaming service of interest to an internet

service provider.

We may wish to consider counts of many different terms w for say all cell-phone

towers in a particular country, or all users of some particular email service. Clearly,

the size of such data sets means that counts can be potentially very large. Since N

is an integer, a priori, we would need (maximally) blog2Nc+ 1 bits to store a count

of each w.

Note. We can store N using blog2Nc + 1 bits. We have blog2Nc = k only if

k ≤ log2N < k + 1 if and only if 2k ≤ N < 2k+1. That is, 2k ≤ N < 2k+1 is

the range of integers which requires k + 1 bits. So the integers requiring 4-bits for

example are 8 through 15. Depending on implementation there are other bits required

to say, store the sign of the integer. For simplicity we say that storing an integer of
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size N requires dlog2Ne bits, though this may be off by one, or some other constant,

depending on implementation.

A first, naive approach is to increment a counter after one scan of the sequence,

and then store the logarithm of that count.

Algorithm 1.1.1 Naive Counter

Input: {zj}Nj=1 , w

Output: approximate count of w in {zj}Nj=1

for j = 1 to N do
if zj = w then
w̃ ← w̃ + 1

end if
end for
E ← dlog2 w̃e

Since E is of size at most dlog2Ne it takes at most dlog2dlog2Nee bits to store.

Due to the information lost by taking the ceiling, we also have that w̃ ≤ 2E ≤ 2w̃.

Question 1.1.4. Does E and the algorithm 1.1.1 achieve our goal?

No. While it is true that E occupies the right number of bits, the counter itself

w̃ would need to occupy possibly dlog2Ne bits when running the algorithm.

Another problem which is similar to counting objects is the distinct elements

problem. Here we concerned with determining the number of distinct elements which

appear in a given sequence, as opposed to the frequency.

Formally, given a sequence {zj}Nj=1 where ∀j, zj ∈ U , and |U | = D we wish to

compute the cardinality of {zj}Nj=1 as a set.

Goal. Estimate the number of distinct elements in a sequence using a number of bits

independent of both N and D.

One can imagine many different settings where such a count of distinct elements

would be useful.
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Example 1.1.5. U is the set of all possible phone numbers, and {zj}Nj=1 is a list

of phone numbers which have communicated with a particular cellphone tower over

some period of time. The cardinality of the sequence as a set would be the number

of unique cellphones that used the tower.

Example 1.1.6. U is all possible pairs of words in the English language. The

sequence {zj}Nj=1 is a list of all pairs of words that appear in a user’s current email

outbox. The cardinality of the sequence as a set would be an indicator of the variation

of a given user’s word choice in writing emails.

We consider two naive solutions to this problem, and observe how they do not

achieve the stated goal.

Algorithm 1.1.2 Naive Distinct Elements by D-array

Input: {zj}Nj=1

Output: number of distinct elements in {zj}Nj=1

Let A := array of zeros of size D
for j = 1 to N do
if A[zj ] = 0 then
A[zj ] := 1

end if
end for
‖A‖0

Algorithm 1.1.3 Naive Distinct Elements by Sorted List

Input: {zj}Nj=1

Output: number of distinct elements in {zj}Nj=1

Let L[j] := zj
Sort L
for j = 1 to N − 1 do
if L[j] = L[j + 1] then

flag L[j + 1] for removal
end if

end for
|L|

However, neither of these algorithms meet the requirements of the stated goal. In

the case of algorithm 1.1.2 the array A clearly occupies D bits. In the case of 1.1.3,
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the list L needs N entries, and so will occupy at least N bits of memory. In a future

lecture, we will study the Flajolet-Martin Algorithm which does solve the distinct

element problem with constant memory.

The third problem we consider is Nearest Neighbor in R. Here we have a set of

points, and are presented with a query point and wish to return the closet point

in our set to the query point, reckoned by a norm of interest. Formally, we have

S ⊂ RD, and query y ∈ RD and compute yNN = arg min ‖x − y‖. The set S has

cardinality N which can be very large. Naturally we can extend this to k-nearest

neighbors by returning a list of the k closest points.

A simple linear scan then of the set is perhaps the most obvious solution to the

problem

Algorithm 1.1.4 Naive Nearest Neighbors

Input: S,y, ‖ · ‖
Output: yNN

d =∞
for x in S do
if ‖x− q‖ < d then
yNN ← x

end if
end for

This problem is a fundamental building block type of problem in many algorithms

and data science applications.

Example 1.1.7. S is the a database of gray-scale images. A query point q is a novel

image, we return the image that is closest to using the `1 norm

Example 1.1.8. S is a database of names of people who bought departing tickets

from a given airport. A query point q is a name of a passenger of interest, we return

the name that is closest to it using the Hamming distance.

Example 1.1.9. S is a database of users of a dating website. Each user has a vector
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of different features, which is computed from data collected about their interests,

hobbies, preferences, etc. A query point q represents a particular user, and developers

for the website have engineered a norm which represents similarity between users.

The closest point in S is recommended as a potential partner.

Since each of the N points in S needs to be compared to the query point, and

calculating the norm of the difference depends on the dimension D of the space, this

scan has O(ND) complexity. We will later study how to improve on this using good

approximations.

Definition 1.1.10. For p ≥ 1, the `p-norm of a vector in x ∈ CD is a map ‖ · ‖p :

C
D → [0,∞) defined by

‖x‖p =

(
D∑
j=1

|xj|p
)1/p

if p =∞ then ‖x‖∞ = maxj |xj|

Homework 1.1.1. Given norms ‖ · ‖† and ‖ · ‖? on CD and α, β ∈ [0,∞), prove

that ‖x‖+ = α‖x‖† + β‖x‖? is also a norm in CD

Other applications that will be relevant to our study in this course are

1. Fast Monte Carlo integration approximation

2. Fast approximate solutions to classic numerical linear algebra problems in the big

data setting such as

(a) least square regression

(b) matrix-matrix multiplication

(c) Principal Component Analysis

3. Compressive sensing
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4. Heavy Hitter problems

Heavy Hitter problems refer to cases where we want to find those values which

occur most frequently in a large (streaming) sequence of data. For example, a seller

such as Walmart may be interested in the hundred most purchased items across many

different stores on a minute by minute or second by second time-frame. Another sub-

type of Heavy Hitter problem appears in group testing. Here, many specimens are

collected and tested together in batches. So for example, 20 patients may submit

specimens that are combined into batches containing samples from 5 different speci-

mens, and say samples from each specimen are included in 3 different batches which

are then tested for the disease. If the prevalence of the disease is sufficiently small,

batching schemes can be designed to economize testing but still ensure identifiability

of patients who have the disease.

1.2 Fast Function Approximation via Compressive Sensing (MTH 994
Lecture 1)

The main problem that the course addresses is as follows

Design an algorithm, i.e. a computable function, ∆ : Cm → C
N where m ≤ N

and a set of linear measurements Φ ∈ C
m×N for a given subset Fp ⊂ C

N with

parameters p ∈ Cr such that for all (n,x) ∈ Z ×Fp the following holds

(1.1) ‖∆(Φx + n)− x‖X ≤ Cp,X,Y inf
y∈Fp

‖x− y‖Y + C̃p,X,Y,Z‖n‖Z + εp,X,Y,Z

In effect, what we seek is a reconstruction or invertibility property for our algo-

rithm, namely, ∆(Φx) = x. We know that this property cannot hold in the generic

case where x ∈ CN since m ≤ N and thus the null space of Φ will be at least of di-

mension N −m. So, the condition that x ∈ Fp makes the desired property possible,
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and the nature of Fp crucial to our understanding and solution to the problem.

Some key remarks for equation 1.1:

1. The algorithm ∆ : Cm → C
N should be implementable in a manner that is fast,

memory efficient, and robust to noise.

2. The norms ‖ · ‖X,Y,Z will usually be `p-norms for p = 1, 2, . . .

3. n ∈ Cm is arbitrary noise on the input Φx. Deterministic or probabilistic per-

tubations to the input are both possible and the more general the case we can

accommodate in our algorithm the better.

4. εp,X,Y,Z ∈ R+ is a small error. This can be round-off error, though often in the

sequel we will take it to be zero.

5. Constants like Cp,X,Y are absolute in the sense that they are independent of any

particular x and noise n.

6. Often, we consider the compressed measurement case, where for Φ ∈ Cm×N we

have m� N .

7. Fp ⊂ CN will be some geometrically simple set parameterized by p, such as

(a) (Manifold)M[d,τ ], a d-dimensional sub-manifold ofRN whose reach is bounded

by τ . There are other possible parameters, such as volume or diameter which

could be used to describe the geometry of the manifold.

(b) (Compressed sensing) Ks ⊂ C
N , where Ks is the set of s-sparse vectors in

C
N , i.e

{
x ∈ CN |‖x‖0 ≤ s

}
which is equivalently

⋃
S⊂[N ],|S|=s span {ej}j∈S

where ej are the standard basis vectors. That is, the span of vectors with s

non-zero entries.
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Note that when εp,X,Y,Z = 0 and in the absence of noise, n = 0, equation 1.1

implies the invertibility property, ∆(Φx) = x, ∀x ∈ Fp, which is equivalent to the

following, by the linearity of Φ

(1.2) x 6= y ⇐⇒ Φ(x− y) 6= 0∀x,y ∈ Fp

However, numerically 1.2 is not a tenable, realistic property to design around. So we

define a stronger property which will imply 1.2.

This is known as the Johnson-Lindenstrauss (JL) embedding property. We say

that Φ has the JL-property when ∃ε ∈ (0, 1) such that

(1.3) |‖Φ(x− y)‖2
X − ‖x− y‖2

Y | ≤ ε‖x− y‖2
Y , ∀x,y ∈ Fp

Analyzing this property in terms of different spaces and matrices will occupy much

of our subsequent study. We now conclude the introduction lecture with a discussion

of function approximation, and how it relates to the key property 1.3 larger goals of

the course.

Running Example. Suppose D = [0, 1]D, the D-dimensional cube, and f ∈ H

for H = L2
µ(D,C), the separable Hilbert space of square intergrable complex valued

functions on domain D

1. Pick a countable orthornormal basis B of H.

B = {bj}j∈ZD

For example, B is the Fourier basis. Note that through a Gram-Schmidt process

we are guaranteed the existence of a maximal orthonormal set in seperable Hilbert

space.
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2. Pick a finite subset B′ ⊂ B with |B′| = N . For example, B′ corresponds to some

frequencies such as those in a hyperbolic cross, or frequencies in (Z ∩ [−M,M ])D

for some M ∈ [0,∞)

3. Approximate f by its projection PB′f =
∑

j∈I bj〈bj, f〉 where I is the index set

corresponding to the finite basis, I =
{
j ∈ ZD|bj ∈ B

′}
, so |I| = N = |B′ |

Given m input measurements 〈a1, f〉, . . . , 〈am, f〉 we can restate the example in

terms of 1.3 by setting x ∈ CN to xj = 〈bj, f〉 and Φ ∈ Cm×N , Φ`,j = 〈a`, bj〉, ∀j ∈ I

such that each input measurement satisfies

〈a`, f〉 = 〈a`, PB′f〉+ 〈a`, (I − PB′ )f〉︸ ︷︷ ︸
n`

= 〈a`,
∑
j∈I

bj〈bj, f〉〉+ n`

=
∑
j∈I

〈a`, bj〉xj + n`

=
∑
j∈I

Φ`,jxj + n`

Note the noise vector n is due to the truncation error incurred by using only a

finite number of basis elements in this function approximation setting. So, if we also

have that x is in (or near) Fp ∈ CN then the conclusion of the running example is

indeed statement of the result 1.3.

Note that a large number of basis elements may be required to reduce error of the

approximation, especially for high dimensional input space D. This means that com-

putationally, function approximation may be intractable unless we use the structure

of Fp to compress the computation of
∑

j∈I Φ`,jxj.
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Example 1.2.1 (Function Approximation, 1-D sparse Fourier Transform). Suppose

f : [0, 1] → C, f ∈ L2([0, 1],C) ∩ C1([0, 1]). Choose the orthonormal basis B ={
e2πkix

}
k∈Z and select the finite subset B′ =

{
e2πkix

}
k∈[−N,N ]∩Z.

Let the input measurements be point samples inside the domain, i.e. a` = δx`

where δx` = δ(x − x`) for x` ∈ [0, 1], ∀` ∈ [m]. Choose Fp to be Ks, the s-sparse

vectors in the Fourier basis, x = f̂
∣∣
k∈[−N,N ]∩Z has at most s non-zero entries (alter-

natively we may relax this and say that the bulk of the energy of x is in at most

s-entries).

Note that Φ has several constraints - it’s entries are now taken from point evalu-

ations of different basis functions at the different sample points x`; and yet we still

require that it preserves the norms of vectors in Fp as stated in 1.3. Additionally, in

order to achieve an improvement in the speed of our algorithm, we need to improve

on the usual Fast Fourier Transform sampling complexity. Instead of the bound

m ≤ N logN we want m ≤ s logC N where C is a small positive, absolute constant.

In this way we can benefit from the sparsity of Fp. Lastly, we want to be able to

recover x, i.e. find ∆ : Cm → C
N that is able to run in O(s logC N) (in contrast to

O(N logN) required for the standard FFT−1(FFT (x)))

Homework 1.2.1. Prove that 1.3 implies 1.2

Homework 1.2.2. Prove that 1.3 implies

|‖Φ(x− y)‖X − ‖x− y‖Y | ≤ ε
‖x− y‖Y

1 +
√

1− ε
≤ ε‖x− y‖Y

2− ε
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1.3 Tensor Applications

Definition 1.3.1. An n-mode or order-n tensor (or n-th order) is an n dimensional

array of complex values, written as

A ∈ CI0×I1×···×In−1

where Ij ∈ N, j ∈ [n]. An n-mode tensor’s entries are indexed by a vector i ∈

[I0]× [I1]× · · · × [In−1] where (A)i = ai = ai0,...,in−1 ∈ C

Example 1.3.2 (1 and 2 mode tensors). 1. A 1-mode tensor, a ∈ CI0 is a vector

with entries aj ∈ C, j ∈ [I0]. We will denote 1-mode tensors, vectors, the usual

way with bolded lowercase letters

2. A 2-mode tensor, A ∈ CI0×I1 is a matrix with entries ai0,i1 ∈ C for i0 ∈ [I0], i1 ∈

[I1]. Equivalently ak, k ∈ [I0]× [I1]. We will denote 2-mode tensors, matrices, the

usual way with capital un-bolded letters.

We introduce some terminology that will be useful when describing tensors

Definition 1.3.3 (Fiber). Fibers are 1-dimensional subsets of an n-mode tensor.

They are formed by fixing n− 1 of the dimensions and then ranging over all indices

in the remaining dimension. So for any k ∈ [n], and A ∈ CI0×···×In−1 then a k-mode

fiber would be a vector a ∈ CIk where indices i0, . . . , ik−1, ik+1, . . . , in−1 are fixed, i.e.

using Matlab notation

(A)i0,...,ik−1,:,ik+1,...,in−1
= ai0,...,ik−1,:,ik+1,...,in−1

So for example, given a matrix A ∈ CI0×I1 then Ai,: = ai,: ∈ CI1 is a mode-2 fiber

(i.e. row). A mode-1 fiber, a:,j is a column of the matrix.
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Definition 1.3.4 (Slice). A matrix formed by varing 2 indices and fixing all other

indices of a tensor. That is, suppose j, k ∈ [n] where j 6= k then

A = Ai0,...,ij−1,:,ij+1,...,ik−1,:,ik+1,...,in−1 ∈ CIj×Ik

Figure 1.1: Figure seen in [23]

Definition 1.3.5 (Sub-tensor). A k-subtensor of an n-mode tensor (k < n) is de-

noted by a vector of length n− k of indices and a set of k mode indices from the set

[n]. That is given distinct j0, . . . , jk−1 ∈ [n] and define vector i ∈
⊗

i 6=j` [Ii] of length

n− k. Let

Aj0,...,jk−1,i ∈ C
Ij0×···×Ijk−1

Using this subtensor notation then a mode-k fiber is a subtensorAk,i where k ∈ [n]

and i ∈ [I0]× . . . [Ik−1]× [Ik+1]× · · · × [In−1]. There are
∏

`6=k I` potentially different

mode-k fibers, one for each possible i.
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A slice then is denoted A`,k,i ∈ CI`×Ik . There are
∏

j 6=`,k Ij slices of dimension

I` × Ik.

Next we will discuss reshaping operators - this involves many different possible

ways of changing the dimensions of tensors so that they have the same number of

entries.

Definition 1.3.6 (Vectorization). For A ∈ C
I0×···×In−1 vec(A) = a where a ∈

C
∏n−1
k=0 Ik

Definition 1.3.7 (Mode-k Flattening). For A ∈ CI0×···×In−1 the k-mode flattening

is a matrix A(k) ∈ CIk×
∏
j 6=k Ij . We have effectively made the k-th dimension into

the rows of the matrix, and the columns are then the different mode-k fibers. In

particular
(
A(k)

)
j,`

= A`1,...,`k−1,j,`k+1,...,`n−1 . The columns are the fibers Ak,i.

Definition 1.3.8 (Reshaping). We can reshape an n-mode into any other m-mode

tensor with a reshaping operation R : CI0×···×In−1 → C
J0×···×Jm−1 provided

n−1∏
j=0

Ij =
m−1∏
`=0

J̃`

k-mode flattening and vectorization are two particular reshaping operations.

What is the underlying vector space we can use to study tensors? To answer that,

we consider the following norm, inner-product, and operations on tensors:

Definition 1.3.9 (2-norm of a Tensor). For A ∈ CI0×···×In−1 then given any k ∈ [n]

we have

‖A‖2
2 = ‖A(k)‖2

2 = ‖a‖2
2 =

∑
i∈I

|ai|2

where I = [I0]× · · · × [In−1]

Definition 1.3.10 (Inner-product). For tensors A,B ∈ CI0×···×In−1 then

〈A,B〉 =
∑
i∈I

aibi = 〈a,b〉



15

that is, the inner-product of the vectorization of the tensors. Note that this is

equivalent to 〈A(k), B(k)〉HS = Trace(Ak(B(k))∗), ∀k ∈ [n], the Hilbert-Schmidt inner

product for matrices

Addition and scalar multiplication work component-wise, i.e.

(A+ B)i = ai + bi

(αA)i = αai, ∀α ∈ C

1.3.1 Restricted Inner and Matrix Products

Given long vectors, as may result from reshaping a tensors for example, we may

perform inner products with smaller vectors by using well chosen samples or parts

from the longer vectors.

Definition 1.3.11. k-mode product of A ∈ CI0×···×Id−1 and U ∈ CJk×Ik for k ∈ [d]

is a tensor in CI0×···×Ik−1×Jk×Ik+1×···×Id−1 denoted by

(A×k U)i0,...,ik−1,:,ik+1,...,id−1
= UAi0,......,id−1

In other words, the k-mode product applies the matrix U to all the mode-k fibers

of the tensor A. For example, suppose A ∈ C5×3×2 and U ∈ C4×5. Then A×1 U ∈

C
4×3×2 where each of the mode-1 fibers is now the product of UA:,j,`, for some

j ∈ [3], ` ∈ [2].

In the 2-mode tensor case, i.e., matrices, the usual matrix-matrix multiplication

can be understood in terms of 1-mode tensor product.

AB = A

[
b1 b2 . . . bn

]
=

[
Ab1 Ab2 . . . Abn

]
= B ×1 A
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Lemma 1.3.12. (A+ B)×k U = A×k U + B ×k U

Proof. For any i0 ∈ I0, . . . , ik−1 ∈ Ik−1, ik+1 ∈ Ik+1, . . . , id−1 ∈ Id−1 we have

[(A+ B)×k U ]i0,...,ik−1,:,ik+1,...,id−1
= U(A+ B)i0,...,ik−1,:,ik+1,...,id−1

= UAi0,...,ik−1,:,ik+1,...,id−1
+ UBi0,...,ik−1,:,ik+1,...,id−1

= A×k U + B ×k U

Lemma 1.3.13 (Properties of k-mode products). Let A,B ∈ CI0,...,Id−1, α, β ∈ C,

U`, V` ∈ Cm`×I`, ∀` ∈ [d]. Then

1. (αA+ βB)×j Uj = α(A×j Uj) + β(B ×j Uj)

2. A×j (αUj + βVj) = α(A×j Uj) + β(A×j Vj) that is, k-mode product is bilinear

3. If j 6= ` then

(A×j Uj)×` V` = (A×` V`)×j Uj

Note that the run-time complexity is the same regardless of the order one applies

the k- or j-mode products

4. If W ∈ Cp×mj then (A×j Uj)×j W = A×j (WUj) ∈ CI0×Ij−1×p×Ij+1×...Id−1

Definition 1.3.14 (Kronecker Product). The Kronecker product of two matrices

U ×Cm×n and V ∈ Cp×q is a matrix

U ⊗ V =


u11V . . . u1nV

...
...

um1V . . . umnV


where U ⊗ V ∈ Cmp×nq

Lemma 1.3.15. Let A ∈ CI0,...,Id−1, U` ∈ Cm`×I` then
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1. (A×j Uj)(j) = UjA(j) ∈ Cmj×
∏
6̀=j I`

2. (A×0 U0 ×1 U1 · · · ×d−1 Ud−1)(j) = UjA(j) (Ud−1 ⊗ Ud−2 ⊗ · · · ⊗ Uj+1 ⊗ Uj−1 ⊗ · · · ⊗ U0)T

we have assumed a column-major convention for matricization.

In order for the identity seen in Lemma 1.3.15 to hold, we need specify our precise

matricization convention.

In our convention, the entry at location (i0, . . . , id−1) in A ∈ CI0×···×Id−1 is located

in the matrix as entry (in, j) where

j =
d−1∑
k=0
k 6=n

ikJk

where

Jk =
k−1∏
m=0
m 6=n

Im

set Jk = 1 if the index of the product above is empty.

Example 1.3.16 (3-mode). The following example appears in [23]: Consider a ten-

sor A ∈ R3×4×2, the frontal slices are as follows

A:,:,0 = A0 =


1 4 7 10

2 5 8 11

3 6 9 12

 , A:,:,1 = A1 =


13 16 19 22

14 17 20 23

15 18 21 24


The three different unfoldings are then as follows. Consider n = 0,

A(0) =


1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24


Note

J0 =
0−1∏
m=0
m6=0

Im = 1, J1 =
1−1∏
m=0
m 6=0

Im = 1, J2

2−1∏
m=0
m6=0

Im = I1 = 4
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Now to see how to locate a particular entry, note that A1,2,1 = 20, so in our

unfolding A(k)
(i,j) we can simply copy the index that corresponds to the n-th mode, i.e.

the first here, i = 1. To find the column, compute j =
∑d−1

k=0
k 6=n

ikJk = 2(1) + 1(4) = 6.

So our entry with value 20 is in location (1, 6).

Consider n = 1,

A(1) =



1 2 3 13 14 15

4 5 6 16 17 18

7 8 9 19 20 21

10 11 12 22 23 24


Again, to locate our entry,A1,2,1 = 20, we return the index on the n-th mode as our

row, i = 2, and repeat the same calculation for j:

Note

J0 =
0−1∏
m=0
m6=1

Im = 1, J1 =
1−1∏
m=0
m 6=1

Im = I0 = 3, J2

2−1∏
m=0
m 6=1

Im = I0 = 3

.

This time we leave out the J1 factor: j =
∑d−1

k=0
k 6=n

ikJk = 1(1) + 1(3) = 4. So our

entry with value 20 is located in (2, 4).

Consider n = 2, A(2) 1 2 3 4 5 6 7 8 . . .

13 14 15 16 17 18 19 20 . . .


Again, to locate our entry,A1,2,1 = 20, we return the index on the n-th mode as our

row, i = 1, and repeat the same calculation for j:

Note

J0 =
0−1∏
m=0
m6=2

Im = 1, J1 =
1−1∏
m=0
m 6=2

Im = I0 = 3, J2

2−1∏
m=0
m 6=2

Im = I0 = 3

.
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This time we leave out the J2 factor: j =
∑d−1

k=0
k 6=n

ikJk = 1(1) + 2(3) = 7. So our

entry with value 20 is located in (1, 7).

1.3.2 Low Rank Approximation

Our next topic concerns how different methods can be used to approximate ten-

sors. Our first attempt will illustrate the need for better decompositions other than

simply reshaping tensors into familiar objects.

Suppose we have q tensors of size CI0×···×Id−1 , A1, . . . ,Aq. We will compress the

tensors by performing PCA on the vectorized tensors. Our goal then in this case is

to solve the minimization problem:

m∑
j=1

min
Sj∈CI0×···×Id−1

‖Aj − Sj‖2
2

This is equivalent to
m∑
j=1

min
sj∈S⊆C

∏d−1
m=0 Im

‖aj − sj‖2

where vec(Aj) = aj ∈ C
∏d−1
m=0 Im . We can use the SVD of the following data matrix

[
a1 a2 . . . aq

]
= UΣV ∗ ∈ Cq×

∏d−1
m=0 Im

Once we have the singular vectors, we can tensorize their outer product using the

inverse of our vectorizing reshaping operation. That is

Aj ≈
m∑
k=1

σj,kTk

where Tk are the tensors obtained from the principal directions (obtained from the

singular vectors of SVD of the data matrix) and σj,k are the appropriate principal
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scores (again computed from the singular vectors and singular values of the data

matrix).

What compression does this achieve? The space required for our original collec-

tion of tensors A1, . . . ,Aq ∈ CI0×···×Id−1 is O(q
∏d−1

m=0 Im). After PCA, we need keep

m basis tensors of the same dimension C
I0×···×Id−1 and our coordinates or princi-

pal scores will also need to be stores and there are mq of these. So the space is

O(m
∏d−1

m=0 +qm) which is unsatisfactory because the dependence on
∏d−1

m=0 is un-

changed. Additionally, there’s no interpretable structure to the basis tensors Tk.

This motivates us then to look to another approach for decomposing (and therefore

compressing) tensors.

Definition 1.3.17 (Rank one Tensor). Given d-vectors xj ∈ CIj for j ∈ [d], the

outer-product

X =
d−1

©
j=0

xj ∈ CI0×···×Id−1

has entries given the product of corresponding entries of the vectors, i.e.

Xi0,...,id−1
=

(
d−1

©
j=0

xj

)
i0,...,id−1

= (x0)i0 (x1)i1 . . . (xd−1)id−1

any d-mode tensor where it is possible to write it as such an outer product of d

vectors is a rank one tensor.

Note that storing a rank one tensor means storing only the vector components,

rather than all entries. This definition in the 2-mode case is the familiar rank one

matrix case, for u ∈ Cm,v ∈ CN

A = u ◦ v = uv∗

then matrix A ∈ Cm×N is a rank one matrix.
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Definition 1.3.18. A ∈ CI0×···×Id−1 is a r tensor if it can be written as the sum of

r rank one tensors, that is

A =
r−1∑
`=0

(
d−1

©
j=0

x
(`)
j

)

Figure 1.2: Schematically a rank R decomposition for a 3-mode tensor X as seen in [23]

Note that unlike the PCA example given above, this decomposition does not

require us to consider a set of tensors; a single tensor will be decomposable in this

fashion. Furthermore, each of the basis tensors in this case does have a simple

structure - it can be stored as d vectors and so takes up O
(
r
∑d−1

j=0 Ij

)
-space.

So with this definition, we ask then how, given a tensor A can we find its rank r

decomposition. How to select or determine r is a question we will set aside for the

time being.

Given A ∈ CI0×···×Id−1 we want to find a rank r approximation as

arg min
x

(`)
j ∈C

Ij ,j∈[d],`∈[r]

‖A −
r∑
`=1

(
d−1

©
j=0

x
(`)
j

)
‖

In the generic case, the above optimization problem is difficult. However, the base

case of d = 2 leads to consider a method which in practice can yield good results,

though its gaurauntees are not well understood.

In the event that d = 2 then the optimization problem is equivalent to

min
α`
‖A−

r−1∑
`=0

αlu`v
∗
`‖F =

√√√√N−1∑
j=r

σj(A)
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where α` = σ`(A) and u`,v` are the singular vectors of A. That is, the best rank r

approximation to a matrix A is given by the leading r factors from the SVD.

So the idea then for our tensor decomposition is to reduce to the d = 2 case.

Suppose for the time being that we have A ∈ CI0×···×Id−1 , we know it is rank r and

we know all but the first mode vectors in each of the r rank 1 factors. That is, we

have

d−1

©
j>0

x
(`)
j

for all ` ∈ [r]. With this (mostly) complete factorization for A, we can find the

missing mode by solving a least squares problem.

So,

A =
r−1∑
`=0

(
d−1

©
j=0

x
(`)
j

)
Now consider the subtensor A([d]\{0},i0). This is the tensor found by fixing an index

in the 0-th mode and varying all other indices. Naturally then there are I0 such

subtensors. For any i0 ∈ I0 the entries of the subtensor A([d]\{0},i0) are equal to

r−1∑
`=0

(
x

(`)
0

)
i0

d−1

©
j>0

x
(`)
j

That is, we have a sum of products of scalar unknowns with d − 2 outer product -

and so after a careful rearrangement of elements, we will have a linear system:
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 vec
(
©d−1

j=0 x
(0)
j

)
vec
(
©d−1

j=0 x
(1)
j

)
. . . vec

(
©d−1

j=0 x
(r−1)
j

)




(
x

(0)
0

)
i0(

x
(1)
0

)
i0

...(
x

(0)
0

)
i0


= . . .

 vec
(
A([d]\{0},i0)

)


Let us denote B0 as the
∏d−1

j=1 Ij × r matrix formed by using the vectorized d − 1-

mode outer products as columns. Note that A([d]\{0},i0) = A(k)
i0,:

, that is the vectorized

subtensor is equal to the i0-th row of the 0-mode unfolding of A

So, in order to solve the missing unknown, we have I0 overdetermined linear

systems of the form A
(0)
:,i0

= B0x to solve in order find all the unknowns. i.e. denoting

x` =
(
x(`)0

)
i0

for ` ∈ [r]

x = arg min
y∈Cr

‖b−B0y‖2

Solving this for all i0 ∈ [I0].

This can be formulated equivalently as follows

(
A(k)

)T
= Bk

[
x

(0)
k x

(1)
k . . . x

(r−1)
k

]T
where we have combined the Ik different vector least square fitting problems into one

matrix least square fitting problem of the form

arg min
X∈Cr×Ik

∥∥∥(A(k)
)T −BkX

∥∥∥2

F

that is X will solve for all the k-mode missing factor vectors.
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With this in hand, we are now ready to address the question of how to obtain the

complete factorization of an arbitrary rank r tensor – our proceeding formulation

only addressed how to find the k-mode missing factor vectors supposing all the other

r(d− 1) factor vectors were known.

Algorithm 1.3.1 Alternating Least Squares Minimization

Input: A ∈ CI0×···×Id−1

Output:
{
x
(`)
j

}
j∈[d],`∈[d]

Initialize
{
x
(`)
j

}
j∈[d],`∈[r]

randomly

for i = 1 to maximum iterations do
for k = 0 to d− 1 do[

x
(0)
k x

(1)
k . . . x

(r−1)
k

]
← arg minX∈Cr×Ik

∥∥∥(A(k)
)T −BkX

∥∥∥2
F

end for
end for
return

{
x
(`)
j

}
j∈[d],`∈[d]

Note that the above algorithm requires the solution of (d)max_iterations overde-

termined least square problems - a potential bottleneck which can be mitigated by

using fast approximate least square methods like the one described in Theorem 3.3.4.

Also note that the algorithm is a greedy algorithm an - its convergence properties

are not well understood nor does it guarantee any type of global optimality.

Next we turn to another important Tensor decomposition method.

1.3.3 Tucker Rank and Decomposition

Definition 1.3.19. A tensor A ∈ CI0×...Id−1 has (r1, . . . , rd−1)-Tucker rank if there

exists a core tensor C ∈ Cr0×...rd−1 and matrices Uj ∈ CIj×rj , ∀j ∈ [d] such that

A = C
d−1

×
j=0

Uj
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Figure 1.3: Schematically a Tucker decomposition for a 3-mode tensor X with core tensor G and
factor matrices A,B,C as seen in [23]

Note the space requirement to store a Tucker decomposition of a tensor isO
(∏d−1

j=0 rj +
∑d−1

j=0 Ijrj

)
,

where the first term accounts for all the entries of the core tensor and the second

term accounts for all entries of the factor matrices. Recall that O
(∏d−1

j=0 Ij

)
space

is required to store the unfactored tensor, and so in the event that the Tucker rank

is appreciably smaller than the original mode for at least some of the modes, the

Tucker decomposition will occupy significantly less space.

Note that as a convention, Uj can be taken to have orthonormal columns - by

orthonormalizing Uj, we can suitably alter C.

To approximate a tensor with a low Tucker rank representation, we can solve the

following optimiziation problem

arg inf
C∈Cr0×···×rd−1

{Uj}j∈[d],U
∗
j Uj=I

‖A − C
d−1

×
j=0

Uj‖2
2

when the number of modes is larger than 2, this optimization problem is difficult

to solve. One approach is to use the SVD of each of the d different unfoldings of A
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Algorithm 1.3.2 Higher Order SVD

Input: A ∈ CI0×···×Id−1 , (r0, . . . , rd−1)
Output: C, {Uj}j∈[d]

Compute rj-truncated SVD of mode-j unfolding of A

A(j) = UjΣjV
∗
j , ∀j ∈ [d]

C ← A×d−1
j=0

U∗j ∈ Cr0×···×rd−1

return C, {Uj}j∈[d]

Note that for each unfolding, the full SVD has form

A(j) = U︸︷︷︸
Ij×Ij

Σ︸︷︷︸
Ij×

∏
j 6=k

Ik V ∗︸︷︷︸∏
j 6=k Ik×

∏
j 6=k Ik

the rj-truncated SVD has form

A(j) ≈ U︸︷︷︸
Ij×rj

Σ︸︷︷︸
rj×rj

Ik V ∗︸︷︷︸
rj×

∏
j 6=k Ik

This problem then is repeated for each of the d different modes. This is potentially

a bottleneck computationally and so can likely benefit from fast approximations to

the SVD as described in algorithm 3.3.1.

Now, to further improve the decomposition, we can take an approach like 1.3.1

and alternate, successively solving for Uj and iterate on this processes.

Algorithm 1.3.3 Higher Order Orthogonal Iteration

Input: A ∈ CI0×···×Id−1 , (r0, . . . , rd−1)
Output: C, {Uj}j∈[d]

Initalize
{
U

(0)
j

}
← HOSV D(A)

for i = 1 to M do
∀j update U

(i−1)
j by computing(

A×
k 6=j

(
U

(i−1)
k

)∗)(j)

= U
(i)
j Σ

(i)
j

(
V (i)

)∗
j

end for

C ← A×k 6=j

(
U

(M)
k

)∗
return C,

{
U

(M)
j

}
j∈[d]
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Next we will show one way in the Tucker and CP rank relate. First though we

note a Lemma which shows that how the mode-k product of a CP rank one tensor

with a matrix U can be expressed as another rank one tensor.

Lemma 1.3.20. Let xj ∈ CIj , Uk ∈ Cmj×Ij for all j ∈ [d] then(
d−1

©
j=0

xj

)
×k Uk =

(
k−1

©
j=0

xj

)
© Ukxk©

(
d−1

©
j=k+1

xj

)
Proof. Note that the k-mode fibers the tensor

(
©d−1

j=0 xj
)

are scalar multiples of the

same vector, xk

That is, the k-mode fiber indexed by (`0, . . . , `k−1, `k + 1, . . . , `d−1) is(
d−1∏
j 6=k

(xj)`j

)
xk

but
(∏d−1

j 6=k(xj)`j

)
is a scalar. So the identity follows now from noting the definition

of the mode-k product. (Each column of the unfolding is a scalar multiple of the

same vector, scalar commutes with matrix-vector multiplication)

Theorem 1.3.21. If A ∈ CI0×...Id−1 has Tucker rank (r0, . . . , rd−1) then it has CP

rank of at most
∏d−1

j=0 rj

Proof. The tensor has an exact Tucker decomposition, so

A = C
d−1

×
j=0

U∗j

Note that we can express any tensor in the standard basis; here the standard basis

for tensors is a tensor with only one non-zero entry.

So for example for some ` ∈ [r0]×· · ·×[rd−1] the associated standard basis element

is

d−1

©
j=0

e`j
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where e`j is the usual standard basis vector in Crj . Denote I = [r0] × · · · × [rd−1].

Thus

C =
∑
`∈I

C`
(
d−1

©
j=0

e`j

)
Now use this expression in the Tucker decomposition of A

A = C
d−1

×
j=0

U∗j

=

[∑
`∈I

C`
(
d−1

©
j=0

e`j

)]
d−1

×
j=0

U∗j

=
∑
`∈I

C`
(
d−1

©
j=0

U∗j e`j

)
=
∑
`∈I

C`
d−1

©
j=0

(U∗j )`j

where we have used Lemma 1.3.20, and denoted the `j-th column of Uj as (Uj)`j . We

therefore have the sum of rank one tensors. There are
∏d−1

j=0 rj possible values for `

and so we have a CP decomposition of that rank. This provides an upper bound on

CP rank, since the decomposition may not be optimal.



Chapter II

A Review of Introductory Probability with Some
Algorithmic Applications (CMSE 890 Lectures 2 – 4)

2.1 Probability Densities and Random Variables (CMSE 890 Lecture 2)

Definition 2.1.1. A non-negative function p : Rn → [0,∞) for which∫
Rn

p(x)dx = 1

is a probability density function (pdf)

Definition 2.1.2 (Random Variable). A random variable X ∈ Rn with probability

density p represents a value in Rn. It takes a particular value in set S ⊂ Rn with

probability

P [X ∈ S] = PX [S] =

∫
S

p(x)dx ∈ [0, 1]

Theorem 2.1.3 (Union Bound). Let X ∈ Rn be a random variable with probability

density function p then

PX

[
k⋃
j=1

Sj

]
≤

k∑
j=1

PX(Sj), ∀k ≥ 1, Sj ⊂ Rn

equality holds when Sj are mutually disjoint

Proof. We proceed by induction. The base case is trivially true, P(S1) ≤ P(S1).

The case for k − 1 is thus

PX

[
k−1⋃
j=1

Sj

]
≤

k−1∑
j=1

PX(Sj)

29
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Note that for any two sets P(A ∪B) = P(A) +P(B)−P(A ∩B). So

PX

[
k⋃
j=1

Sj

]
= PX

[
k−1⋃
j=1

Sj

]
+PX [Sk]−PX

[
Sk ∩

(
k−1⋃
j=1

Sj

)]

All probabilities are non-negative, so we have

PX

[
k⋃
j=1

Sj

]
≤ PX

[
k−1⋃
j=1

Sj

]
+PX [Sk]

≤
k−1∑
j=1

PX(Sj) +PX(Sk)

=
k∑
j=1

PX(Sj)

Remark 2.1.4. We have suppressed details about the measurability of sets in the-

orem 2.1.3; which will in general not concern us, and we will assume that sets are

measurable. Additionally, the result does hold for countably infinite sets, though our

use for the theorem needs concern only finite sets.

Example 2.1.5 (Gaussian pdf). The single valued gaussian or single valued normal

pdf g is defined as

g(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
for mean µ and variance σ2. When µ = 0 and σ2 = 1 we say g is the standard

gaussian distribution.

Example 2.1.6 (Multivariate Gaussian). The multivariate Gaussian or multivariate

normal (MVN) is a widely used joint probability density function. The pdf for a MVN

in D dimensions is

g(x) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
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where µ = E[x] ∈ RD is the mean vector and Σ = Cov[x] ∈ RD×D is the covariance

matrix. The covariance matrix is a symmetric, positive definite matrix defined by

Cov[x] = E

[
(x−E[x]) (x−E[x])T

]
when µ = 0 and Σ = I we say the distribution is the standard multivariate Guassian.

Example 2.1.7 (Standard Folded Normal). The standard folded normal distribution

is denoted by |X|, where X ∼ N (0, 1). The pdf is defined in the following way, for

[a, b] ∈ [0,∞) we have

P|X| [[a, b]] = PX [[a, b] ∪ [−b,−a]] =
1√
2π

∫ b

a

e−
x2

2 dx+
1√
2π

∫ −a
−b

e−
x2

2 dx

and the pdf is zero for negative values.

Next we state the definition of a dirac delta function, which we will use to describe

discrete probability distributions using the same framework as the continuous case.

Definition 2.1.8 (Dirac Delta). A dirac delta is a generalized function denoted by

δ(x). We take it as part of the definition that for any smooth function f : Rn → R,

(referred to as a test function in the theory of distributions) and any c ∈ Rn the

following holds

∫
S

f(x)δ(x− c)dx =


f(c) c ∈ S

0 c 6∈ S

Though we will often refer to δ as a function, it is in fact a generalized function

and not a standard function. It is only well defined in terms of how it affects other

functions when integrated against them.

So, to define a discrete probability distribution we start with a finite set of values

{aj}mj=1 where aj ∈ (0, 1] which satisfy

m∑
j=1

aj = 1
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and then define the distribution p as

p(x) =
m∑
j=1

ajδ(x− cj)

usually we understand aj as P [X = cj] for the associated discrete random variable

X. Using this notation for example to find PX [S] for some S ⊂ CN we have

PX [S] =

∫
S

m∑
j=1

P [X = cj] δ(x− cj)dx

=
m∑
j=1

∫
S

P [X = cj] δ(x− cj)dx

=
m∑
j=1

P [X = cj]

using the definition 2.1.8 after interchanging summation and integration.

Example 2.1.9 (Fair Coin Discrete). Let X be the value of a fair flipped coin where

a heads represents a value of one and a tails represents zero. The probability density

is given by

p(x) =
1

2
δ(x− 0) +

1

2
δ(x− 1) = P [X = 0] δ(x− 0) +P [X = 1] δ(x− 1)

Homework 2.1.1. Show that g from Example 2.1.5 is a probability density function.

Homework 2.1.2. Write the probability distribution for the result of a fair six-sided

die roll.

2.2 Independence

Definition 2.2.1 (Independence). Two random variables X1 ∈ Rm and X2 ∈ Rn

are independent, denoted X1 ⊥ X2, if the joint distribution for all x ∈ X1,y ∈ X2

can be written as a product of marginals. That is, for p : Rm ×Rn → [0,∞)

p(x,y) = p(x1, . . . , xm, y1, . . . , yn) = p1(x1, . . . , xm)p2(y1, . . . , yn) = p(x)p(y)
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Example 2.2.2 (Independent Fair Coin Tosses). Suppose X1 ∈ {0, 1} and X2 ∈

{0, 1} are the random variables corresponding to the values of two different coin

tosses. If the coin tosses are independent, then

p(X1 = 1, X2 = 0) = p1(X1 = 1)p2(X2 = 0)

Definition 2.2.3. Two random variables X1, X2 ∈ Rn are identically distributed if

their corresponding densities p1, p2 satisfy p1 = p2.

If two variables are independent and identically distributed we abbreviate as i.i.d.

Example 2.2.4 (Multivariate Gaussian as Vector of i.i.d Gaussian Random Vari-

ables). Two entries x`, xj ∈ R of x ∼ N (0, I) are independent whenever ` 6= j

since

p(x) = p(x1, . . . , xN)

=
1

(2π)N/2
exp

(
−‖x‖

2
2

2

)
=

N∏
j=1

[
1

(2π)1/2
exp

(
−
x2
j

2

)]

=
N∏
j=1

pj(xj)

where pj refers to the standard normal for a single value, xj

Definition 2.2.5. the expectation of a random variable X ∈ Rn is defined as

E [X] =

∫
Rn

xp(x)dx

Theorem 2.2.6 (Linearity of Expectation). Let α, β ∈ R and X, Y ∈ Rn be random

variables. Then

E [αX + βY ] = αE [X] + βE [Y ]
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Proof. Using definition 2.2.5 we have

E[αX + βY ] =

∫
Rn

∫
Rn

(αx+ βy) p(x, y)dxdy

=

∫
Rn

αx

(∫
Rn

p(x, y)dy

)
dx+

∫
Rn

βy

(∫
Rn

p(x, y)dx

)
dy

= α

∫
Rn

xp1(x)dx+ β

∫
Rn

yp2(y)dy

= αE [X] + βE [Y ]

Where we have used Fubini’s theorem to write the iterated integral for Rn×Rn and

to change the order of integration to recover the marginals.

Note that the above theorem is stated with no consideration for the independence

of X1 and X2.

Note that for X1 ∈ Rm and X2 ∈ Rn with densities p1, p2 then the joint density

p : Rm ×Rn → R has the property that

p1(x) =

∫
Rn

p(x, y)dy

p2(x) =

∫
Rm

p(x, y)dx

As a matter of terminology, when we want to emphasize their relationship to the

joint distribution, we call p1 and p2 the marginal distributions for p.

Functions of random variables are themselves random variables, whose proba-

bilities and expectation may be computed by integrating over the corresponding

pre-image. So if X ∈ Rn is a random variable with pdf p and f : Rn → R
m, then

f(X) is a random variable where for S ⊂ Rm

Pf(X)[S] = PX [f−1(S)]
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here f−1(S) = {x ∈ Rn|f(x) ∈ S}. Note that f may or may not be invertible, the

set we’ve given is well defined regardless. To compute expectation of a function of a

random variable, we follow the definition and write

E [f(X)] =

∫
Rn
f(x)p(x)dx

Theorem 2.2.7 (Markov’s inequality). Let f : Rn → [0,∞), a ≥ 0 and X ∈ Rn by

a random vector for n ≥ 1. Then

Pf(X) [[a,∞]] = P [f(X) ≥ a] ≤ E [f(X)]

a

Proof. We restrict the domain of integration and use a lower-bound on the function

to achieve the inequality

E [f(X)] =

∫
Rn

f(y)p(y)dy

≥
∫
{y|f(y) ≥ a}︸ ︷︷ ︸

f−1([a,∞))

f(y)p(y)dt

≥
∫
f−1([a,∞))

ap(y)dt

= a

∫
f−1([a,∞))

p(y)dt

= aPf(X) [[a,∞)]

a re-arrangement of terms then yields the desired result.

Using the Markov inequality we can quantify the following claim: A positive

random variable is unlikely to deviate too much from its expectation. To see why,

consider X ∈ R+ and a function that does not change the value of X, f(X) = |X|

and then using the constant aE[X] in from the Markov Inequality, we see ∀a ≥
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P [X ≥ aE[X]] ≤ ��
�E[x]

a��
�

E[X]

1

a

Now we turn to some useful bounds associated with the variance of random vari-

ables.

Definition 2.2.8. Let X ∈ Rn. Then Var [X] = E

[
(X −E [X]) (X −E [X])T

]
is a

matrix in general (known as the covariance matrix). When n = 1 this simplifies to

Var [X] = E
[
(X −E [X])2]

Theorem 2.2.9 (Chebyshev’s Inequality). Let X ∈ R have µ = E[X] and σ2 =

Var [X] > 0. Then ∀k ≥ 0

P [|X − µ| ≥ kσ] ≤ 1

k2

Proof. Using the Markov inequality on the positive random variable |X − µ|2 for

constant a = k2σ2, and the definition of variance we obtain

P [|X − µ| ≥ kσ] = P
[
|X − µ|2 ≥ k2σ2

]
≤
E
[
|X − µ|2

]
k2σ2

=
E
[
(X − µ)2]
k2σ2

=
Var [X]

k2σ2

=
1

k2

Now we turn to a key fact about random variables and controlling variance: av-

eraging across several i.i.d. copies of a random variable decreases the variance. We

make this precise in the following theorem
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Theorem 2.2.10. Let X1, . . . , Xn ∈ R be i.i.d. random variables with expectation

µ and variance σ2. Then

Var

[
1

n

n∑
j=1

Xj

]
=
σ2

n
, E

[
1

n

n∑
j=1

Xj

]
= µ

Proof. By the linearity of expectation, the second result is immediate:

E

[
1

n

n∑
j=1

Xj

]
=

1

n

n∑
j=1

E [Xj] =
nµ

n
= µ

For variance we use the equality Var [X] = E[X2]− (E[X])2 on the sum of random

variables:

Var

[
1

n

n∑
j=1

Xj

]
= E

( 1

n

n∑
j=1

Xj

)2
−(E[ 1

n

n∑
j=1

Xj

])2

=
1

n2
E

[
n∑
j=1

X2
j +

∑
j 6=k

XjXk

]
− µ2

=
1

n2

n∑
j=1

E
[
X2
j

]
+

1

n2

∑
j 6=k

E [XjXk]−
1

n
µ2 − (n− 1)

n
µ2

=
1

n2

n∑
j=1

(
E
[
X2
j

]
− µ2

)
+

1

n2

∑
j 6=k

E [Xj]E [Xk]−
(n− 1)

n
µ2

=
1

n2

n∑
j=1

(
σ2
)

+
1

n2

∑
j 6=k

µ2 − (n− 1)

n
µ2

=
σ2

n
+
n2 − n
n2

µ2 − (n− 1)

n
µ2

=
σ2

n

where we have used linearity of expectation, and independence of the variables.

Before we proceed to the next useful probability bound, we recall some inequalities

from calculus which will feature in the sequel
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Fact 2.2.11. For all x ∈ R,

1 + x ≤ ex

Which we can in turn use to see that for c ∈ R:

(
1 +

c

x

)
≤ ec/x =⇒

(
1 +

c

x

)x
≤ ec

Fact 2.2.12. For all y ∈ (0,∞),

y ln y ≥ y − 1

Using this then, we have the following result: Let x ≥ a > 0 and c ∈ (−a,∞).

Then (
1 +

c

a

)a
≤
(

1 +
c

x

)x
With these in hand, we turn now yet another bound which relates how a sum of

random variables deviates from its mean.

Theorem 2.2.13 (Chernoff Inequality). Let I1, . . . , In ∈ R by independent discrete

random variables with probability densities pj(x) = λjδ(x − 1) + (1 − λj)δ(x) where

λj ∈ (0, 1). Let Y =
∑n

j=1 Ij with µ = E[Y ] =
∑n

j=1 λj. Then, for w ∈ (0, 1) we

have

P [Y < (1− w)µ] <

[
e−w

(1− w)(1−w)

]µ
Proof. Suppose t > 0, then the following are equivalent

P [Y < (1− w)µ] = P [−tY > −t(1− w)µ] = P
[
e−tY > e−t(1−w)µ

]
We now apply the Markov inequality to the right hand side to obtain

P [Y < (1− w)µ] ≤ E [exp (−tY )]

exp (−t(1− w)µ)
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Note that since the random variables are independent, we can write the sum in the

exponent as a product:

E [exp (−tY )] = E

[
exp

(
−t

n∑
j=1

Ij

)]
=

=
n∏
j=1

E [exp (−tIj)]

=
n∏
j=1

∫
R

exp (−tIj) [λjdelta(x− 1) + (1− λj)δ(x)] dx

=
n∏
j=1

[λj exp (−t) + (1− λj) exp (−t(0))]

=
n∏
j=1

[
1 + λj

(
e−t − 1

)]
≤

n∏
j=1

e−λj(e
−t−1)

= e−
∑n
j=1 λj(e

−t−1)

= eµ(e−t−1)

where we have used 2.2.11 where x ← λj(e
−t − 1). Combining this with our earlier

Markov inequality result, and substituting t = − ln(1− w) we have obtain

P [Y < (1− w)µ] ≤ eµ(e−t−1)

exp (−t(1− w)µ)

=
eµ(eln(1−w)−1)

exp (ln(1− w)(1− w)µ)

=

(
e−w

(1− w)(1−w)

)µ

which is our desired result.
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Homework 2.2.1. Suppose p1 and p2 are pdfs of independent random variables on

R
m and Rn. Prove that their product is always a pdf in Rm ×Rn.

Homework 2.2.2. Consider

1. Suppose that X ∼ N (µ, σ). Show E[X] = µ

2. Suppose that X is the random variable of Example 2.1.9. Show E[X] = 1/2

Homework 2.2.3. Show that if X, Y ∈ R are independent random variables then

E[XY ] = E[X]E[Y ]

Homework 2.2.4. Show that Var [X] = E[XXT ] − E[X] (E[X])T and that for

n = 1, Var [X] = E[X2]− (E[X])2

Homework 2.2.5. Show that if X ∈ R is a gaussian random variable then Var [X] =

σ2. Show that if X ∈ {0, 1}, is uniform random variable (e.g. fair coin flip) then

Var [X] = 1
4
.

Homework 2.2.6. If a ∈ R show that Var [aX] = a2Var [X].

Homework 2.2.7 (Strong Law of Large Numbers). Use the Chebyshev inequality

to argue that for any set of i.i.d. random variables {Xj}nj=1 with finite mean µ and

variance then

P

[
lim
n→∞

1

n

n∑
j=1

Xj = µ

]
= 1

2.3 Monte Carlo Integration and Median of Means

We now turn to an algorithmic application involving these probabilistic ideas and

results: Monte Carlo integration. This is useful in cases where f has no closed form

expression.
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Let f : [0, 1]N → R. Choose X1, . . . , Xm ∈ [0, 1]N are i.i.d uniform random

variables. We seek to estimate the integral,

J =

∫
[0,1]N

f(x)dx

To begin estimating this, we introduce the random variable Z, which is the sum of

function evaluations at the i.i.d. uniform points Xj

Z =
1

m

m∑
j=1

f(Xj)

By Theorem 2.2.10 the mean of the sum is unchanged from each of the addends

(2.1) E [Z] = E [f(Xj)] =

∫
[0,1]n

f(y)dy

That is, J = E [Z]. Furthermore,

(2.2)

Var [Z] =
1

m
Var [f(Xj)] =

1

m
E
[
f(Xj)

2 − J2
]
≤ 1

m
E
[
f(Xj)

2
]

=
1

m

∫
[0,1]n
|f(y)|2dy =

1

m
‖f‖2

2

Lemma 2.3.1. Choose ε > 0. If m ≥ 10
ε2

then

P [|z − J | < ε‖f‖2] ≥ 0.9

where

J =

∫
[0,1]N

f(x)dx

Proof. Note from complementary events we have

P [|z − J | < ε‖f‖2] = 1− P [|z − J | ≥ ε‖f‖2]

As we saw in the previous discussion, we have that |z − J | = |z −E[z]| and ‖f‖2 ≤

(mVar[z])1/2. Thus after notingR\[J−ε‖f‖2, J+ε‖f‖2] ⊂ R\[J−ε (mVar[z])1/2 , J+
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(mVar[z])1/2] apply Chebyshev’s inequality and the hypothesis to obtain

P [|z − J | ≥ ε‖f‖2] ≤ P
[
|z − J | ≥ ε (mVar[z])1/2

]
≤ 1

mε2
≤ 1(

10
ε2

)
ε2

= 0.1

So in turn using the complement of the event |z − J | ≥ ε‖f‖2, we have the desired

result.

Using Lemma 2.3.1, we can justify the statement that error of Monte Carlo Inte-

gration decays O( 1√
m

). That is, solving for ε in the hypothesis of Lemma 2.3.1 we

have ε =
√

10
m

.

We now turn to a method by which we can increase the likelihood of a our estimate

being within a desired error bound beyond the guarantee seen in Lemma 2.3.1. To

that end we introduce some notation, building from what we saw in the proof of

Lemma 2.3.1.

Let

(2.3) Zk =
1

m

m∑
j=1

f(Xk,j)

where Xk,j ∈ [0, 1]N , 1 ≤ j ≤ m, 1 ≤ k ≤ K are all i.i.d uniform random variables.

We have described repeating the experiment K times and gathering these estimators

in the independent random variables {Zk}Kk=1. We then use the median of these

estimators:

Furthermore, let

(2.4) Ik =


1 |Zk − J | ≤ ε‖f‖2

0 otherwise

These are indicator functions for whether a given estimate Zk is within the desired

error bound ε to the target integral J . Note that since the random variables Zk are

independent, then so are the discrete random variables Ik.
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How big then does K need to be to achieve some desired likelihood q of a suffi-

ciently accurate estimator Z̃ (estimator is defined in equation 2.5)? The following

Lemma provides an answer: when K is larger than C log 1
q
, most of our estimates

will be accurate within the error bound with probability at least 1− q.

Lemma 2.3.2. ∃C ∈ [0,∞) so that when K ≥ C log 1
q

then

P

[
K∑
k=1

Ik ≤ K/2

]
≤ q

for any arbitrary q ∈ (0, 1), provided m ≥ 10/ε2

Proof. Lemma 2.3.1 implies that p̃ = P [Ik = 1] ≥ 0.9. Theorem 2.2.13 however

provides us a means to bound the sum of indicator variables of this sort. Noting

K/2 = (1− (1− 1/2p̃))Kp̃ and Kp̃ = 0.9K = E

[∑K
k=1 Ik

]
P

[
K∑
k=1

Ik ≤ K/2

]
= P

[
K∑
k=1

Ik ≤ (1− (1− 1/2p̃))Kp̃

]

<

[
exp (−(1− 2/p̃))

(1/2p̃)(1/2p̃)

]Kp̃
=
(√

2p̃ exp (−(p̃− 1/2))
)K

≤
(√

2e−0.4
)K

≤ 0.95K

where we have used w ← (1− 1/2p̃) for Theorem 2.2.13. So

0.95K ≤ q =⇒ K ≥ − log(0.95) log(1/q)

and we have the desired result.

Theorem 2.3.3 (Median of Means Estimation for Monte Carlo). Let ε, q ∈ (0, 1) and

define Zk as in 2.3 with m ≥ 10/ε2 and K an odd integer such that K ≥ C log(1/q)
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where C is the constant from Lemma 2.3.2. Let J =
∫

[0,1]N
f(x)dx for f : [0, 1]N →

R. Define Z̃:

(2.5) Z̃ = median {Z1, . . . , ZK}

Then

(2.6)
∣∣∣Z̃ − J∣∣∣ ≤ ε‖f‖2

hold with probability at least (1− q). The total number of function evaluations of f

is O (log(1/q)/ε2)

Proof. The proof follows from Lemmas 2.3.1 and 2.3.2 along with Lemma 2.3.4 and

is left as an exercise.

Lemma 2.3.4. Let K be odd. If
∑K

k=1 Ik >
K
2

then Z̃ satisfies the inequality 2.6

with the desired probability.

Proof. First, because K is odd, z̃ ∈ {z1, . . . , z2}. For eventual contradiction, suppose

z̃ ≤ Int(f) − ε‖f‖2. This means at least k−1
2

+ 1 elements of the set {z1, . . . , z2}

do not satisfy the inequality, and thus the corresponding indicator variables Ij are

zero. However k−1
2

+ 1 > k
2

which contradicts
∑K

k=1 Ik >
K
2

so the assumption that

z̃ ≤ Int(f)− ε‖f‖2 cannot hold.

Similarly, we can arrive at another contradiction should we assume z̃ ≥ Int(f) +

ε‖f‖2.

Homework 2.3.1. Re-prove Lemma 2.3.1 for f : [0, 1]N → C. (Hint: µ = E[a+ib] =

E[a] + iE[b] and Var [a+ ib] = E[(a+ ib− µ)(a+ ib− µ)])

Homework 2.3.2. Complete a proof of Theorem 2.3.3
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2.4 Conditioning

Lemma 2.4.1. Let X ∈ RN and Y ∈ RM be random variables with joint density

p : RN+M → R
+. Then if f : RM+N → R

+, S ⊆ RD, and T ⊆ RM , we have that

P [f(X, Y ) ∈ S and Y ∈ T ] =

∫
T

∫
Sy

p(x, y)dxdy

where Sy =
{
x ∈ RN |f(x, y) ∈ S

}
⊆ RN

Proof. ToDo

Note that the inner integral that appears above can be understood as a conditional

probability ∫
Sy

p(x, y)dx = P [Y = y|f(x, y) ∈ S]P [Y = y]

Lemma 2.4.2. If f(X, Y ) ∈ S implies that y ∈ T then

P [f(X, Y ) ∈ S] = P [f(X, Y ) ∈ S, y ∈ T ]

Proof. With the hypothesis, f(X, Y ) ∈ S implies that y ∈ T , we have that f−1(S) ⊆

R
N × T . Equivalently f−1(S) ∩ (RN × T ) = f−1(S).

P [f(X, Y ) ∈ S] = P
[
(X, Y ) ∈ f−1(S)

]
= P

[
(X, Y ) ∈ f−1(S) ∩ (RN × T )

]
= P

[
(X, Y ) ∈ f−1(S), Y ∈ T

]
= P [f(X, Y ) ∈ S, Y ∈ T ]

2.5 Closure of Gaussian Random Variables Under Linear Transforms

Gaussian random variables are closed under linear transformations. This is a

special property that in general does not hold for random variables. Consider two
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independent coin flips; the addition of these random variables is no longer a random

variable of coin flips; we have outcomes which are not possible for a single coin flip,

e.g. getting two heads or a sum of 2 is not possible with a single coin flip.

Gaussian random variables on the other hand do yield new Guassian random

variables under these operations.

Lemma 2.5.1. Let X ∼ N (0, σ2
x) and Y ∼ N (0, σ2

y) be two independent mean 0 real

Gaussian random variables with variance σ2
x and σ2

y respectively. Then

X + Y ∼ N (0, σ2
x + σ2

y)

Proof. Suffice to show for an arbitrary interval S = [a, b] that

P [X + Y ∈ S] =
1√

2π(σ2
x + σ2

y)

∫ b

a

exp

(
− x2

2(σ2
x + σ2

y)

)
dx

If we consider T = R and apply Lemma 2.4.2 we obtain

P [X + Y ∈ S] = P [X + Y ∈ S ∩ Y ∈ R]

Now we apply Lemma 2.4.1, where f is the function defined as f(x, y) = x + y

and so Sy = {x ∈ R|f(x, y) ∈ [a, b]} = [a− y, b− y]:

P [X + Y ∈ S ∩ Y ∈ R] =

∫
T

∫
Sy

p(x, y)dxdy

=

∫
T

∫
Sy

p(x)p(y)dxdy

=
1

2πσxσy

∫
R

∫ b−y

a−y
exp

(
− x2

2σ2
x

)
exp

(
− y2

2σ2
y

)
dxdy

=
1

2πσxσy

∫
R

∫ b

a

exp

(
−(z − y)2

2σ2
x

)
exp

(
− y2

2σ2
y

)
dzdy

Where we use a change of variable z = x+y, thus the bounds x = a−y and x = b−y

become z = a and z = b respectively in the last line
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Note that,

−(z − y)2

2σ2
x

− y2

2σ2
y

= −
σ2
y

2σ2
xσ

2
y

z2 +
2σ2

y

2σ2
xσ

2
y

zy −
σ2
x + σ2

y

2σ2
xσ

2
y

y

= −

(
y

√
σ2
x + σ2

y

2σ2
xσ

2
y

− z

2σ2
x

√
2σ2

xσ
2
y

σ2
x + σ2

y

)2

+

( 1

2σ2
x

√
2σ2

xσ
2
y

σ2
x + σ2

y

)2

−
σ2
y

2σ2
xσ

2
y

 z2

= −1

2

(
y

√
σ2
x + σ2

y

σ2
xσ

2
y

− z

σ2
x

√
σ2
xσ

2
y

σ2
x + σ2

y

)2

+

(
− 1

2(σ2
x + σ2

y)

)
z2

Now let u = y
√

σ2
x+σ2

y

σ2
xσ

2
y
− z

σ2
x

√
σ2
xσ

2
y

σ2
x+σ2

y
and note du

dy
=
√

σ2
x+σ2

y

σ2
xσ

2
y

and switch the bounds

of integration, rewriting the integral we have

=
1√

2π(σ2
x + σ2

y)

∫ b

a

exp

(
− z2

2(σ2
x + σ2

y)

)(
1√
2π

∫
R

exp

(
−u

2

2

)
du

)
dz

=
1√

2π(σ2
x + σ2

y)

∫ b

a

exp

(
− z2

2(σ2
x + σ2

y)

)
dz

Where we have noted that the inner integral must equal one. This now matches the

pdf of N (0, σ2
x + σ2

y) as desired.

We can use Lemma 2.5.1 to understand the probability density of random Gaus-

sian vectors. That is for g ∼ N (0, I) ∈ RN we can use the result with induction to

conclude

〈g,x〉 =
N∑
j=1

gjxj ∼ N (0, ‖x‖2
2)

Homework 2.5.1. Let X ∼ N (0, σ2) ∈ R. Show that aX ∼ N (0, a2σ2), ∀a ∈

[0,∞)
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2.6 Locality Sensitive Hashing and (c, r)-Nearest Neighbor Problem

Recall the nearest-neighbor problem: Given S = {x0, . . . ,xp−1} ⊆ RD find fNN :

[p]→ [p] such that ‖xj − xfNN (j)‖2 = miny∈S ‖xj − y‖2, ∀j ∈ [p]

Recall from chapter 1 that the complexity is O(p2D) for the linear scan solution,

shown in 1.1.4. In this (exact) solution method, we compute all pairwise distances

‖xi − xj‖2, ∀i, j ∈ [p].

However, in many applications either p or D can be large, which means the ex-

act computation using this straightforward method becomes computationally in-

tractable. We will sacrifice accuracy in order to achieve faster results. Now consider

the following variant of the nearest neighbor problem.

Definition 2.6.1 ((c, r)-Nearest Neighbor Problem). (c, r)-NN problem: Given S =

{x0, . . . ,xp−1} ⊆ RD find f : [p]→ [p] ∪ {−1} so that both:

1. d(xj,xf(j)) ≤ cr, ∀j ∈ [p] such that ∃i ∈ [p] with d(xj,xi) ≤ r.

The idea is that if there is a point that is r-close to xj, then the assignment

function will return a point that is almost as close. The possible error in the

nearest neighbor to xj is quantified by c.

2. f(j) = −1 if 6 ∃i ∈ [p] with d(xj,xi) ≤ cr.

In other words, if there is no point that is cr-close to the query point xj, then the

assignment function will indicate this fact by returning -1.

The diagram shows schematically how this new problem simplifies nearest neigh-

bor. The query point in the diagram is xj. If xk is within a distance r of the query

point, then our assignment function can return either xk or xi. If there are no points

within cr distance to the query (i.e. remove points xj and xk) then the function

returns -1. If there is a point within cr but no point within r (i.e. remove only
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xk) then there is no requirement that the function assign any particular value to the

nearest neighbor (e.g. returning i or -1 are possible)

Figure 2.1: (c, r)-NN with query point xj

Note that for this, and most other examples, we will concern ourselves with the

Euclidean distance: d(x,y) = ‖x− y‖2.

Goal. As a floor to solution run-time, we should at least read in all the data, which

takes Ω(pD)-time.

To understand this lower bound on run-time, consider what might happen by

withholding points from consideration in a solution. There is no way then to guar-

antee that the withheld points are not nearest neighbors to a given query point in

this scenario. A pause to recall some

Definition 2.6.2 (O,Ω,Θ complexity). 1. Let g : R → R
+. We say g is O(h),

h : R→ R
+, if ∃C, x0 ∈ R such for all y > x0 g(y) ≤ Ch(y).

2. Let g : R→ R
+. We say g is Ω(h̃), h̃ : R→ R

+, if ∃C, x0 ∈ R such for all y > x0

g(y) ≥ Ch̃(y).

3. If g is O(h) and Ω(h) then g is Θ(h).

In order to achieve our goal of improving on nearest neighbor beyond O(p2D), we
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will take our set S ⊂ RD and project each of the points onto a random vector and

find nearest neighbors of the projections which are lower dimensional. Schematically,

Figure 2.2: (c, r)-NN using 2D data set

Where the procedure is to generate a random line in the direction of g, and then

1. Project all points of S onto g, i.e. calculate 〈g,x1〉, 〈g,x2〉, . . .

2. Sort the distances {〈g,xj〉}4
j=1

3. Read off nearest neighbors from the sorted list

So, using the schematic our assignment function could be

f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 2

Now let’s consider complexity. The inner product of a point with a random vector

takes on order D operations and must be performed for all points, so step one takes

on order PD-time. Sorting lists is a well understood problem in computer science
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and can be accomplished on order P logD time. Finally, scanning the list for a

nearest neighbor takes P time, so overall our complexity is O(PD + P logD + p).

Definition 2.6.3 (Locality Sensitive Hash Function). We call a random function

h : RD → Z a Locality Sensitive Hash function if ∃p1, p2 ∈ (0, 1), p1 > p2, so that

the following properties hold for any two fixed points x,y ∈ RD

1. If ‖x− y‖ < r then h(x) = h(y) with at least probability p1

2. If ‖x− y‖ > cr then h(x) = h(y) with probability at most p2

So a LSH function will hash similar points to the same integer and points which

are dissimilar to different integers. We now consider a particular example of such a

function

Example 2.6.4. Fix two points x,y ∈ RD. We define a hash function h : RD → Z

as follows

h(x) =

⌊
〈g,x〉+ u

w

⌋
where g ∼ N (0, I) and u ∼ Uniform(0, w) and w is fixed positive number.

In the following then, we regard h to be a function of the two random variables

of u and g where the points themselves x,y are fixed. The key questions then to

consider are what are p1 and p2 in 2.6.4?

By Lemma 2.4.2, since the event h(x) = h(y) implies |〈g,x〉 − 〈g,y〉| < w, we

have

Pu,g [h(x) = h(y)] = P [h(x) = h(y) ∩ |〈g,x〉 − 〈g,y〉| < w]

and so applying Lemma 2.4.1 we have the following equivalent expression as an
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integral

P [h(x) = h(y) ∩ b〈g,x〉 − g,yc < w] =∫ w

0

P [h(x) = h(y)||〈g,x− y〉| = z]P [|〈g,x− y〉| = z] dz

Let’s consider each of the probabilities that appear in the integrand,

• The probability below is a probability of only the random variable u since all

other quantities are fixed.

P [h(x) = h(y)||〈g,x− y〉| = z]

So, given a particular x,y and z ∈ [0, w] such that |〈g,x− y〉| = z we need

to determine the probability that an offset u results in 〈g,x〉 and 〈g,y〉 falling

into the same ”bin” of width w, i.e. they are hashed to same integer h(x).

Without loss of generality, suppose a = 〈g,x〉 − wh(x) < 〈g,y〉 − wh(x) = b.

So, what then is the probability that h(x) = h(y) as a function of u, given z?

This reduces to considering which offsets results in a segment of length z being

contained entirely in a segment of length w - and due to the periodic nature of

moving bin boundaries, it suffices to consider the case when a = 0. To see why

this is, the diagram shows three possible scenarios for an offset u.
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Figure 2.3: P [h(x) = h(y)||〈g,x− y〉| = z] as relationship between fixed segment of length z and
bin boundaries controlled by u

When u = 0, the bin boundary of bin 0 is aligned with a. As we imagine u taking

values from 0 to w we see the bin boundaries take all possible locations before

ending back in a position where a is again exactly aligned with a bin boundary

(now the bin corresponding to 1). So, for a non-zero a the starting condition

is different, but the overall “movie” is the same. We need then consider for

what proportion of “frames” for this movie the segment of length z is entirely

contained in a single bin. If the movie is of length w then for the first z frames,

the segment is split between two bins, i.e. with probability z
w

the segment is

split between bins and h(x) 6= h(y). The complementary event then 1 − z
w

=

w−z
w

is the probability that the segment is contained in a single bin, and thus

h(x) = h(y)



54

• We now consider

P [|〈g,x− y〉| = z]

We know from Lemma 2.5.1 and subsequent discussion that 〈g,x − y〉 ∼

N (0, ‖x − y‖2
2). Accounting for absolute values then, the probability is given

by √
2

‖x− y‖2

√
π

exp

(
− z2

2‖x− y‖2
2

)
Combining the results then above, conducting a change of variables and an inte-

gration by parts, we have for n = ‖x− y‖2 then an expression which computes the

probability that two points hash to the same integer as a function of the distance

between the points:

pw(n) =

∫ w

0

P [h(x) = h(y)||〈g,x− y〉| = z]P [|〈g,x− y〉| = z] dz

=
2√
π

∫ w
n
√

2

0

e−z
2

dz +

√
2

π

n

w

[
e
−
(

w
n
√

2

)2

− 1

]

Taking the derivative with respect to n we have

d

dn
pw(n) =

d

dn

[
2√
π

∫ w
n
√

2

0

e−z
2

dz +

√
2

π

n

w

[
e
−
(

w
n
√

2

)2

− 1

]]

= − 2√
π

w√
2n2

e

(
w√
2n

)2

+

√
2

π

1

w

[
e
−
(

w
n
√

2

)2

− 1

]
+

√
2

π

n

2

2w2

2n3

[
e
−
(

w
n
√

2

)2
]

=

√
2

π

1

w

[
e
−
(

w
n
√

2

)2

− 1

]
We can see that d

dn
pw(n) < 0 which is to say that the function is monotonically

decreasing, thus when n = ‖x − y‖2 < r we have that pw(n) < pw(r). That is

pw(r) = p1 from Definition 2.6.3. Furthermore, when for c > 1 we have ‖x−y‖2 > cr

we know that pw(cr) < pw(r). That is pw(cr) = p2 from Definition 2.6.3.
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We have shown quantitatively that the probability of hashing to the same integer

is greater if the points are close and smaller if they are farther away. The following

Lemma summarizes then what we have demonstrated.

Lemma 2.6.5. Let g ∼ N (0, I), u ∼ ([0, w]) and w ∈ R+. Then h(x) =
⌊
〈g,x〉+u

w

⌋
is a LSH function ∀r ∈ R+ and c ∈ (0, 1) with respect to Euclidean distance. It has

p1 = pw(r) > p2(cr) = p2 where

pw(n) = erf

(
w√
2n

)
+

√
2

π

n

w

[
e
−
(

w√
2n

)2

− 1

]
At present, our hashing function only addresses what happens for two fixed vectors

x and y. How can we use this function to build a hashing scheme which works for

a large data set with possibly billions of data points? We will accomplish this by

repeating the hash using independent draws of the random variables and using the

collection of these to hash the entire set.

Definition 2.6.6. Let gk : S → Z
k be a new LSH function created by using k i.i.d

LSH functions of the type in Example 2.6.4, i.e. h1, . . . , hk, gk(x) = (h1(x, . . . , hk(x)))

Definition 2.6.7. When gk : S → Z
k has the properties, for some fixed x ∈ S

1. If for y ∈ S where d(x,y) ≥ rc then gk(x) 6= gk(y).

2. If for at least one y ∈ S it happens that d(x,y) ≤ r then gk(x) = gk(y).

then it is a satisfactory LSH function for x ∈ S.

In other words, gk does not hash a dissimilar points to the same thing as the query

and also if there is some point close to our query, then gk should hash a close point

and query to the same thing. Note that we now have a more expansive criteria for

our hash than in Example 2.6.4; it requires something hold true for all other points

in the set, not simply a pair.
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Definition 2.6.8. For x ∈ S we denote the nearest neighbor of x as

x∗ = arg min
y∈S
x 6=y

d(x,y)

We wish to know bounds on the probability that gk fails to meet each of the

properties in Definition 2.6.7. Consider the first property, it fails when there exists

a point which is far away that nevertheless hashes to the same vector as x. In order

to hash to the same vector in Zk all k component hashes need to incorrectly hash

“far” points to the same integer. For each component that happens with probability

p2. Thus:

P [gk fails 1 ] = P [∃y ∈ S s.t. gk(x) = gk(y), d(x,y) ≥ rc]

≤ |S|P [gk(x) = gk(y), d(x,y) ≥ rc]

≤ |S|pk2

where we have used a union bound.

How can we bound the probability that the second property in Definition 2.6.6

fails? The complementary event is that all points which are close hash to the same

vector in Zk. This means that component-wise the k hashes all need to hash x and

y to the same integer, which happens with probability p1 for each component. Thus:

P [gkfails 2] = P [∃y ∈ Sgk s.t. (x) 6= gk(y), d(x,y) < r]

≤ 1− |S|P [gk(x) = gk(y), d(x,y) ≥ rc]

≤ 1− pk1

The probability that gk is a satisfactory LSH then can be bounded from below by
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P [gksatisfies 1 and 2] = 1− P [gkfails 1 or 2]

≥ 1− P [gkfails 1]− P [gkfails 2] ≥ 1− |S|pk2 − (1− pk1)

= pk1

(
1− |S|

(
p2

p1

)k)
Let k = logp1/p2

(2|S|) and ρ = log p1

log p2
, then this simplifies as follows:

pk1

(
1− |S|

(
p2

p1

)k)
= p

(logp1/p2 (2|S|))
1

(
1− |S|

(
p2

p1

)(logp1/p2 (2|S|))
)

= p
(logp1/p2 (2|S|))
1

(
1− |S|

(
p1

p2

)(logp1/p2( 1
2|S|))

)

= p
(logp1/p2 (2|S|))
1

(
1− |S|

(
1

2|S|

))
=

1

2
p
(logp1/p2 2|S|)
1

=
1

2

p
(

logp1
(2|S|)

logp1( p1p2 )

)
1


=

1

2

[
p
(logp1 (2|S|))
1

] 1

log( p1p2 )
log p1

=
1

2
[2|S|]

log p1
log p2

log p1
log p2

−1

=
1

2
[2|S|]

ρ
1−ρ

We gather then this in the following lemma

Lemma 2.6.9. If k = logp1/p2
(2|S|) and ρ = log p1

log p2
then gk as in Definition 2.6.6

will be a satisfactory LSH as described in Definition 2.6.7 for any given x ∈ S with

probability at least

1

2
[2|S|]

ρ
1−ρ
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Lemma 2.6.10. If we generate L ≥ 2(2|S|)
ρ

1−ρ log
(
|S|

1−σ

)
i.i.d. hash functions gik :

S → Z
k, j = 1, . . . , L with k = logp1/p2

(2|S|), ρ = log p1

log p2
then the following will hold

with probability at least σ:

∀x ∈ S, ∃` ∈ [L] s.t. g`k is a satisfactory LSH in the sense of Definition 2.6.7 for x

Proof. Let δ = 1
2

(
1

2|S|

) ρ
1−ρ

and fix x ∈ S. The probability that a gik will be unsatis-

factory for x is at most (1− δ) by Lemma 2.6.9. Thus the probability that all gik will

fail to be satisfactory is at most (1− δ)L. We can use Fact 2.2.11 to conclude that

(1− δ)L ≤ e−δL ≤ eδ2(2|S|)
ρ

1−ρ log( |S|1−σ ) = elog( 1−σ
|S| ) =

1− σ
|S|

So the probability that for every x all hash functions fail to be satisfactory is

bounded by the union of |S| such probabilities seen above, i.e. 1 − σ. The com-

plementary event, that for every x at least one hash doesn’t fail, is then at least

σ.

We now have the results needed to construct a randomized algorithm that solves

(c, r)-NN problem

Algorithm 2.6.1 LSH for (c, r)-NN

Input: S ⊆ RD, d(x, y) = ‖x− y‖2
Output: f : S → S ∪ {∞} a (c, r)-NN map

for x in S do
∀` ∈ L compute g`k(x)

end for
∀x ∈ S, f(x) = (∞, . . . ,∞)
for each g`k, ` ∈ [L] do
for each n in g`k(S) where

∣∣(g`k)−1(n)
∣∣ ≥ 2 do

for each x in
(
g`k
)−1

(n) do

choose any y in
(
g`k
)−1

(n) \ {x}
if ‖x− y‖2 < min {‖x− f(x)‖2, cr} then
f(x)← y

end if
end for

end for
end for
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The first for loop has O(DKL|S|) run-time, since each element of S must be pro-

jected with an inner-product of length D, K-times for each of the L hash functions.

Next we move onto the bottom block, after the first end for. We analyze the run-

time from the inside our: the inner if statement requires comparison of norms and

so will require O(D) comparisons. The two most inner for loops could in the worst

case scenario iterate over |S| vectors, each of which needs to compared on K entries

(in the case that all vectors hash to the same vector n) and therefore overall the

inner loop has worst case run-time complexity O(|S|DK). The outer-loop iterates

L times, and so overall the entire loop has at most O(DKL|S|)

Recall that algorithm 1.1.4 finds exact answers in O(D|S|2) (which would natu-

rally solve the (c, r)-NN problem as well). So for what types of problems does this

represent a cost-savings? From our Lemma 2.6.10 and analysis we have that if

K ≥ logp1/p2
(2|S|)

L ≥ 2 (2|S|)
ρ

1−ρ log

(
|S|

1− σ

)
then with probability at least σ our algorithm should produce a satisfactory so-

lution to the (c, r)-nearest neighbor problem. That is for complexity

O
(
D|S|1+ ρ

1−ρ log

(
|S|

1− σ

)
logp1/p2

(2|S|)
)

and if we fix w = 3r and c = 3 in the definition of the component hash functions h

then ρ
1−ρ ≈ 0.449 and p1/p2 ≥ 1.99 so in this scenario we have saved something on

the order of |S|1/2 from the naive solution, which represents a significant savings for

large sets.
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Theorem 2.6.11. Choose σ ∈ (0, 1), S ⊂ RD. Then ∀r > 0, (3, r)-NN problem can

be solved for S with respect to Euclidean distance with probability σ in time

O
(
D|S|1.5 log

(
|S|

1− σ

)
log1.99 (2|S|)

)
Note. 1. Having ρ = log p1

log p2
small is crucial. The following result is described in [9]:

∀q ∈ (0, 2] and r ∈ R+, δ.c ∈ (1,∞)∃ an LSH function h : RD → Z with respect

to ‖ · ‖q having ρ ≤ δmax (c−q, c−1)

2. In [1] we have the following result which shows a near optimal result for Euclidean

distance: ∃ a LSH with respect to ‖ · ‖2, ∀r ∈ R+,c ∈ (1,∞) that has

ρ =
1

c2
+O

(
log log |S|
log1/3 |S|

)
for any given S ⊂ RD

3. In [26] we have a lower-bound on ρ. It states that for large D there exists an r

and p2 ≥ 2−O(D) for which ρ ≥ 0.462
cq

for any LSH with respect to ‖ · ‖q, ∀c, q ≥ 1.

Homework 2.6.1. Use the definition of Cauchy random variables and discussion

below to prove that h : RD → Z in 2.6.4 is still a Locality Hashing Function ∀w, r ∈

R
+ and c ∈ (1,∞) with respect to d(x,y) = ‖x − y‖1 when each entry of g is an

i.i.d Cauchy random variable with density f0,1(x) from 2.6.12.

Definition 2.6.12 (Cauchy Random Variable). A Cauchy random variable is real

value X ∼ Cauchy(x0, γ0) that has the probability density function

fx0,γ(x) =
1

πγ

(
1 +

(
x−x0

γ

)2
) =

1

π

(
γ

(x− x0)2 + γ2

)

So for example when x0 = 0, γ = 1, f0,1(x) = 1
π(1+x2)
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Interestingly, the mean and variance of Cauchy random variable are undefined, as

can be seen by writing the associated integrals.

Consider two independent Cauchy random variables X ∼ Cauchy(x0, γ0) and

Y ∼ Cauchy(y0, δ0). Then

1. kX + L ∼ Cauchy(kx0 + L, |k|γ0)

2. X + Y ∼ Cauchy(x0 + y0, γ0 + δ0)

These two properties constitute the stable distribution property.

Homework 2.6.2. For c = 3 and w = 3r verify that ρ
1−ρ ≈ 0.449 and p1

p2
≥ 1.99.

Can you improve for any arbitrary r?

Homework 2.6.3. Let

mins∈S ‖x∗ − x‖2

maxs∈S ‖x‖2

< 1

choose σ ∈ (0, 1) such that , σ
log4/3(R)

< 1. Prove that we can solve a sequence of

(3, r)-NN problems to get fANN : S → S satisfying

‖fANN(x)− x‖2 ≤ 4‖x− x∗‖2

for all x∗ ∈ S with probability at least σ in

O

(
D|S|1.5 log

(
|S| log4/3

(
1
R

)
1− σ

)
log1.99(|S|) log1.99

(
1

R

))

2.7 Approximate Counting with Few Bits

Given a sequence of z0, . . . , zn−1 ∈ {0, 1} count the number of times that a 1

appears in the sequence. We would like to use only c1 dlog dlog nee number of bits

to store our estimate of the counting problem, where c1 is an absolute constant

(independent of n).

We introduce some notation:
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• Let Tj =
∑j

`=1 z`. This is the true count of the one’s in the given sequence.

• ∀j ∈ [n] output Xj such that |Xj − Tj| ≤ c2Tj where c2 should be a (small)

absolute constant independent of j.

Morris Algorithm

Algorithm 2.7.1 Morris’ Algorithm

Input: z0, z1, . . . , zn−1 ∈ {0, 1}
Output: Xj ≈ Tj =

∑j
`=0 zj , ∀j ∈ [n]

Y−1 = 0
for j = 1, . . . , n− 1 do
if zj = 0 then
Yj ← Yj−1

else

B ∼

{
1 with probability 2−Yj−1

0 with probability 1− 2−Yj−1

Yj ← Yj−1 +B
end if
Xj ← 2Yj − 1

end for

To see why the memory usage fits our stated goal, consider 2Yn−1 − 1 ≤ c2Tn−1

which implies Yn−1 ≤ log2 (c2Tn−1 + 1) which takes dlog dlog (c2Tn−1 + 1)ee.

Note that Y0, . . . , Yn−1 is an example of Markov chain because the process is

“memoryless” - the next state only depends on the current state.

In order to simplify analysis, we will consider the subsequences that correspond to

the actual events of interest: Let zi1 , . . . , xiñ be the members of the sequence where

zj = 1. We denote then Ỹk = Yjk for k = 1, . . . , ñ − 1. This corresponds then to

our estimates at the different points in the stream where the event of interest has

occured.

In practice generating the random variable B with accuracy that accounts for

potentially very small values 2−Yj−1 itself could torpedo the project of making a low

bit counter - however the efficient generation of random numbers with high accuracy

is a involved topic outside our scope. In this course we’ll take it for granted that it
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can be accomplished.

For the following lemmas we take the random variables to be defined as described

in Algorithm 2.7.1

Lemma 2.7.1. Let m, j ∈ N, such that m ≥ 1, j ≥ 0. Then

E

[
2mỸj

]
= (2m − 1)E

[
2(m−1)Ỹj−1

]
+E

[
2mỸj−1

]
Proof. We use the definition of expectation and then rearrange terms to get our

desired result:

E

[
2mỸj

]
=
∑
i∈Z

2miP
[
Ỹj = i

]
=
∑
i∈Z

2mi
(
P [Bj = 1]P

[
Ỹj−1 = i− 1

]
+ P [Bj = 0]P

[
Ỹj−1 = i

])
=
∑
i∈Z

2mi
(

1

2i−1
P
[
Ỹj−1 = i− 1

]
+

(
1− 1

2i

)
P
[
Ỹj−1 = i

])
=
∑
i∈Z

2m2(m−1)(i−1) 1

2i−1
P
[
Ỹj−1 = i− 1

]
+
∑
i∈Z

(
2mi − 2(m−1)i

)
P
[
Ỹj−1 = i

]
= 2m

∑
i∈Z

2(m−1)Ỹj−1
1

2i−1
P
[
Ỹj−1 = i− 1

]
+
∑
i∈Z

(
2mỸj−1 − 2(m−1)Ỹj−1

)
P
[
Ỹj−1 = i

]
= 2mE

[
2(m−1)Ỹj−1

]
+E

[
2mỸj−1 − 2(m−1)Ỹj−1

]
= (2m − 1)E

[
2(m−1)Ỹj−1

]
+E

[
2mỸj−1

]

Lemma 2.7.2.

E
[
X̃j

]
= j, ∀j = 0, . . . , ñ ≤ n

Proof. The proof is left as an exercise

Lemma 2.7.3.

Var
[
X̃j

]
=

1

2

(
j2 − j

)
, ∀j = 0, . . . , ñ ≤ n
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Proof. The proof is left as an exercise

We now will describe how to use a median of means technique to produce an

estimate of Tj that has good accuracy with high probability.

By applying Chebyshev’s Inequality along with the results of Lemma 2.7.2 and

2.7.3,

P
[∣∣∣X̃j −E

[
X̃j

]∣∣∣ ≥ kj
]

= P

∣∣∣X̃j − j
∣∣∣ ≥ kj

Var
[
X̃j

]
Var

[
X̃j

]


≤ 1

k2

1
2

(j2 − j)
j2

≤ 1

2k2

To decrease the variance of our estimator we will average L i.i.d draws from Algorithm

2.7.1 labeled X̃`
j and define the mean of these counts as

Xj =
1

L

L∑
`=1

X̃`
j

By Theorem 2.2.10 we can calculate in the same manner above that

P
[∣∣Xj − j

∣∣ ≥ kj
]
≤ 1

2k2L

Now in a manner similar to Lemma 2.3.1, by setting L ≥ 5/ε2 (relabeling k as ε)

and noting complementary events we obtain

P
[∣∣Xj − j

∣∣ ≤ εj
]
> 0.9

As was done previously during the discussion of Monte Carlo integration, we will

consider repeating the experiment of finding means and use this collection’s median

to estimate the desired quantity.
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Let

Ii =


1 if

∣∣∣X i

j

∣∣∣ < εj

0 otherwise

where X
i

j are i.i.d copies of Xj. Set i = 1, . . . , c log(1/q) where c ≈ − log(0.95) and

q ∈ (0, 1). Then
∣∣∣median

{
X

1

j , . . . , X
c log(1/q)

j

}
− j
∣∣∣ < εj with probability at least

1− q.

Theorem 2.7.4 (Morris Algorithm). Let L = 5/ε2 and I = c̃ log
(
m
q

)
where q, ε ∈

(0, 1), m ∈ N and c̃ ∈ R+ is an absolute constant. Then there exists an approximate

counting estimator Xj such that

Tj ≤ Xj ≤
1 + ε

1− ε
Tj

holds for any m values of j with probability at least 1− q. Furthermore the estimator

will use at most

O (LI log log n)

bit with probability at least 1− LI
n2 for c ∈ R+ for c ∈ R+

Homework 2.7.1. Use induction and Lemma 2.7.1 to prove Lemma 2.7.2

Homework 2.7.2. Use induction and Lemmas 2.7.1 and 2.7.2 to prove Lemma 2.7.3

Homework 2.7.3. Use the discussion in this section to write a formal proof for

Theorem 2.7.4.

2.8 Distinct Elements

Given a sequence z1, . . . , zN ∈ U where |U | = M , we want to know how many

unique elements are in the sequence, i.e. the cardinality of the sequence as a set. We

want to accomplish this using ø (min {N,M}) bits of memory. We will show that,

under idealized conditions this can be accomplished using O(logM) memory.



66

Definition 2.8.1 (Perfect Hash). A function h : U → [0, 1] with the properties that

∀a ∈ U

1. h(a) is a uniform random variable in [0, 1]

2. h(a) is independent of h(b) for a 6= b

There are practical limitations to achieving a perfect hash efficiently, though for

applications “near” perfect may be sufficient. If the dictionary was indeed small

in comparison to the size of the sequence, M � N , and/or we were to repeat the

procedure many times, then we could create and store a relatively small number

t of random arrays of length M . This would require O(tM logM) memory. This

solution is not entirely satisfactory, though for now we will take for granted that such

a hash can be effected. In the following algorithm we will compute L collections of

K estimators averaged and use the median of these means to produce an accurate

estimate with high probability.

Algorithm 2.8.1 Flajolet-Martin Algorithm

Input: z0, z1, . . . , zN ∈ [M ], KL i.i.d. perfect hash functions h(k,`) : [M ]→ [0, 1]

Output: Ẽ estimate of |{z1, . . . , zN}| = ñ

E(k,`) ← 1, ∀k ∈ [K], ` ∈ [L]
for j = 1, . . . , N do
for ` = 1, . . . , L do
for k = 1, . . . ,K do
E(k,`) ← min

(
E(k,`), h(k,`)(zj)

)
end for
E` ← 1

K

∑K
k=1E(k,`)

end for
end for
E ← median (E1, . . . , EL)
Ẽ ← 1

E − 1

We then proceed to analyze the estimators’ expectation and variance (in addition

to the by now routine median of means method) to see why the algorithm gives good

estimates with high probability for the number of distinct elements.
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∀k, ` we have that E(k,`) = min
{
h(k,`)(zj)

}
j∈[N ]

, which is the minimum value of ñ

i.i.d. uniform random variables ui, . . . , uñ ∈ [0, 1]

Lemma 2.8.2. The probability density of E(k,`) = min {u1, . . . , uñ} where u1, . . . , uñ

are i.i.d uniform in interval [0, 1] is p(x) = ñ(1− x)ñ−1

Proof. Using the cumulative density function definition for the random variable E(k,`),

complementary events and independence we obtain

F (x) =

∫ x

0

p(y)dy = P [min {u1, . . . , uñ} ∈ [0, x]]

= 1− P [min {u1, . . . , uñ} ∈ (x, 1]]

= 1− P [u1 ∈ (x, 1], . . . , uñ ∈ (x, 1]]

= 1−
ñ∏
`=1

P [uj ∈ (x, 1]]

= 1− (1− x)ñ

Note that by the fundamental theorem of calculus d
dx
F (x) = p(x) we then obtain our

desired result.

The above lemma is an example of a simple order statistic that uses uniform

random variables.

Lemma 2.8.3. If E(k,`) = min {u1, . . . , uñ} as in Lemma 2.8.2 then ∀k, `

E
[
E(k,`)

]
=

1

ñ+ 1
, Var

[
E(k,`)

]
=

ñ

(ñ+ 1)2(ñ+ 2)
<

1

(ñ+ 1)2

Proof. Proof is left as an exercise to the reader

Once we have the expectation and variance of a single estimator E(k,`) we can

use reasoning similar to that seen in Monte Carlo integration and Morris’ Algorithm
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to combine estimates in a median of means scheme to achieve the following overall

estimate with

E

[
1

K

K∑
k=1

E(k,`)

]
=

1

ñ+ 1
, Var

[
1

K

K∑
k=1

E(k,`)

]
≤ 1

K(ñ+ 1)2

By choosing K = 10
ε2

and using Chebyshev inequality then we have that

P

[∣∣∣∣∣ 1

K

K∑
k=1

E(k,`) −
1

ñ+ 1

∣∣∣∣∣ < ε

(
1

ñ+ 1

)]
> 0.9

Now, choosing L ≥ c log
(

1
q

)
and using the sum of indicator variables and Chernoff

inequality, we can argue that the majority of the estimators will be within our chosen

error bound with high probability

P

[∣∣∣∣E − 1

ñ+ 1

∣∣∣∣ < ε

(
1

ñ+ 1

)]
≥ 1− q

for q ∈ (0, 1)

Theorem 2.8.4 (Flajolet-Martin Algorithm). Choose ε, q ∈ (0, 1). Then Algorithm

2.8.1 will output an estimate E satisfying

ñ

1 + ε
− ε

1 + ε
<

1

E
− 1 <

ñ

1− ε
+

ε

1− ε

with probability at least 1− q.

Proof. The formal proof is left as an exercise to the reader.

Homework 2.8.1. Prove Lemma 2.8.3

Homework 2.8.2. Using the discussion in this section, formalize a proof of Theorem

2.8.4

2.8.1 Practical, Better Hashing

Storing arrays of M uniformly generated random numbers to use as hashes is a

problem if M � 1. We may also object to this approach on the grounds that reusing
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or having foreknowledge about the array would torpedo the randomness aspect that

we are relying on to estimate our distinct element count in Algorithm 2.8.1. An

adversary given access to the hash could effect any count or miscount he wanted by

choosing the sequence of inputs (or simply by re-ordering them).

Instead let us consider the following procedure to generate a usable and tractable

hash

1. Select a prime number p

2. Choose two random, independent uniformly distributed integer values a, b ∈ {0, . . . , p− 1}

3. Compute for x ∈ [p] hash to the value ha(x) in the following way

ha(x) =
(ax+ b) mod p

p

Note that ha(x) ∈ [0, 1)

Lemma 2.8.5. ha(x) is uniformly distributed in
{

0, 1
p
, . . . , p−1

p

}
⊂ [0, 1]

Proof. Fix j ∈ [p], we wish to show that P [ha(x) = j/p] = 1/p.

First assume x = 0. It follows that P [ha(x) = j/p] ⇐⇒ P [b = j]. We have by

the hypothesis that b is drawn uniformly from [p] and thus the probability is equal

to 1/p.

Next, assume x 6= 0. Note that since p is prime, Zp, the ring of integers modulo

p, is a field. In particular it has no zero-divisors. Therefore x−1 exists and so

P [ha(x) = j/p] = P [a ∼= x−1(j − b) mod p]

Note that since Zp is a field and x 6= 0, for any choice of u ∈ [p] there exists a
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unique element v ∈ [p] such that u ∼= x−1(j − v). So

P
[
a ∼= x−1(j − b) mod p

]
=

p−1∑
u=0

P [a = u]P [b = v]

=

p−1∑
u=0

(
1

p

)(
1

p

)
= p

(
1

p2

)
=

1

p

which is to say ha(x) is uniformly distributed in
{

0, 1
p
, . . . , p−1

p

}
Lemma 2.8.6. Let x, y ∈ [p] such that x 6= y. Then

P

[
ha(x) = j/p, ha(y) =

`

p

]
=

1

p2
, ∀j, ` ∈ [p]

thus ha(x) and hb(y) are pairwise independent.

Proof. Assume without loss of generality x 6= 0, thus ∃x−1 ∈ Zp

P

[
ha(x) = j/p, ha(y) =

`

p

]
= P

[
a = x−1(j − b) mod p, b = `− ay mod p,

]
= P

[
a = x−1(j − `+ ay) mod p, b = `− x−1(j − b)y mod p,

]
= P

[
a = x−1(j − `)(1− x−1y)−1 mod p, b = (`− x−1jy)(1− x−1)−1 mod p,

]
=

1

p2

Thus ha(x) and ha(y) are pairwise independent

Independence of a finite set of random variables means that any subset of the

random variables should have the product property. That is given random variables

X1, . . . , XN and some sub-sequence of length k, j1, . . . , jk ∈ [N ] then

P [Xj1 = a1, . . . , Xjk = ak] =
k∏
`=1

P [Xj` = a`]
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Observe that the hash function described in this section, and the resulting random

variables of the type ha(x1), . . . , ha(xn) have the product property only for pairs. As

we will see, it does not hold for other subsets, in particular and set that has three or

more distinct members. To see why the hash is not three-wise independent, consider

P [ha(x) = j/p, ha(y) = `/p, ha(z) = f/p]. We can show that once two values are

known, because ha is a line, all subsequent values will be deterministic. That is,

from the proof of Lemma 2.8.1 we have that

a = x−1(j − `)(1− x−1y)−1 mod p

b = (`− x−1yj)(1− x−1y)−1 mod p

So then

ha(z) =
az + b mod p

p
=

(1− x−1y)−1 [(j − `)z + (`− x−1yj)]

p
= fx,y,z,`,j

I.e. once we’ve selected values for j and ` there is only one possible value that ha(z)

can hash to - it is completely determined by those values. So

P [ha(x) = j/p, ha(y) = `/p, ha(z) = f/p] =


1
p2 if f = (1− x−1y)−1 [(j − `)z + (`− x−1yj)]

0 otherwise

If the values were in fact independent, we would need that the probability for any

particular three values as 1/p3. Hash functions that have k-wise independence exist,

however are beyond the scope of this course. We conclude our discussion of this

hash function with a consideration for how large a prime p we should choose. In the

example of a perfect hash h we have that P [h(x) = h(y)] = 0 when x 6= y. Using
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our imperfect hash ha, we see that for x 6= y ∈ [M ]

P [ha(x) = ha(y)] =

p−1∑
j=0

P

[
ha(x) =

j

p
, ha(y) =

j

p

]

=

p−1∑
j=0

1

p2

=
1

p

We can use this result for a fixed pair of values x, y to union bound the probability

that at least two distinct elements in our dictionary of possible inputs hash to the

same value

P [∃x, y ∈ [M ]ha(x) = ha(y)] ≤
(
M

2

)
1

p

=
M(M − 1)

2p

So if p ≥ M(M−1)
2q

for some q ∈ (0, 1) then

P [ 6 ∃x, y ∈ [M ]ha(x) = ha(y)] = 1− P [∃x, y ∈ [M ]ha(x) = ha(y)]

≥ 1− q

In light of this, a common heuristic for choosing how large to make the prime is

p ≥ M3. Note that the probability calculation shown above is the same type of

calculation involved in the birthday problem.



Chapter III

A Break from Probability: Linear Johnson-Lindenstrauss
(LJL) Emeddings as Deterministic Objects with

Applications in Numerical Linear Algebra (MTH 994
Lectures 2 – 4 & 6) & (CMSE 890 Lecture 5)

3.1 Johnson-Lindenstrauss Maps (MTH 994 Lecture 2)

Definition 3.1.1 (ε-JL map). A matrix Φ ∈ Cm×N is a linear ε-JL map of a set

S ⊂ CN into Cm if

‖Φx‖2
2 = (1 + εx)‖x‖2

2

holds for some εx ∈ (−ε, ε) for all x ∈ S

Definition 3.1.2 (Set difference). Let S̃ ⊂ CN , then the set difference of S̃ denoted

S̃ − S̃ is
{

x− y|x,y ∈ S̃
}
∈ CN

Note. When ε ∈ (0, 1), and Φ a ε-JL map, then Φ satisfies 1.3 for x ∈ Fp − Fp,

X = `2(Cm) and Y = `2(CN).

Perhaps surprisingly, there are simple ways to construct ε-JL maps which, other

than an upperbound on the cardinality, do not depend on any particular property

of S. We will see that by drawing Φ as a random matrix, in a variety of ways,

independent of S will result in Φ being a ε-JL map for S so long as m ≥ C log(|S|),

where C is a (mild) absolute constant.

73
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Theorem 3.1.3. Let S ⊂ C
N be finite. Then there exists a linear ε-JL map Φ ∈

C
m×N of the set S into Cm where m ≤ C

ε2
log |S|, and C ∈ (0,∞) is an absolute

constant independent of both (S and ε). Furthermore, Φ may be generated with high

probability for any S ⊂ CN given only knowledge of |S|, the cardinality of the set.

We will delay the proof of this theorem until lecture 5, and instead take it as given

and work to understand its meaning and consequences.

In order to explain the meaning of the theorem, consider the following two-player

game between Alice and Bob. This game will proceed in two phases. In the first

phase, Alice selects a finite subset S of the space CN . The content of S is known only

to Alice, however the dimension N of the space and the cardinality |S| is information

available to Bob. In the second phase, Alice provides an error bound ε ∈ (0, 1) and

Bob must generate an ε-JL map Φ for Alice’s set S which has at most m rows where

m ≤ C
ε2

log |S| rows.

Bob wins the game if Φ is an ε-JL map of S into Cm, otherwise Alice wins.

At first gloss, we may suppose that Alice has the advantage in this game. After-

all, she determines in whatever way she may wish a set S and keeps most of that

information secret. Bob has the seemingly more difficult task of mapping a set he

knows little about to a lower dimensional space with a distortion error specified by

his opponent. To abuse a metaphor, Bob has to draw a faithful, recognizable picture

of an object that Alice dreams while he is blindfolded. Shouldn’t Alice be able to

come up with a set and error for which this is difficult to achieve? Surprisingly,

Theorem 3.1.3 states that with high probability Bob will win the game simply by

generating a random matrix Φ ∈ Cm×N , no matter the set S Alice produces.

Also, note that should m ≥ N then the existence of an ε-JL map Φ is of little

practical use and we could in that case construct isometric embeddings trivially. We
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are interested in ranges of values ε and |S| which lead to compression, i.e. m ≤ N .

Example 3.1.4 (Generating ε-JL maps). The following random processes generate

Φ as in Theorem 3.1.3 with high probability. Note that these are data oblivious maps

- they do not depend on any property of the set S other than the cardinality.

Each entry Φ(i,j) is a i.i.d where

Φ(i,j) ∼
1√
m
N (0, 1) = N (0,

1

m
)

Each entry Φ(i,j) is a i.i.d

Φ(i,j) ∼


1√
m

with probability 1/2

− 1√
m

with probability 1/2

The matrix Φ may be a sparse JL matrix containing at most O(ε−1 log |S|) nonzero

entries in each column, and thus there are proportionally O(ε) nonzero entries of Φ

The above examples have a drawback in that they requireO(nM) memory to store

and do not permit a fast matrix-vector multiply - afterall a matrix with independent

random values does not have a structure we can exploit to save on storing or in

applying to vectors. Our next example will show how we may achieve maps which

do have better performance. First however we will need a theorem.

Theorem 3.1.5. Let U ∈ C
N×N be a unitary matrix with entries bounded by

maxn,k∈[N ] |Uk,n| ≤ K√
N

. Let R ∈ Cm×N be a matrix obtained by selecting m-rows

from the N ×N identity matrix i.i.d. uniformly at random and let D ∈ RN×N be a

diagonal matrix with i.i.d ±1 Radamacher random values on its diagonal. Then√
N

m
RUD
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will be an ε-JL map of any given S ⊂ RN into Cm with probability at least 1 − p −

N− ln3N provided that

m ≥ c
K2

ε2
log

(
4|S|
p

)
log4N

where c ∈ R+ is an absolute constant.

Note that D can be applied in O(N) time to a vector in x ∈ RN , since it involves

scanning the length of the vector and changing signs of some entries. The matrix R

can be applied to a vector of length N , UDx in O(N)-time since it involves scanning

the length of the vector and discarding values. Applying U then, since generically

it should require at least reading in the inputs should be at least O(N). Therefore

the overall complexity is governed principally by U . If the unitary matrix U admits

a fast matrix-vector, like for example using the Fast Fourier transforms to effect a

Discrete Fourier transform, then U can be applied to Dx in O(N logN)-time.

In practice, the log4N factor in the bound of m is often ignored with no change

in performance.

The failure probability bound p+N− ln3N is a result of union bounding over two

events – 1√
m
RF failing to have the yet undefined RIP property with probability at

most N− ln3N ; the details of that can be found in Theorem 4.3.6, and the probability

of at most p that
√

N
m
RFD fails to be an ε

2
-JL map; details of which can be found in

Theorem 4.4.4. Here, since we generally concern ourselves with N � 1, the failure

probability can be made suitably small.

Example 3.1.6. Let F be a unitary discrete Fourier transform matrix

Fn,k =
1√
N
e

2πink
N

If we take U = F and R and D be the matrices described in Theorem 3.1.5 then
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√
N
m
RFD is a JL map where

max
n,k
|Fn,k| =

1√
N

so K = 1. The Fast Fourier Transform (FFT) can be used to apply F to any vector

x ∈ RN in O(N logN). This is the proto-typical “Fast JL Matrix.”

We now consider a direct application of JL-maps to the Nearest Neighbor problem

introduced in 1.1.4. Recall in the Nearest Neighbor problem we want to find for each

element in a set S = {x1, . . . ,xN} ⊂ R
D another element which is closest with

respect to ‖ · ‖2. Here we consider the case where D � logN . The naive solution

requires O(DN2)-time. How can we improve on this using a JL map? Note that

S − S as in Definition 3.1.2 has the following bound on its cardinality

|S − S| ≤ N2 −N + 1

Let Φ ∈ Cm×D is an ε-JL map of S − S with m ≥ O
(

log |S|
ε2

)
. Suppose then we

apply the map to all elements of S, so S ′ = {Φxj|xj ∈ S} and then perform naive

nearest neighbors on the set S ′.

Finding set S ′ takes O
(
ND
ε2

logN
)
-time and naive nearest neighbors on S ′ takes

O
(
N2

ε2
logN

)
-time. When D � logN , note

N

ε2
logN(D +N) < N2D

Note that it possible to combine the JL compression and LSH solution approach to

(c, r)-NN for faster speed ups.

Note. A linear ε-JL map Φ of S ⊂ CN with ε ∈ (0, 1) must have S∩KerΦ = ∅. The

requirement that the null space of the map is disjoint from the set S can be stated

more precisely as uniformly bounding the operator norm on S.
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Definition 3.1.7. Let Φ ∈ Cm×N and S \ {0} ⊂ CN be nonempty. The operator

norm of Φ on S denoted ‖Φ‖S,2→2 is defined as

‖Φ‖S,2→2 = sup
x∈S\{0}

‖Φx‖2

‖x‖2

Lemma 3.1.8. ‖Φ‖S,2→2 is a semi-norm if S \ {0} 6= ∅ and it is an norm if S

contains N linearly independent vectors.

Lemma 3.1.9. ‖Φ‖S,2→2 = ‖Φ‖2→2 if
{

y
‖y‖2 |y ∈ S \ {0}

}
= B(0, 1) \ B(0, 1) =

δB(0, 1)

Lemma 3.1.10. If Φ is an ε-JL map of S then the following inequalities hold

‖Φ‖S,2→2 ≤
√

1 + ε, inf
y∈S\{0}

‖Φy‖2

‖y‖2

≥
√

1− ε, sup
y∈S\{0}

|〈(Φ∗Φ− I)y,y〉|
‖y‖2

2

≤ ε

Norm preserving maps of certain sets which are geometrically related to S can

also preserve the geometry of S itself.

Lemma 3.1.11. Let S ⊂ C
N and ε ∈ (0, 1). If Φ ∈ Cm×N is an ε-JL map of S ′

into Cm, where

S ′ =

{
x

‖x‖2

+
y

‖y‖2

,
x

‖x‖2

− y

‖y‖2

,
x

‖x‖2

+ i
y

‖y‖2

,
x

‖x‖2

− i y

‖y‖2

|x,y ∈ S
}

will satisfy ∀x,y ∈ S

(3.1) |〈Φx,Φy〉 − 〈x,y〉| ≤ 4ε‖x‖2‖y‖2

Proof. Consider the case where x = 0 or y = 0 then the inequality holds because

0 ≤ 0.

So next we suppose x,y 6= 0. Consider the normalizations u = x
‖x‖2 ,v = y

‖y‖2 .

The polarization identity relates inner products with norms. Observe,
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|〈Φu,Φv〉 − 〈u,v〉| =

∣∣∣∣∣14
3∑
`=0

i`
(
‖Φu + i`Φv‖2

2 − ‖u + i`v‖2
2

)∣∣∣∣∣
=

∣∣∣∣∣14
3∑
`=0

i`εu,v,`‖u + i`v‖2
2

∣∣∣∣∣
≤ 1

4

3∑
`=0

ε (‖u‖2 + ‖v‖2)2

= 4ε

Note that constructing Φ still only depends on the original information about the

cardinality of S since |S ′| ≤ 4|S|2, and so we can apply Theorem 3.1.3 whether we

have |S| or |S ′|.

Lemma 3.1.11 and Theorem 3.1.3 imply that ∃Φ ∈ Cm×N a ε-JL map where the

inequality 3.1 holds for any choice of S provided that

m =
c

ε2
log
(
4|S|2

)
Should we wish to construct a ε-JL map with fast matrix-vector multiply, we can

use an RFD matrix like that in Example 3.1.6, and our sketching dimension m is

m =
c

ε2
log
(
32|S|2

)
log4N

We can use 3.1.11 to implement a fast approximate matrix multiplication algorithm.

We will show how to use any type of ε-JL map to achieve the speed-up.

Lemma 3.1.12. Let V ∈ CN×p and U ∈ CN×q have unit `2-normalized columns.

Suppose that Φ ∈ C
m×N satisfies Equation 3.1 from Lemma 3.1.11 where S =
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{uj|uj = U [:, j]} ∪ {vj|vj = V [:, j]}. Then

∣∣∣(V ∗Φ∗ΦU − V ∗U)k,j

∣∣∣ ≤ 4ε, ∀k ∈ [p],∀j ∈ [q]

Proof. Note that |S| = p + q thus S ′ = 4(p + q)2 from Lemma 3.1.11. Furthermore

note that

ΦV =


. . .

Φv1 Φv2 . . . Φvp

. . .

 , ΦU =


. . .

Φu1 Φu2 . . . Φuq

. . .


So note then that ((ΦV )∗ΦU)k,j = 〈Φvk,Φuj〉. Therefore for all choices of k, j and

given Lemma 3.1.11 we have

∣∣∣(V ∗Φ∗ΦU − V ∗U)k,j

∣∣∣ = |〈Φvk,Φuj〉 − 〈vk,uj〉|

≤ 4ε‖vk‖2‖uj‖2

= 4ε

Note that we know there exists Φ ∈ Cm×N that satisfies the needed inequality

from Lemma 3.1.11 such that

m = O
(
ε−2 log

(
max(p, q)2

))
Theorem 3.1.13 (Fast Matrix-Matrix Multiply). Let A ∈ Cp×N and B ∈ CN×q

have SVDs given by A = U1Σ1V
∗ and B = UΣ2V

∗
2 and suppose that Φ ∈ Cm×N

satisfies the conditions of Lemma 3.1.12 for U and V . Then

‖AΦ∗ΦB − AB‖F ≤ 4ε‖A‖F‖B‖F
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Proof. We will expand the quantity of interest according the SVD of the factors A

and B

‖AΦ∗ΦB − AB‖F = ‖U1Σ1V
∗Φ∗ΦUΣ2V

∗
2 − U1Σ1V

∗UΣ2V
∗

2 ‖F

= ‖U1Σ1 (V ∗Φ∗ΦU − V ∗U) Σ2V
∗

2 ‖F

= ‖Σ1 (V ∗Φ∗ΦU − V ∗U) Σ2‖F

=

√√√√ p∑
k=1

q∑
j=1

(Σ1)2
k,k |V ∗Φ∗ΦU − V ∗U |

2
k,j (Σ2)2

j,j

≤

√√√√ p∑
k=1

q∑
j=1

σk(A)2(4ε)2σj(B)2

= 4ε

√√√√ p∑
k=1

σk(A)2

√√√√ q∑
j=1

σj(B)2

= 4ε‖A‖F‖B‖F

What are the savings in runtime then if we wish to approximate matrix-matrix

multiplication in this way? To simplify the comparison suppose p, q = N (or at

comparable at any rate). Usual matrix multiplication then consists of computing

N2 entries, each consisting of the inner product of two N dimensional vectors, i.e.

O(N3). If we use Theorem 3.1.13 then there are three major operations to consider

1. Compute the product ΦB which takes O(mN2)

2. Compute the product ΦA∗ which takes O(mN2). Conjugate transposition takes

at most O(N2) operations

3. Compute (AΦ∗) (ΦB) which takes O(nN2)
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We have seen from Lemma 3.1.11 and Theorem 3.1.3 thatm = m = O (ε−2 logN). So

the total runtime for the approximate matrix-matrix multiplication is O(N
2

ε2
logN).

Lemma 3.1.14. Let S ⊂ RN and ε ∈ (0, 1), then an ε-JL map Φ ∈ Cm×N of the set

S ′ =

{
x

‖x‖2

+
y

‖y‖2

,
x

‖x‖2

− y

‖y‖2

|x,y ∈ S
}

will satisfy ∀x,y ∈ S

|< (〈Φx,Φy〉)− 〈x,y〉| ≤ 2ε‖x‖2‖y‖2

Up to this point, Theorem 3.1.3 and the subsequent discussion has dealt with

finite sets of points S. We now turn to the question of whether these results can be

applied to infinite sets. We will begin by building new from old; infinite sets which

are constructed from finite ones.

Definition 3.1.15 (Cones). The conical region generated by S ⊂ CN is

cone(S) = {αx|x ∈ S, α ∈ C}

As an immediate consequence of the linearity, an ε-JL map Φ of set S, will be an

ε-JL map of cone(S) and vice-versa.

Another infinite set of importance is the convex hull of a set of points.

Definition 3.1.16 (Convex Hulls). The convex hull of a S ⊂ CN is

conv(S) =
∞⋃
j=1

{
j∑
`=1

α`x`|x1, . . . , xj ∈ S, α1, . . . , αj ∈ [0, 1]s.t.
N∑
`=0

α` = 1

}

We have in this next theorem that the infinitude of points in the convex hull can

always be reduced to a finite number of points from the original set. That is that

each point in conv(S) where S ⊂ RN can be expressed as a convex combination of

at most N + 1 point from S.
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Theorem 3.1.17 (Caratheadory). Given S ∈ RN , ∀x ∈ conv(S), ∃y1, . . . ,yÑ , Ñ =

min(|S|, N + 1), such that x =
∑Ñ

`=1 α`y` for some α1, . . . , αÑ ∈ [0, 1],
∑Ñ

`=1 α` = 1.

Theorem 3.1.18. Suppose S ⊂ B`2(0, γ) ⊂ RN and ε ∈ (0, 1). Let Φ ∈ Cm×N be

an
(

ε
4γ2

)
-JL map of the set S ′ defined as in Lemma 3.1.14, then

(3.2) |〈Φx,Φy〉 − 〈x,y〉| ≤ ε

∀x,y ∈ conv(S)

Proof. Let x,y ∈ conv(S). By Theorem 3.1.17, ∃ {yi}Ñi=1 , {xi}
Ñ
i=1 ⊂ S, {α`}Ñ`=1 , {β`}

Ñ
`=1 ⊂

[0, 1] such that

x =
Ñ∑
`=1

α`x`, y =
Ñ∑
`=1

β`y`

So,

|〈Φx,Φy〉 − 〈x,y〉| =

∣∣∣∣∣∣
Ñ∑
`=1

Ñ∑
j=1

α`βj〈Φx,Φy〉 − 〈x,y〉

∣∣∣∣∣∣
≤ 4

Ñ∑
`=1

Ñ∑
j=1

α`βj

(
ε

4γ2

)
‖x‖2‖y‖2

≤ ε

 Ñ∑
`=1

α`

 Ñ∑
j=1

βj


= ε

where we have used the embedding error
(

ε
4γ2

)
and the fact that all norms of

vectors in this case will be less than γ

Corollary 3.1.19. If infx∈conv(S) ‖x‖2 ≥ 1 then Φ as in Theorem 3.1.18 will also be

an ε-JL map of conv(S) into Cm
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Proof. Consider 3.2 with x = y to obtain

∣∣‖Φx‖2
2 − ‖x‖2

2

∣∣ ≤ ε ≤ ε‖x‖2
2

which is the ε-JP property.

For points near zero, for example any points in the intersection S ∩ B`2(0, ε),

Theorem 3.1.18 does not provide useful relative errors bounds. This occurs because

the left hand side of 3.2 can be very small for these vectors near zero relative to the

fixed ε.

Recall, S is finite and (usually) conv(S) is infinite.

However, with the Corollary 3.1.19, when x = y and x ∈ conv(S) \ B`2(0, α)

then we can achieve an ε-JL embedding of the convex hull less the ball about zero,

conv(S) \B`2(0, α), by applying a
(
ε
α2

)
-JL to S.

Homework 3.1.1. If B is the closed unit ball for any norm on CN , show that B−B

is the ball of radius 2.

Homework 3.1.2. Prove lemma 3.1.8

Homework 3.1.3. Prove lemma 3.1.9

Homework 3.1.4. Prove lemma 3.1.10

Homework 3.1.5. Prove lemma 3.1.14

Homework 3.1.6. Show that Theorem 3.1.18 still holds if S ∈ B`2(0, γ) ⊂ CN .

Homework 3.1.7. Let A ∈ C
m×N/2 be an ε-JL map of T ∪ S ⊂ C

N/2. Then

for x1,x2 ∈ S ∪ T , g : CN → C
m, defined by g(x1,x2) = (Ax1, Ax2) is an ε-JL

embedding of (S × T ) ∪ (T × S) ∪ (S × S) ∪ (T × T )

Homework 3.1.8. Fix ε ∈ (0, 1) and let A ∈ Cm̃×N be a ε-JL map of (S − S) ∪ S

and G ∈ Cm×m̃ be an ε-JL embedding of A(S) ⊂ Cm̃, S ⊂ CN then
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1. |A(S)| = |S|

2. GA is a 3ε-JL embedding of S into Cm

3.2 Covering Numbers of Balls (MTH 994 Lecture 3)

Next we turn to covering numbers, which will enable us to apply ε-JL maps to

more general infinite sets. We begin then with these definitions.

Definition 3.2.1 (δ-cover). Let T ⊆ CN . A δ-cover of T with respect to norm ‖ ·‖X

is a subset of S ⊆ T such that ∀x ∈ T, ∃y ∈ S with ‖x− y‖X < δ where

T ⊆
⋃
y∈S

BX(y, δ)

Note that BX(y, δ) is the open ball with center y ∈ CN and radius δ with respect

to the norm ‖ · ‖X . Usually it will be clear from context the space and norm, and so

we’ll simplify notation and write instead B(y, δ)

Definition 3.2.2 (δ-covering Number). The δ-covering number of T ⊆ CN , denoted

CX
δ (T ) with respect to ‖ · ‖X is the smallest integer such that there exists a δ-cover

S ⊆ T where |S| = CX
δ (T ). If no such integer exists we say that CX

δ (T ) =∞

Definition 3.2.3 (δ-packing). Let T ⊆ CN . A δ-packing of T with respect to norm

‖ · ‖X is a subset of S ⊆ T such that ∀x,y ∈ S, x 6= y with ‖x− y‖X ≥ δ then

BX(x, δ/2) ∩BX(y, δ/2) = ∅

Definition 3.2.4 (δ-packing Number). The δ-packing number of T ⊆ CN , denoted

PX
δ (T ) with respect to ‖ · ‖X is the largest integer such that there exists a δ-packing

S ⊆ T where |S| = PX
δ (T ). If no such integer exists we say that PX

δ (T ) =∞

Lemma 3.2.5. Let T ⊆ CN and δ ∈ (0,∞). Then

PX
2δ (T ) ≤ CX

δ (T ) ≤ PX
δ (T )
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Proof. Let P2δ ⊂ T be a maximal 2δ-packing of T and Cδ ⊆ T be a minimal δ-cover

of T . Each point x ∈ P2δ is closest to a different point y ∈ Cδ. To see this, suppose

to the contrary that for x1,x2,∈ P2δ,x1 6= x2 there was some point y ∈ Cδ such that

x1,x2 ∈ B(y, δ) this implies that y ∈ BX(x1, δ)∩BX(x2, δ) which is a contradiction.

So, since each point in Pδ can be identified with at least one point in Cδ. We

thus define an injection f : P2δ → Cδ where f(x) = y, x ∈ B(y, δ). Since f is an

injection, we have that the cardinality of Cδ must be equal to or larger than P2δ,

which is equivalent to the left hand side of the desired inequality.

Next, suppose Pδ is a maximal δ-packing of T . Now suppose for eventual contra-

diction that there exists a point y ∈ T,y 6∈ Pδ such that ‖x−y‖ ≥ δ, ∀x ∈ Pδ. This

implies that BX(x, δ/2) ∩ BX(y, δ/2) =. Thus Pδ ∪ {y} is a δ-packing of T . This

contradicts that Pδ is maximal. So, for all points y ∈ T , there is x ∈ Pδ such that

‖x − y‖ ≤ δ, which is to say Pδ is a δ-covering of T , and therefore the cardinality

of Pδ is equal to or larger than the δ-covering number for T . This is the right hand

side of the desired inequality.

Lemma 3.2.6. Let T ⊆ RN and δ ∈ (0,∞). Furthermore let B denote the unit ball

BX(0, 1) in RN with respect to some norm ‖ · ‖X . Then

(
1

δ

)N
Vol (T )

Vol (B)
≤ CX

δ (T ) ≤ PX
δ (T ) ≤

(
2

δ

)N Vol
(
T +

(
δ
2

)
B
)

Vol (B)

holds, where Vol(T ) =
∫
T

1dV , the Lebesgue measure of T in RN .

Note that addition of sets is syntactical sugar for set difference of certain sets, i.e.

T + S = T − (−S) = {t+ s|∀t ∈ T, s ∈ S}
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Proof. Suppose Cδ is a minimal δ cover of T . By definition then of δ-cover

T ⊆
⋃
y∈Cδ

B(y, δ)

So, using sub-additivity of measurable sets, translation invariance, and scaling we

have

Vol(T ) ≤ Vol
(⋃

y∈Cδ B(y, δ)
)
≤ CX

δ Vol (B(y, δ)) = CX
δ δ

NVol (B(0, 1))

Rearranging terms, we obtain the left hand side of the desired inequality

(
1

δ

)N
Vol (T )

Vol (B)
≤ CX

δ (T )

Now suppose Pδ is a maximal δ-packing of T . It follows that

⋃
y∈Pδ

B(y, δ/2) ⊂ T +B(0, δ/2)

Since the balls that make up the δ-packing of T are disjoint, we have that their

measure is additive. Again, using translation invariance and scaling, this implies

Vol

( ⋃
y∈Pδ

B(y, δ/2)

)
= PX

δ (T )

(
δ

2

)N
Vol (B(0, 1)) ≤ Vol(T +B(0, δ/2))

Which after rearranging terms matches the right hand side of the desired inequal-

ity

Corollary 3.2.7.
(

1
δ

)N ≤ CX
δ (B) ≤

(
1 + 2

δ

)N
for all norms ‖ · ‖X on RN

Proof. We can apply lemma 3.2.6 where T = B(0, 1). So,

(
1

δ

)N
���

�Vol (B)

��
��Vol (B)
≤ CX

δ (T )

yields the first half of the corollary. Next, note that using T = B(0, 1) we see that

B(0, 1) +B

(
0,
δ

2

)
⊆ B

(
0,

(
1 +

δ

2

))
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Note that by scaling, we have the following for the volume calculation

Vol

(
B

(
0,

(
1 +

δ

2

)))
=

(
1 +

δ

2

)N
Vol(B(0, 1))

Putting this into the previous lemma, we see

CX
δ (T ) ≤

(
2

δ

)N (
1 +

δ

2

)N
((((

(((Vol(B(0, 1))

���
�Vol (B)

=

(
1 +

2

δ

)N
Which completes the second inequality

Note that if we add the assumption in the corollary that δ ∈ (0, 1) then we can

bound
(
1 + 2

δ

)
≤
(

1
δ

+ 2
δ

)
= 3

δ
, for a more concise, though less tight bound.

Corollary 3.2.8. If S ⊆ BX(0, 1) ⊂ RN then

CX
δ (T ) ≤

(
1 +

2

δ

)N
Proof. By observing

Vol

(
S +B

(
0,
δ

2

))
≤ Vol

(
BX(0, 1) +B

(
0,
δ

2

))

and applying the same reasoning as corollary 3.2.7, we achieve the result.

Homework 3.2.1. Consider the identification of CN with R2N given by the map

f :


x1

...

x2N

→


x1 + ix2

...

x2N−1 + ix2N


1. Verify that f : R2N → C

N is a bijection with

f−1(cz) =


<(c)<(z1)−=(c)=(z1)

<(c)=(z1) + =(c)<(z1)

...

 , ∀c ∈ C, z ∈ CN
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2. Show that f(x + y) = f(x) + f(y) and f(cx) = cf(x) both hold ∀x,yR2N and

c ∈ R

3. Verify that ‖f(x)‖2 = ‖x‖2, ∀x ∈ R2N , i.e. f is an isometry

4. Let ‖ · ‖X be a norm on CN over C. Prove that ‖ · ‖X′ : R2N → [0,∞) defined by

‖ · ‖X′ = ‖f(x)‖X is a norm on R2N over R.

5. Prove that f (BX′(y, r)) = BX (f(y), r) for all y ∈ R2N and r ∈ [0,∞)

Homework 3.2.2. For T ⊂ CN we have Vol(T ) = Vol(f−1(T )). Modify the proofs

of Lemma 3.2.6 and Corollary 3.2.7 to prove that(
1

δ

)2N

≤ CX
δ (BX) ≤

(
3

δ

)2N

for all norms ‖ · ‖X on CN and δ ∈ (0, 1)

3.3 JL Subspace Embeddings and the Restricted Isometry Property
(MTH 994 Lecture 4)

In this section we describe how we can embed a cover of the unit ball in a subspace

and in turn prove that this map will in fact embed the entire subspace. To this end,

we first fix some notation

Consider the ambient space CN . We denote an r-dimensional linear subspace of

some orthonormal basis B = {b1, . . . ,br} as

LrB = {ax|α ∈ C,x ∈ SrB} ⊂ CN

Where SrB denotes the r-dimensional unit sphere with respect to the basis B

SrB =

{
x ∈ CN |x =

r∑
j=1

cjbj, c ∈ Cr s.t. ‖c‖2 = 1

}
Note that it is possible to represent any r-dimensional subspace as some LrB. Our

strategy for proving the main result of this section will be then to embed a sufficiently

dense cover of SrB ⊂ CN
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Theorem 3.3.1 (Subspace Embeddings). Fix ε ∈ (0, 1). Let LrB ⊂ C
N be a r-

dimensional subspace of CN with respect to some orthonormal basis B and further-

more let C ⊂ SrB be a minimal
(
ε

16

)
-cover of SrB ⊂ LrB. Then if Φ ∈ Cm×N is an(

ε
2

)
-JL map of C into Cm it will also satisfy

(3.3) (1− ε)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + ε)‖x‖2
2, ∀x ∈ LrB

Proof. Note that SrB is a compact set, and therefore will contain its maximal element

x. That is, ∃x ∈ SrB such that

‖Φx‖2 = ‖Φ‖SrB,2→2 = ‖Φ‖LrB = γ

Let y ∈ C be such that ‖x− y‖2 < ε/16. Then, after noting that x and y both are

of unit norm, we have by the triangle inequality and
(
ε
2

)
-JL property of Φ:

γ − 1 = ‖Φx‖2 − ‖x‖2

≤ ‖Φy‖2 + ‖Φ(x− y)‖2 − ‖x‖2

≤
(

1 +
ε

2

)1/2

‖y‖2 +
ε

2
γ − 1

After rearranging terms and using the inequality (a + b)2 ≥ a2 + b2 and the fact

that ε2 < ε, we have

γ ≤ 1 + ε/4

1− ε/16
= 1 + ε/3

That is, we have shown that ‖Φx‖2
2 < 1 + ε, ∀x ∈ SrB. This establishes the required

upper bound for our desired result.

For the lower bound, let β = infz∈§rB {0} ‖Φz‖2. The infimum is included in the

set since the set is compact and the function continuous. Thus there exists x ∈ SrB,
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with ‖Φx‖2 = β. Now we take a point in the cover, y ∈ C. So ‖x − y‖2 < ε/16.

Now we use the reverse triangle inequality to observe:

β − 1 = ‖Φx‖2 − 1 ≥ ‖Φy‖2 − ‖Φ(x− y)‖2 − 1

≥
(

1− ε

2

)1/2

‖y‖2 − γ
( ε

16

)
− 1

≥
(

1− ε

2

)
−
(

1 +
ε

3

)( ε
16

)
− 1

≥
(

1− ε

3

)
−
(

1 +
ε

3

)( ε
16

)
− 1

= 1− ε

3
− ε

16
− ε2

48
− 1

≥ 1− ε

3
− ε

16
− ε

48
− 1

≥ 1− 5ε

12
− 1

So β ≥ 1− 5ε
12
> 1− ε which is the desired lower bound. Having shown the inequality

3.3 holds for x ∈ SrB, we have that the inequality holds for LrB by re-scaling and

reducing to the previous case.

1. Since LrB − LrB ⊆ LrB, so by merit of Φ being a JL map of LrB it is also a JL

map of the set difference of LrB with itself, and so Lemma 3.1.11 applies, and we

have that Φ approximately preserves inner products of vectors in the subspace.

So both norms and angles are preserved, and so in some sense the geometry of

the subspace is preserved by the map.

2. Use covering number bound in Lemma 3.2.7, we can conclude that |C| ≤
(

48
ε

)2r
,

where C is a minimal cover of the r dimensional unit sphere. Thus we can con-

struct Φ where

m =
c

ε2
log |C| ≤ c̃r

ε2
log

48

ε
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Note we have optimal dependence on r. Note that the construction of Φ is oblivi-

ous - we do not need to know anything special about LrB; an upper on r will suffice

in order to construct Φ

3. Fast
√

N
m
RFD ε-JL matrices have the row requirement

m =
cr

ε2
log

(
48

ε

)
log4N

Corollary 3.3.2. Let ε ∈ (0, 1). There exists an ε-JL map Φ ∈ Cm×N of any given

r-dimensional subspace LB ⊂ C
N with m ≤ Cr

ε2
log
(
1 + 32

ε

)
where C ∈ R+ is an

absolute constant (independent of all r, ε,m,N,LrB)

The proof using Corollary 3.2.8, Theorems 3.1.3 and 3.3.1 is left as an exercise.

Recall the following property of orthonormal matrices:

Suppose B ∈ CN×r is the matrix formed by writing the orthonormal basis ele-

ments of LrB as columns:

B =

b1 b2 . . . br


Then ‖B∗x‖2

2 = ‖x‖2
2, ∀x ∈ LrB.

In terms of the subject matter of this course, we can say that B is a 0-JL map. So

why then are ε-JL maps of interest, if there is a common, well understood way to find

lossless embeddings? In many settings however, we do not have detailed information

about the subspace - for example we cannot easily find r linearly independent points,

or in general sampling the space is costly.

Corollary 3.3.2 is an oblivious embedding; this means that we do not need to

know what LrB is in order to embed it into Cr accurately. One useful application that
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fits this setting is finding the (approximate) principle Eigenspace for huge matrices.

Another application is a fast, approximate solution to least squares problems.

Application 3.3.3 (Overdetermined Least Squares). In the overdetermined least

squares problem, we are tasked with finding a `2 minimizer ymin to the matrix equa-

tion Ax = b where A ∈ CN×n, N > n, b ∈ CN .

ymin = arg min
x∈Rn

‖Ax− b‖2

When b is in the range of A, then we will be able to find a solution which solves the

equation exactly. However, if b does not lie in the range of A then ymin will be the

closest vector to b in the range of A.

A standard, classic solution approach to this uses QR decomposition and takes

O (Nn2) time. See Lecture 11 in [31]. We seek then then a solution approach which

improves this runtime for N � n.

Theorem 3.3.4. There exists universal constants c̄, c′ such that a fast JL embedding

matrix,
√

N
m
RFD ∈ Cm×N with

m = c̄(n+ 1) ln

(
c′

ε

)
ln4N

will satisfy

(1− ε)‖Ay − b‖2 ≤
√
N

m
‖RFDAy −RFDb‖2 ≤ (1 + ε)‖Ay − b‖2

∀y ∈ Rn with probability at least 1− p−N− ln3 N

Proof. Let B = {a1, . . . , an,b} be the n + 1 orthonormalized columns of A as well

as b. As before, let Ln+1
B be the linear subspace spanned by the basis, and Sn+1

B the

unit ball in the subspace. Let C ⊂ Sn+1
B be a minimal

(
ε

16

)
cover as in Theorem

3.3.1, and so |C| ≤
(

48
ε

)n+1
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Theorem 3.3.1 then implies that so long as Φ is a ε
2
-JL map of C then for each

y ∈ Cm we have Ay− b ∈ span(B) or equivalently Ay− b ∈ Ln+1
B . So then for any

such y

(1− ε)‖Ay − b‖2
2 ≤

√
N

m
‖RFDAy −RFDb‖2

2 ≤ (1 + ε)‖Ay − b‖2
2

with probability at least 1− p−N− ln3N

Denote F̃ =
√

N
m
RFD, the fast JL matrix from Theorem 3.3.4. How good is the

approximation to the original least squares problem? Observe that F̃A ∈ Cm×n and

F̃ b ∈ Cm we have then a compressed minimization problem,

y′min = arg min
z∈Cn

‖F̃Az− F̃b‖2

By Theorem 3.3.4 we have

(1− ε)‖Ay′min − b‖2
2 ≤ ‖F̃Ay′min − F̃b‖2

2

≤ ‖F̃Aymin − F̃b‖2
2

≤ (1 + ε)‖Aymin − b‖2
2

Therefore,

‖Ay′min − b‖2 ≤
√

1 + ε

1− ε
‖Aymin − b‖2

Similarly we can bound from below,

(1 + ε)‖Ay′min − b‖2
2 ≥ ‖F̃Ay′min − F̃b‖2

2

≥ (1− ε)‖Ay′min − b‖2
2

≥ (1− ε)‖Aymin − b‖2
2
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Thus the solution to the approximate answer has the following error bounds√
1− ε
1 + ε

‖Aymin − b‖2 ≤ ‖Ay′min − b‖2 ≤
√

1 + ε

1− ε
‖Aymin − b‖2

The runtime of the approximate solution depends on multiplying A and b by F̃ and

then also solving the compressed minimization problem. That is,

1. Computing F̃A ∈ Cm×n can be computed in O (nN logN) time

2. Computing F̃b can be computed in O (N logN) time

3. Solving least squares problem arg minz∈Cn ‖F̃Az− F̃b‖2 can be solved in O(mn2)

using QR factorization for example. Substituting in m = c̄(n+ 1) ln
(
c′

ε

)
ln4N we

have O(n3 log4N) (constants depending on ε and p are collapsed)

So the total runtime to find y′min is O
(
nN logN + n3 log4N

)
. Recall the classic

solution requires O(n2N). Therefore when logN . n . N log−4N we achieve a

speedup by using the approximate solution approach. For example, should n =
√
N

then we have a runtime of O
(
N1.5 log4N

)
for the approximate solution and O(N2)

for the classical solution approach.

Consider the SVD of the A ∈ CN×n where N � n and A has full rank

A = UΣV ∗ =


u1 u2 . . . uN





σ1(A)

. . .

σn(A)

...
...

0 0




v∗1

...

v∗n



Definition 3.3.5 (Condition Number). If A ∈ CN×n then the condition number

κ(A) is defined as

κ(A) =
σ1(A)

σr(A)

where r is the rank of matrix A. If A is full rank and N ≥ n as above, then r = n
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It is the case that the stability of least square solution approaches depend on the

condition number of the matrix, e.g. conjugate gradient descent. If we wish to use

iterative methods to solve the compressed least square problem then we naturally

need to know how the JL map effects the condition number of A. That is, how does

κ(F̃A) compare to the original matrix κ(A)? By Theorem 3.3.4

σn(F̃A) = arg min
y∈Cn
‖y‖2=1

‖F̃A‖2

≥ arg min
y∈Cn

(
√

1−ε)‖y‖2=1

‖A‖2

=
(√

1− ε
)
σn(A)

Similarly,

σ1(F̃A) = arg max
y∈Cn
‖y‖2=1

‖F̃A‖2

≤ arg min
y∈Cn
‖y‖2=1

(√
1 + ε

)
‖A‖2

=
(√

1 + ε
)
σ1(A)

Thus

κ(F̃A) ≤
√

1 + ε

1− ε
κ(A)

So we see that for many reasonable choices of ε that the condition number of the

sketched matrix will be close to the condition number of the original matrix. So

there are faster options for solving the least squares problem using the compressed

system of equations. To summarize a theorem found in [30]:

It is possible to compute a minimizer y′′min such that

‖Ay′′min − b‖2 ≤ (1 + ε)‖Aymin − b‖2

using a preconditioned gradient method in runtime O
((

logm+ log 1
ε

)
Nn+ n2m

)
.
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Application 3.3.6 (Fast Principle Component Analysis). In this section we will

describe how to use JL maps to compress and solve an approximation to PCA - we

are interested in finding good low rank approximation to an arbitrary matrix A. First

however we will need some lemmas dealing with how singular values are affected by

JL maps.

Lemma 3.3.7. If Φ ∈ Cm×N satisfies

√
1− ε‖x‖2 ≤ ‖Φx‖2 ≤

√
1 + ε‖x‖2

when ε ∈ (0, 1), ∀x ∈ S ⊂ CN , then

(1− ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2

equivalently, if ‖x‖2 = 1, then

|‖Φx‖2 − 1| ≤ ε

Proof. Note that since 1 − ε < 1, we have that 1 − ε ≤
√

1− ε. Since 1 + ε > 1 we

have that
√

1 + ε ≤ 1 + ε. That is,

(1− ε)‖x‖2 ≤
√

1− ε‖x‖2 ≤ ‖Φx‖2 ≤
√

1 + ε‖x‖2 ≤ (1 + ε)‖x‖2

if ‖x‖2 = 1 then

(1 + ε) ≤ ‖Φx‖2 ≤ (1− ε) ⇐⇒ −ε ≤ ‖Φx‖2 − 1 ≤ ε ⇐⇒ |‖Φx‖2 − 1| ≤ ε

Lemma 3.3.8. Let V ∈ CN×r be a matrix with orthonormal columns, and suppose

that Φ ∈ C
m×N is an ε-JL map of the column space of V into C

M (i.e. B =

{v1, . . . ,vr}, Φ is an ε-JL map of LrB as in Theorem 3.3.1). Then ΦV is full rank

with

(1− ε) ≤ σj (ΦV ) = σj (V ∗Φ∗) ≤ (1 + ε)



98

∀j ∈ [r].

Proof. Consider σ1 (ΦV ): Choose y ∈ Cr, ‖y‖2 = 1 to be the right singular vector

of ΦV that corresponds to σ1 (ΦV ). i.e. if ΦV = UΣY ∗ is the SVD of ΦV then

ΦV y1 = σ1u1 where y1,u1 are the right and left singular vectors; the first column of

Y, U respectively. Note that ‖ΦV y1‖2 = ‖σ1u1‖2 = |σ1|‖u1‖2 = σ1

Naturally V y is a vector in the column space of V , i.e. V y ∈ LrB and since V

has orthonormal columns, ‖V y‖2 = ‖y‖2 = 1. So on one hand, by definition of y

we have σ1 (ΦV ) = ‖ΦV ‖2→2 = ‖ΦV y‖2. On the other, since Φ is an ε-JL map

of the column space of V , and by Lemma 3.3.7 we have ‖ΦV y‖2 ≤ 1 + ε. Thus

σ1 (ΦV ) ≤ 1 + ε.

Now consider the smallest singular value σr (ΦV ). Let y ∈ Cr be the right singular

vector that corresponds to σr (ΦV ). Similarly as before, ‖ΦV y‖2 = σr (ΦV ), since

V y ∈ LBr then by Lemma 3.3.7 (1− ε) ≤ ‖ΦV y‖2 = σr (ΦV ).

Since the singular values are ordered then, we have

(1− ε) ≤ σj (ΦV ) ≤ (1 + ε)

∀j ∈ [r]. Observe that (ΦV )∗ = V ∗Φ∗ = (UΣY ∗)∗ = Y Σ∗U∗ and so we have that

Y Σ∗U∗ is the unique SVD of V ∗Φ∗, but Σ∗jj = Σjj and so we see that the singular

values are unchanged by conjugate transpose. Finally, observe that σr 6= 0 and thus

ΦV must have full rank.

Since the operator norm is equal to the largest singular value, we can see from

Lemma 3.3.8 that ‖ΦV ‖2→2 ≈ 1, i.e. ΦV is close to a matrix which has its columns

from a unitary matrix.

Lemma 3.3.9. Suppose Φ ∈ Cm×N is an ε-JL map for some set S ⊂ C
N . The

operator norm ‖Φ‖2→2
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1. If Φ is i.i.d.

(Φ)ij =


1√
m

probability 1/2

− 1√
m

probability 1/2

then

‖Φ‖2→2 ≤ ‖Φ‖F =

√
mN

m
=
√
N

2. If Φ =
√

N
m
RUD as in Example 3.1.6, then

‖Φ‖2→2 ≤
√
N

m
‖R‖2→2‖U‖2→2‖D‖2→2 =

√
N

m

3. If Φ has i.i.d. N (0, 1) entries then

‖Φ‖2→2 ≤
√
mN

m
sup
i,j
|Φij| ≤ 2

√
N
√

2 ln(mN)

with probability at least 1/2

4. If Φ has the RIP of (s, ε) then ‖Φ‖2→2 ≤
√

1 + ε
(√

N
s

+ 1
)

Proof. 1. Note ‖Φ‖2→2 = σ1(Φ) ≤
√∑r

j=1 σj(Φ)2 = ‖Φ‖F =
√∑

i,j Φij

2

=
√∑

i,j
1
m

√
N .

2. Note that ‖AB‖2→2 ≤ ‖A‖2→2‖B‖2to2 for any compatible matrices A,B. Here

R,U,D all have operator norm 1.

3. Use Markov’s inequality and Theorem 5.1.15

4. see Lemma 4.4.3

Definition 3.3.10 (Pseudo-inverse of Matrix). Suppose that A ∈ Cp×q. Then the

pseudo-inverse of this matrix is denoted A† and can be written in terms of the SVD
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of A = UΣV ∗ as follows:

A† = V Σ−1U∗ =


v1 v2 . . . vq




1/σ1(A)

. . .

1/σr(A)




u∗1

...

u∗p



Note that in a full SVD, matrix Σ will have the same dimensions as A - in particular

it will generically be rectangular. This also means that Σ−1 is an abuse of notation,

since the matrix is not guaranteed to be square. We denote Σ−1 here as the operation

of placing the multiplicative inverse, when it exists, of the entries along the diagonal

and the transposition of rows or columns of zeros when p 6= q. In this way ΣΣ−1

when restricted to the columns and rows indexed by less than or equal to the rank

will indeed yield the identity.

Additionally, when A is square then the pseudo-inverse and matrix inverse coincide

A† = A−1.

Lemma 3.3.11. Under the conditions of Lemma 3.3.8

‖ (V ∗Φ∗)† ‖2→2 = ‖ (ΦV )† ‖2→2 ≤
1

1− ε

Proof. Let ΦV = U︸︷︷︸
m×r

Σ︸︷︷︸
r×r

Ṽ ∗︸︷︷︸
r×r

be the (truncated) SVD of the matrix ΦV . Note

(ΦV )† = Ṽ Σ−1U

Where maxk,` (Σ−1)k` = σr(ΦV )−1 ≤ (1− ε)−1 by Lemma 3.3.8

We now have the necessary machinery to describe and analyze compressed PCA

algorithm. First however though we establish some notation
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Suppose

A = U ′Σ′V ′ =

(
U ′1 U ′2

) Σ′1 0

0 Σ′2

( V ′1 V ′2

)∗

where U ′1 ∈ Cq×r has orthonormal columns, Σ′1 ∈ Cr×r is a diagonal matrix with the

first r singular values and V ′1 ∈ C×r has orthonormal columns.

Note also that the optimal error achievable for a r rank approximation is equal

to the r + 1 singular value. That is.

inf
Rank(Ar)=r

‖A− Ar‖2→2 = σr+1(A)

and this approximation is possible by using the leading r singular vectors of the SVD.

Algorithm 3.3.1 Compressed PCA

Input: A ∈ Cq×p, k ∈ N,Φ ∈ Cm×p an ε-JL of the column span of V1 ∈ Cp×r. V1 is a matrix
of the r leading right singular vectors taken from the SVD of Z = (AA∗)

k
A

Output: U,Σ, V ∗ as approximations to U ′1,Σ
′
1, V

′
1

Form Y = (AA∗)
k
AΦ∗ ∈ Cq×m by alternating multiplications of A and A∗ against Φ∗

By stable QR decomposition, construct an orthonormal basis {b1, . . . ,bm} ∈ Cq for the range
of Y . Let

P = [b1 . . .bm] ∈ Cq×m

Let B = P ∗A ∈ Cm×p

Compute the SVD of B = Û︸︷︷︸
m×m

Σ︸︷︷︸
m×m

V ∗︸︷︷︸
m×p

Form Ũ = PÛ
return Ũ ,Σ, V ∗

Note that (AA∗)k = U ′ (Σ′)k (U ′)∗; so higher powers k will have the effect of

increasing the ratio of the largest smallest singular value to the smallest which is

computationally useful. We now turn to a runtime analysis of the algorithm: Form-

ing Aφ∗ requires O(pq log p) flops if we assume fast matrix-vector multiplication.

Applying (AA∗)k requires O(km‖A‖0) flops. QR decomposition to find P can be

accomplished with O(m2q). Forming B requires O(m‖A‖0)) flops. The SVD of

B ∈ Cm×p can be found O(pm2) and the matrix multiplication to find U requires
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O(qm2). Summing then we find a total runtime of

O
(
(p+ q)m2 + qp log p+ (k + 1)m‖A‖0

)
Here we can see that the term (p + q)m2 obtained from forming B and finding its

SVD dominates the runtime of the algorithm if in fact A is sparse (i.e. ‖A‖0 � pq)

and k is small. Compare this to a method which finds the SVD of the uncompressed

matrix A at a cost of O(max(p, q)2 min(q)) = O(p2q) if we assume p ≥ q. This shows

us that the compressed version could obtain a speed up when m < q.

Theorem 3.3.12. The rank m approximation, Ã = UΣV ∗ output of 3.3.1 will satisfy

‖A− Ã‖2→2 ≤ σr+1(A)

[
1 +
‖Φ‖2

2→2

(1− ε)2

] 1
4k+2

Proof. We are going to express the SVD of Z = (AA∗)k A in block form.

Z = (AA∗)k A = UΣV =

(
U1 U2

) Σ1 0

0 Σ2


 V ∗1

V2


where V1 ∈ Cp×r, V2 ∈ Cp×(q−r), Σ1 ∈ Cr×r, Σ2C

min(p,q)−r×min(p,q)−r.

Recall from our algorithm description 3.3.1 that Y = ZΦ∗. Let Ω1 = V ∗1 Φ∗ and

Ω2 = V ∗2 Φ. Therefore, in block form we have

Y = ZΦ∗ = U

 Σ1Ω1

Σ2Ω2


Proposition 3.3.13. Let A ∈ Cq×p with singular values σj(A) and fix k, r ≥ 0,

r ≤ min(p, q). Let Φ ∈ Cm×p be an ε-JL map of V1 ∈ Cp×r, the r leading right

singular vectors of Z = (AA∗)kA. As above, let Ω1 = V ∗1 Σ∗1, Ω2 = V ∗2 Σ∗2 (where

Ω1 is full rank). If P = [b1, . . . ,bm] ∈ Cq×m is an orthonormal matrix such that

P ∗PY = Y then

‖ (I − PP ∗)A‖2→2 ≤ ‖ (I − PP ∗)Z‖
1

2k+1

2→2 ≤
(
‖Σ2‖2

2→2 + ‖Σ2Ω2Ω†1‖2
2→2

) 1
4k+2
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Proof. See Theorem 9.2 and Theorem 9.1 from [15].

Note that B = P ∗A = ÛΣV ∗ and Ã = ŨΣV ∗ = PÛΣV ∗ = PB = PP ∗A.

So

‖A− Ã‖2→2 = ‖A− PP ∗A‖2→2 = ‖ (I − PP ∗)A‖2→2

Now using Proposition 3.3.13, we look at the summands of interest. First, since Σ2

is diagonal, we can read off the operator norm by taking the largest entry

‖Σ2‖2
2→2 = σr+1(Z)2 = σ4k+2

r+1

Now consider

‖Σ2Ω2Ω†1‖2→2 ≤ ‖Σ2‖2→2‖Ω2Ω†1‖2→2

≤ σr+1(A)2k+1‖Ω2‖2→2‖Ω†1‖2→2

= σr+1(A)2k+1‖V ∗2 Φ∗‖2→2‖(V ∗1 Φ∗)†‖2→2

≤ σr+1(A)2k+1‖V ∗2 ‖2→2‖Φ∗‖2→2

1− ε

= σr+1(A)2k+1‖Φ∗‖2→2

1− ε

So we have then that

‖A− Ã‖2→2 ≤
(
‖Σ2‖2

2→2 + ‖Σ2Ω2Ω†1‖2
2→2

) 1
4k+2

= σr+1(A)

[
1 +
‖Φ‖2

2→2

(1− ε)2

] 1
4k+2

Corollary 3.3.14. Choose ε ∈ (0, 1), k ∈ N then

1. ∃Φ ∈ Cm×p with ± 1√
m

entries such that 3.3.1 yields

‖A− Ã‖2→2 ≤ σr+1(A)

[
1 +

p

(1− ε)2

] 1
4k+2
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2. ∃Φ ∈ Cm×p with fast FFT-matrix-vector multiply such that

‖A− Ã‖2→2 ≤ σr+1(A)

[
1 +

p

m(1− ε)2

] 1
4k+2

where m = Cr
ε2

log
(

48
ε

)
log4 p

Proof. Apply Lemma 3.5.6

Homework 3.3.1. Prove Corollary 3.3.2.

3.4 Best Achievable JL-maps by Orthogonal Projections

Consider as before the linear r-dimensional subspace LrB with a given orthonormal

basis B = {b1, . . . ,br} and the matrix B formed by taking the basis elements and

arranging them as columns in a matrix. We define the distance from a set T ⊂ CN to

LrB as the maximum Euclidean distance between an element of T and its projection

into LrB. Namely

d∞(T,LrB) = sup
x∈T
‖x− ΠLrBx‖2

where ΠLrB = BB∗ is the projection matrix from C
N into LrB. We will use this to

establish a lower bound on the accuracy of JL embeddings of a given set.

Definition 3.4.1 (Kolmogorov Width). The Kolmogorov width of T ⊂ CN is

d∞r (T ) = inf
LrB∈Γr

d∞(T,LrB)

= inf
LrB∈Γr

sup
x∈T
‖ (I −BB∗) x‖2

Lemma 3.4.2. If B∗ ∈ Cm×N has orthonormal rows and is an ε-JL map of T ⊂ CN

into Cm and we define T ′ as:

T ′ =

{
x

‖x‖2

|x ∈ T {0}
}
⊂ CN

then ε ≥ (d∞r (T ′))2.
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Proof. If B∗ is an ε-JL map of T then

∣∣‖B∗x‖2
2 − ‖x‖2

2

∣∣ ≤ ε‖x‖2
2, ∀x ∈ T

it follows that ∣∣‖B∗x‖2
2 − 1

∣∣ ≤ ε, ∀x ∈ T ′

this holds for all x ∈ T ′ and so holds for the supremum

sup
vbx∈T ′

∣∣‖B∗x‖2
2 − 1

∣∣ ≤ ε

and so by Homework 3.4.1 we have

ε ≥ (d∞r (T ′))
2

So, if we are able to estimate the Kolmogorov width of T then we can evaluate

the nearness to optimal of a particular JL map. Algorithms do exist to approximate

Kolmogorov width, which rely on sampling T ′.

Homework 3.4.1. Let

T ′ =

{
x

‖x‖2

|x ∈ T {0}
}
⊂ CN

and B∗ ∈ Cr×N has orthonormal rows. Prove that

inf
B∈Cr×N

sup
x∈T ′

∣∣1− ‖B∗x‖2
2

∣∣ = (d∞r (T ′))
2

3.5 Restricted Isometry Property (RIP)

The Restricted Isometry Property (RIP) is no more and no less than the norm pre-

serving Johnson-Lindenstrauss property applied to the set of sparse vectors. Recall

the definition for s-sparse vectors
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Ks =
{
x ∈ CN |‖x‖0 ≤ s

}
=

⋃
S⊆[N ]|S|≤s

span {ej}j∈S

Definition 3.5.1 ((s, ε)-RIP). A matrix Φ ∈ Cm×N has the RIP of order (s, ε) if its

an ε-JL map of Ks into Cm. Equivalently

(1− ε)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + ε)‖x‖2
2, ∀x ∈ Ks

Lemma 3.5.2. The following hold for the set of s and t sparse vectors Ks and Kt

1. Kt ⊆ Ks, ∀t ≤ s

2. Kt ±Ks ⊂ Kt+s

3. Given a full rank diagonal matrix D ∈ CN×N , we have DKs = Ks, ∀s

We now introduce some new notation so that we can state a result dealing with

RIP of submatrices.

Definition 3.5.3. Given S ⊂ [N ] and Φ ∈ C
m×N , we let ΦS ∈ C

m×|S| be the

submatrix Φ composed of the columns of Φ enumerated by S

Example 3.5.4. If

Φ =


1 1 1 1

1 2 3 1

1 3 4 5


then

Φ{1,3} =


1 1

1 3

1 4


or
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Φ{1,3} =


1 0 1 0

1 0 3 0

1 0 4 0


The differing definitions of the submatrix as either zero-filled is overloading the nota-

tion, however context should make it clear which version is being used. We sacrifice

some consistency for convenience and brevity.

Definition 3.5.5 (Support Function). supp : CN → [N ] is defined by supp(x) =

{j ∈ [N ]|xj 6= 0}

Lemma 3.5.6. If Φ ∈ Cm×N has the RIP of order (s, ε) then

‖Φ∗SΦS − I‖2→2 ≤ ε

holds ∀S ⊂ [N ] with |S| ≤ s

Proof. Φ has (s, ε)-RIP thus

max
S⊂[N ]
|S|≤s

sup
y∈CS⊂CN

y 6=0

|‖ΦSy‖2
2 − ‖y‖2

2|
‖y‖2

2

≤ ε

Equivalently, using properties of inner-products we have

max
S⊂[N ]
|S|≤s

sup
y∈CS⊂CN

y 6=0

|〈ΦSy,ΦSy〉 − 〈y,y〉|
‖y‖2

2

= max
S⊂[N ]
|S|≤s

sup
y∈CS⊂CN

y 6=0

|〈(Φ∗SΦS − I) y,y〉|
‖y‖2

2

= max
S⊂[N ]
|S|≤s

‖Φ∗SΦS − I‖2→2

Note that Φ∗SΦS − I is a Hermitian matrix, and so the maximum norm corresponds

to the top eigenvector and eigenvalue of Φ∗SΦS − I. This is the operator norm.
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Restate in terms of singular values ToDo

Theorem 3.5.7. Suppose that x ∈ Ks and y ∈ Kt, and that Φ has the RIP of order

(s+ t, ε). Then

1. If s = t then

|〈Φx,Φy〉 − 〈x,y〉| ≤ 4ε‖x‖2‖y‖2

2. If supp(x) ∩ supp(y) = ∅ then

|〈Φx,Φy〉| ≤ ε‖x‖2‖y‖2

3. If s = t then

|〈Φx,Φy〉 − 〈x,y〉| ≤ 4ε

for all x,y ∈ Conv(Ks ∩B(0, 1))

Proof. 1. This follows from Lemma 3.1.11. Note that K ′s ⊂ K2s = Ks+t, where K ′s

is defined as seen in the lemma.

2. Let S = supp(x) ∪ supp(y). Observe,

|〈Φx,Φy〉| = |〈ΦSxS,ΦSyS〉 − 〈xS,yS〉|

= |〈(Φ∗SΦ− I) xS,yS〉|

≤ ‖ (Φ∗SΦ− I) xS‖2‖yS‖2

≤ ‖ (Φ∗SΦ− I) ‖2→2‖xS‖2‖yS‖2

≤ ε‖xS‖2‖yS‖2

where we have used Lemma 3.5.6 and Cauchy-Schwarz inequality.
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3. Follows from 3.1.18, where in this case γ = 1

Homework 3.5.1. Prove Lemma 3.5.2.

Homework 3.5.2. Prove the following: If Φ has (|S| + |T |, ε)-RIP and S ∩ T = ∅

then ‖Φ∗TΦS‖2→2 ≤ ε

3.6 Towards Invertability of ∆(Φx) = x

In this section we week to answer the questions: how many rows are needed in Φ

to Allow ∆(Φx) = x for x ∈ Ks? What algorithms ∆ exist that let us get close to

these lower bounds on the number of rows? Can they be computed efficiently?

Lemma 3.6.1. If u ∈ Ck and v ∈ Ck satisfy

max
i∈[k]
|ui| ≤ min

j∈[k]
|vj|

then
√
k‖u‖2 ≤ ‖v‖1

Proof. Proof is left as an exercise to reader.

Definition 3.6.2. If v ∈ CN and S ⊂ [N ] then the vector vS will be of length N

and contain zeros in the entries which are not in the set S, i.e.

(vS)i =


vi i ∈ S

0 i 6∈ S

The following theorem states that RIP matrices have the null space property;

where null space property can be thought of as a property that no sparse vectors are

in the kernel of the given matrix. This is naturally a desirable property if we hope

to be able to recover (invert) vectors which are sparse.
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Theorem 3.6.3. Suppose that Φ ∈ Cm×N has the (2s, ε)-RIP property where ε ∈

(0, 1/2). Then

(3.4) ‖vS‖1 ≤
ε

1− 2ε
‖vS‖1

for all vbv ∈ Ker(Φ) and for all S ⊆ [N ] with |S| ≤ s

Proof. Without loss of generality we will consider the entries of an arbitrary member

of the kernel v to be ordered in the following way

|v1| ≥ |v2| ≥ · · · ≥ |vN |

We do not lose generality since at all points in the sequel we will be considering

subsets of indices, which can be permuted anyway. We label sets of size s as follows:

S0 = {1, . . . , s} , S1 = {s+ 1, . . . , 2s} and so on. That is, S0 contains the top s-

largest entries by absolute value. If 3.4 holds for S = S0 then it must hold for all

sets of size s since ‖vS‖1 is maximized when S = S0 and also ‖vS‖1 is minimized for

S = S0. That is, if we prove the property for the worst case, that will be sufficient.

Since Φ has the (2s, ε)-RIP property, and vS0 ∈ K2s, then

(1− ε) ‖vS0‖2
2 ≤ ‖ΦvS0‖2

2 =⇒ ‖vS0‖2
2 ≤

1

(1− ε)
〈ΦvS0 ,ΦvS0〉

Notice that ΦvS0 = −ΦvS0
since 0 = Φv = Φ

(
vS0 + vS0

)
. Furthermore S0 =⋃

j≥1 Sj and Sj ∩ Si = ∅ whenever i 6= j.
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So we have then that

‖vS0‖2
2 ≤

1

(1− ε)
〈ΦvS0 ,ΦvS0〉

=
1

(1− ε)
〈ΦvS0 ,−ΦvS0

〉

=
1

(1− ε)
〈ΦvS0 ,−Φ

(∑
j≥1

vSj

)
〉

=
1

(1− ε)
∑
j≥1

〈ΦvS0 ,−ΦvSj〉

≤ ε

(1− ε)
∑
j≥1

‖vS0‖2‖vSj‖2

where we have used Theorem 3.5.7, since the support of the vectors vSi and vSj

are disjoint for i 6= j and they both s-sparse. Dividing by ‖vS0‖2, noting that Lemma

3.6.1 implies that ‖vSj‖2 ≤ 1√
s
‖vSj−1

‖ and that the `1-norm for vectors with disjoint

supports is additive, we obtain

‖vS0‖2 ≤
ε

(1− ε)
∑
j≥1

‖vSj‖2

≤ ε√
s (1− ε)

∑
j≥1

‖vSj‖1

≤ ε√
s (1− ε)

(
‖vS0‖1 + ‖vS0

‖1

)

Note that by Holder’s inequality ‖vS0‖1 = ‖vS01S0‖1 ≤ ‖1S0‖2‖vS0‖2 =
√
s‖vS0‖2

So we have the inequality

‖vS0‖ ≤
ε

1− ε
(
‖vS0‖1 + ‖vS0

‖1

)
which is equivalent to 3.4 after a rearrangement of terms.
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Lemma 3.6.4. Given S ⊆ [N ] and x, z ∈ CN then

‖ (x− z)S ‖1 ≤ ‖z‖1 − ‖x‖1 + ‖ (x− z)S ‖1 + 2‖xS‖1

Theorem 3.6.5. Suppose that ∃ρ ∈ (0, 1) such that Φ ∈ Cm×N satisfies

(3.5) ‖vS‖1 ≤ ρ‖vS‖1, ∀v ∈ ker(Φ), ∀S ⊆ [N ], |S| ≤ s

Then any z# ∈ CN satisfying

(3.6) ‖z#‖1 is minimal over all z ∈ CN where Φz = Φx

will approximate x ∈ CN near optimally in the sense that

‖x− z#‖1 ≤
2(1 + ρ)

1− ρ
inf
‖z‖0≤s

‖x− z‖1

Proof. Let S ⊆ [N ], |S| = s such that

‖xS‖1 = inf
‖z‖0‖≤s

‖x− z‖1

That is, we can minimize the error by matching the s-largest entries of x. Now

consider z# from equation 3.6 in the theorem statement. We have by hypothesis

Φz# = Φx and so x− z# ∈ Ker(Φ). Note that ‖z#‖1 ≤ ‖x‖1 so using Lemma 3.6.4

and noting the null-space property we obtain

‖
(
x− z#

)
S
‖1 ≤ ‖z‖1 − ‖x‖1 + ‖ (x− z)S ‖1 + 2‖xS‖1

≤ ‖ (x− z)S ‖1 + 2‖xS‖1

≤ ρ‖ (x− z)S ‖1 + 2‖xS‖1
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After a rearrangement of terms then we have

‖
(
x− z#

)
S
‖1 ≤

2

1− ρ
‖xS‖1

Which, after using that vectors with non-intersecting support have additive `1-norms

and another application of the null space property and bound above we obtain

‖x− z#‖1 = ‖
(
x− z#

)
S
‖1 + ‖

(
x− z#

)
S
‖1

≤ ρ‖
(
x− z#

)
S
‖1 + ‖

(
x− z#

)
S
‖1

≤ ρ
2

1− ρ
‖xS‖1 +

2

1− ρ
‖xS‖1

=
2(1 + ρ)

1− ρ
‖xS‖1

=
2(1 + ρ)

1− ρ
inf
‖z‖0≤s

‖x− z‖1

Note. 1. If x ∈ Ks then z# will reconstruct x exactly. I.e. we have a ∆,Φ such

that ∆(Φx) = x for x ∈ Ks.

2. Matrices Φ ∈ Cm×N with random sub-gaussian entries are ε-JL maps for Ks and

thus have the (s, ε)-RIP property with high probability so long as the number of

rows m satisfy

m ≥ c
s

ε2
ln

(
N

s

)
Matrices with the RIP property have the null space property.

3. ∆ as the basis pursuit solution to 3.6 is a computationally efficient way to find

the projection of any x into Ks

Theorem 3.6.6. Suppose that Φ ∈ Cm×N has the (2s, ε)-RIP for ε < 4/
√

41 ≈

0.6246. Then, for any x ∈ CN and y ∈ Cm with ‖Φx = y‖2 ≤ η, a solution x# of

min
z∈CN

‖z‖1
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such that ‖Φz− y‖2 ≤ η approximates x with errors

‖x− x#‖1 ≤ cσs(x)1 +D
√
sη

‖x− x#‖2 ≤
c√
s
σs(x)1 +Dη

where σs = inf‖z‖0≤s ‖x− z‖1, and c, d are constants that only depend on ε

Proof. The proof can be found in [12] as proof for Theorem 6.12.

We have then using results shown 4.2.8 we claim, ∃Φ ∈ Rm×N withm ≤ cs log
(
N
s

)
/ε2

rows and ∆ : Cm → C
N such that ∆ (Φx) = x, ∀x ∈ Ks

Homework 3.6.1. Prove Lemma 3.6.1.

Homework 3.6.2. Prove Lemma 3.6.4.

3.7 Lower Bounds on Sketching Dimension that Satisfy Recoverability

Can we produce bounds for the optimal value of m? That is what is the smallest

number of rows, m such that ∃Φ ∈ C
m×N and ∆ : Cm → C

N which satisfies

∆ (Φx) = x, ∀x ∈ Ks?

The following lemma provides a (unsatisfactory) lower bound.

Lemma 3.7.1. If ∆ (Φx) = x, ∀x ∈ Ks then Φ ∈ Cm×N must have m ≥ 2s.

Proof. Proof left as an exercise to reader.

Can we achieve a lower bound of the form m ≥ cs log
(
N
s

)
?

Lemma 3.7.2. Given s,N ∈ N, s < N , ∃n ≥
(
N
4s

) s
2 subsets s1, . . . , sn ⊂ [N ] such

that ∀`, j ∈ [n], ` 6= j



115

1. |sj| = s

2. |sj ∩ s`| < s
2

Proof. Let s ≤ N/4 and let C = {S ⊆ [N ]||S| = s}. Choose S1 ∈ C. Let C1 ⊂ C be

such that S ∈ C1 ⇐⇒ |S ∩ S1| ≥ s/2. That is I have fixed a set of indices and

defined a collection which contains only elements which are sufficiently dissimilar to

that fixed set. We will bound the cardinality of this set.

|C1| =
∑

k=ds/2e

(
s

k

)(
N − s
s− k

)

≤ 2s max ds/2e ≤ k ≤ s

(
N − s
s− k

)
≤ 2s

(
N − s
bs/2c

)

The binomial coefficient is maximized when k = ds/2e. We will continue to construct

sets in this way:

1. Choose s1 ∈ C, C1 as described above

2. While |C \
⋃n
`=1 C`| > 0

3. Choose any sn+1 ∈ C \
⋃n
`=1C`

4. Let Cn+1 be such that S ∈ Cn+1 ⇐⇒ |S ∩ Sn+1 ≥ s/2|

5. n← n+ 1

We now have a way to estimate how many such sets can be obtained

n ≥ |C|
max1≤i≤n |Ci|

≥
(
N
s

)
2s
(
N−s
bs/2c

) ≥ (N
4s

) s
2



116

Definition 3.7.3. Given p, q ≥ 1 a matrix Φ ∈ Cm×N and function ∆ : Cm → C
N

we say the pair (Φ,∆) is (`q, `p) instance optimal of order s with constant c > 0 if

‖x−∆(Φx)‖q ≤
c

s1/p−1/q

(
inf
z∈Ks
‖x− z‖p

)
∀x ∈ CN .

If p = q then we say that (∆,Φ) is `p instance optimal. We note that this definition

matches the equation 1.1 where Fp = Ks, Cp,X,Y = c
s1/p−1/q and where the error term

εp,X,Y,Z = 0.

We have from Theorem 3.6.6 that `1 minimization and matrices generated with

random sub-gaussian entries satisfy definition 3.7.3 for q = 1, 2 and p = 1 where

m ≤ cs log N
s

Theorem 3.7.4. If (Φ,∆) is `1-instance optimal of order s with constant c then

m ≥ c̃s ln
(
eN
s

)
where c̃ ∈ R+ only depends on c.

Proof. By Lemma 3.7.2, we have that there are n subsets S1, . . . , Sn where |Sj| =

s, |Si ∩ Sj| < s/2 if i 6= j and n ≥
(
N
4s

)
s
2
.

Define vectors x1, . . . ,xn ∈ CN by (xj)k = 1Sj(k). Note that ‖xj‖1 = 1 and since

no two vectors have more than s/2 entries in their support that overlap ‖xj−xi‖1 > 1

whenever i 6= j.

We denote BN
1 as the open unit `1-ball inCN . By xj+ρB

N
1 we mean the translated

values of ρBN
1 - all points in an open ball of radius ρ translated by xj.

Claim: Φ (xj + ρB1
N) ∩ Φ (xi + ρB1

N) = ∅ if = ρ = (2(c+ 1))−1

Naturally, Φ (xi + ρB1
N) ⊂ Φ

(
C
N
)

and so if d = dim Φ (xi + ρB1
N) then d ≤

m. We prove the claim by contradiction. Suppose for eventual contradiction that
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∃zi, zj ∈ ρB1
N such that Φ (xi + zi) = Φ (xj + zj) where i 6= j. Note however that

‖xi − xj‖1 = ‖xi + zi −∆ (Φ (xi + zi))− (xj + zj −∆ (Φ (xj + zj)))− zj + zi‖1

≤ ‖xi + zi −∆ (Φ (xi + zi)) ‖1 + ‖ (xj + zj −∆ (Φ (xj + zj))) ‖1 + ‖zj‖1 + ‖zi‖1

< c‖zi‖1 + c‖zj‖1 + 2ρ

< 2(c+ 1)ρ

= 1

which is a contradiction, and thus the intersection of the images of the sets must

be empty. That is
{

Φ
(
xj + ρBN

1

)}n
j=1

is a collection of disjoint sets, and so we will

be able to use their volumes additively

n⋃
j=1

Φ
(
xj + ρBN

1

)
⊆ Φ

(
(1 + ρ)BN

1

)
Using linearity of Φ and the additivity of dis-joint sets, we have

n∑
j=1

Vol
(
Φ
(
xj + ρBN

1

))
≤ Vol

(
(1 + ρ) Φ

(
1 + ρBN

1

))
Noting that Vol(ρT ) = T 2d for T ⊂ C

d, dimT = d and applying translational

invariance of measure we have

nρ2dVol
(
Φ
(
BN

1

))
≤ (1 + ρ)2dVol

(
Φ
(
BN

1

))
Combining then our hypothesis and a rearrangement of the above inequality we have(

N

4s

)
s

2
≤ n ≤ (1 +

1

ρ
)2d = (2c+ 3)2d ≤ (2c+ 3)2m

We observe that according to Lemma 3.7.1 we know 2m
s
≥ 4
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ln

(
eN

s

)
≤ ln

(
e3

4

eN

s

)
= ln

(
N

4s

)
+ ln

(
e4
)

= 4
m

s
ln(2c+ 3) + 4

≤ m

s
(4 ln(2c+ 3) + 2)

So after a rearrangement of terms and labeling c̃ = (4 ln(2c+ 3) + 2)−1 we obtain

the desired bound

m ≥ c̃s ln

(
eN

s

)

The upshot of Theorem 3.7.4 is that the `1-minimization and random matrices of

the type we’ve described are near optimal, up to a scaling in the constant term.

Our aim now is to generalize Theorem 3.7.4 for any choice of norm p, q ≥ 1.

First though we show that the null space property is essential to (`p, `q) instance

optimalality.

Lemma 3.7.5. Let p ≥ q ≥ 1 and Φ ∈ C
m×N be given. If there exists a map

∆ : Rm → R
N such that (Φ,∆) is (`p, `q)-optimal of order s with constant c then

(3.7) ‖v‖q ≤
c

s1/p−1/q
σ2s(v)p, ∀v ∈ Ker(Φ)

where σ2s = inf‖z‖0≤2s ‖v − z‖p.

Conversely, if inequality 3.7 holds for Φ then there exists a map ∆′ : Rm → R
N

such that (Φ,∆) is (`p, `q)-instance optimal or order s with constant 2c.
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Proof. Suppose (Φ,∆) is (`p, `q)-optimal of order s with constant c. Given v ∈

Ker(Φ), let S be the index of set of the s largest entries of v. Note −vS ∈ Ks.

Instance optimality implies that

−vS = ∆ (Φ (−vS))

Also, v ∈ Ker(Φ) implies Φ(−vS) = Φ(vS). So −vS = ∆ (Φ (vS)) and therefore,

using the instance optimality of (Φ,∆)

‖v‖q = ‖vS + vS‖q

= ‖vS −∆ (Φ (vS)) ‖q

≤ c

s1/p−1/q
σs(vS)p =≤ c

s1/p−1/q
σ2s(v)p

Which matches the desired result for this direction of the implication.

Now suppose the inequality 3.7 holds for matrix Φ. Define

∆′(y) = argminz∈CNσs(z)p subject to Φz = y

Note that Φ (∆′ (Φx)) = Φx since the constraints in the optimization problem are

that for ∆′(y), we are constrained to z ∈ CN where Φz = y. So by choosing y equal

to something in the range of Φ, y = Φx, we must have that Φ (∆′ (Φx)) = Φz = Φx.
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So, the vector we define v = x−∆′ (Φx) must then be in the kernel, v ∈ Ker(Φ).

‖v‖q = ‖x−∆′ (Φx) ‖q

≤ c

s1/p−1/q
σ2s(x−∆′ (Φx))p

=
c

s1/p−1/q
inf

z∈K2s

‖x−∆′ (Φx)− z‖p

=
c

s1/p−1/q
inf

z1,z2≤s
‖x−∆′ (Φx)− z1 − z2‖p

≤ c

s1/p−1/q
inf
z1≤s
‖x− z1‖p + inf

z2≤s
‖∆′ (Φx)− z2‖p

≤ c

s1/p−1/q
inf
z1≤s
‖x− z1‖p + inf

z2≤s
‖x− z2‖p

=
c

s1/p−1/q
(σs(x)p + σs(x)p)

=
2c

s1/p−1/q
σs(x)p

Where we have used in the last inequality above that ∆′ returns the vector v with

minimal error residue after removing s entries such that Φv = Φx so certainly we

only do worse in terms of error by replacing ∆′ (Φx) with x i.e. argminv∈CNσs(z) ≤

σs(x).

Because of its utility and importance, inequality 3.7 is referred to as the mixed

null space property for a matrix Φ.

Theorem 3.7.6. Given q ≥ 1, if a pair of measurement matrix and recovery function

(Φ,∆) is (`q, `1)-instance optimal of order s with constant c then m the number of

rows of the matrix Φ must satisfy

m ≥ c̃s ln

(
eN

s

)
for some c̃ which depends only on the constant c
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Proof. Consider the following: If there is an (`q, `1)-instance optimal pair (Φ,∆)

then there exists a function ∆′ such that (Φ,∆′) is `1-instance optimal and thus, by

Theorem 3.7.4 the number of rows m must satisfy

m ≥ c̃s ln

(
eN

s

)
So we are able to reduce our current theorem to the previous `1 result if we are able

to show the existence of ∆′. We will do this by making use of the mixed null space

property equivalence detailed in Lemma 3.7.5.

Consider v ∈ Ker(Φ). Since (Φ,∆) is instance optimal with constant c, by the

Lemma

(3.8) ‖v‖q ≤
c

s1−1/q
σ2s(v)1

Let S ⊂ [N ] be such that VS contains the 2s largest magnitude entries of v. Using

Holder’s inequality then we have

‖vS‖1 = 〈sgn(v)1S,v〉

≤ ‖1S‖ q
q−1
‖v‖q

= (2s)1− 1
q

c

s1−1/q
σ2s(v)1 ≤ 2cσ2s(v)1

On the other hand ‖vS‖1 = σ2s since we choose S to include the largest 2s entries.

Thus

‖v‖1 = ‖vS‖1 + ‖vS‖1 ≤ (2c+ 1)σ2s(v)1

And so using the null space property equivalence from Lemma ?? we have the desired

bound on m

We conclude this section with some general remarks about how to interpret and

understand the main theorems.
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• Matrices with the RIP along with basis pursuit are a way to achieve instance

optimalality.

• To ensure that a matrix has the RIP, we need to have the number of rows on

the order of cs log (N/s).

• A matrix with RIP is just an instance of an ε-JL map for the set Ks ⊂ CN .

• We have a particular example of a finite set of CN with the lower bound

cs log (N/s). This then suggests that the lower bound for m is needed to ensure

an embedding of an arbitrary subset S ⊂ C
N . In [25] the authors prove the

result: ∃S ⊂ CN such that an ε-JL map of S intoCm requires m ≥ cε−2 log (|S|).

• The result in [25] does not restrict to any particular type of JL map - for

example nonlinear maps. The surprising conclusion is that matrices do not

incur a penalty beyond scaling in the constant in terms of size of the sketching

dimension.

Homework 3.7.1. Prove Lemma 3.7.1. Hint: consider a sub-matrix of Φ which

interacts with the support of x− y.

CMSE 890 Lecture 5 and the MTH 994 Lectures should be merged – there is a lot

of overlap. Ask me if you need to discuss the best organization.



Chapter IV

Probability Strikes Back: Randomized Constructions of
Oblivious LJL Embeddings and More (MTH 994 Lectures 5

& 7) & (CMSE Lecture 6)

4.1 Useful General Purpose Probability Inequalities (MTH 994 Lecture
5)

Theorem 4.1.1 (Cramer’s Theorem). Let X1, . . . , Xm be a sequence of independent

real-valued random variables with cumulant generating functions

CX`(θ) = ln
(
E
[
eθX`

])
where ` ∈ [m]. Then, ∀t > 0

P

[
m∑
`=1

X` ≥ t

]
≤ exp

(
inf
θ>0

{
−θt+

m∑
`=1

CX`(θ)

})
Proof. By Markov’s inequality, for any θ > 0, and independence of the random

123
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variables we have:

P

[
m∑
`=1

X` ≥ t

]
= P

[
exp

(
θ

m∑
`=1

X`

)
≥ exp (θt)

]

≤ e−θtE

[
exp

(
θ

m∑
`=1

X`

)]

= e−θt
m∏
`=1

E [exp (θX`)]

= exp

(
ln

(
e−θt

m∏
`=1

E [exp (θX`)]

))

= exp

(
−θt+

m∑
`=1

CX`(θ)

)

Since the above holds for all θ > 0, it will hold for the infimum, which matches our

desired outcome

Theorem 4.1.2 (Hoeffding’s Inequality). Let X1, . . . , Xm be a sequence of indepen-

dent random variables such that E [X`] = 0 and |X`| ≤ B`, ∀` ∈ [m]. Then, ∀t > 0

P

[
m∑
`=1

X` ≥ t

]
≤ exp

(
−t2

2
∑m

`=1 B
2
`

)
and so

P

[∣∣∣∣∣
m∑
`=1

X`

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−t2

2
∑m

`=1 B
2
`

)
Proof. We first estimate the moment generating function E [exp (θX`)] and then

apply Cramer’s Theorem.

For some t̃` > 0, we can write each of the random variables as some combination

of its bounds:

X` = t̃(−B`) + (1− t̃)B`
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Solving for t̃` we have

t̃` =
B` −X`

2B`

∈ [0, 1]

Since exp (θx), θ > 0 is a convex function and so we have the bound

exp (θX`) ≤ t̃ exp (−θB`) + (1− t̃) exp (θB`)

=

(
B` −X`

2B`

)
exp (−θB`) +

(
B` +X`

2B`

)
exp (θB`)

and so taking the expectation and recalling E[X`] = 0, we obtain the moment gen-

erating function and the following bound

E [exp (θX`)] ≤
1

2
[exp (−θB`) + exp (θB`)]

=
∞∑
k=0

(θB`)
2k

(2k)!

≤
∞∑
k=0

(θB`)
2k

2kk!

= exp

(
θ2B2

`

2

)
Apply Cramer’s Theorem 4.1.1 with θ = t∑m

`=1B
2
`

and bound CX` by
θ2B2

`

2
to obtain

P

[
m∑
`=1

X` ≥ t

]
≤ exp

(
−t2

2
∑m

`=1 B
2
`

)

Definition 4.1.3 (Radamacher Random Variable). A random variable X such that

X =


1 with probability 1/2

−1 with probability 1/2

Note that the expectation of such a variable is 0.

Corollary 4.1.4. Let a ∈ Rm and X = (X1, . . . , Xm) be a random vector with i.i.d.

Radamacher entries. Then, ∀u > 0, we have

P

[∣∣∣∣∣
m∑
`=1

a`X`

∣∣∣∣∣ ≥ u‖a‖2

]
≤ 2 exp

(
−u

2

2

)
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The corollary follows from an application of Hoeffding’s inequality.

Theorem 4.1.5 (Bernstein’s Inequality). Let X1, . . . , Xm be a sequence of indepen-

dent random variables such that E [X`] = 0 such that ∀n ≥ 2

E [|X`|n] ≤ n!Rn−2σ2
`/2, ∀` ∈ [m]

for some constants R > 0 and σ` > 0, ` ∈ [m]. Then ∀t > 0

P

[
m∑
`=1

X` ≥ t

]
≤ 2 exp

(
−t2/2
σ2 +Rt

)
where σ2 =

∑m
`=1 σ

2
`

Proof. First we bound the moment generating function E [exp (θX`)] by expanding

the exponential function into a series and applying the linearity of expectation after

exchanging integration and summation (Fubini and Dominated Convergence):

E [exp (θX`)] = 1 + θE [X`] +
∞∑
n=2

θnE [Xn
` ]

n!

= 1 +
∞∑
n=2

θnE [Xn
` ]

n!

≤ 1 +
σ2
` θ

2

2

∞∑
n=0

(θR)n

≤ 1 +
σ2
` θ

2

2
(1−Rθ)−1

≤ exp

(
σ2
` θ

2

2(1−Rθ)

)
where we require that 0 < Rθ < 1 to get convergence of the geometric series. Apply

Cramer’s theorem then using this bound on the cumulant density functions to obtain

P

[∣∣∣∣∣
m∑
`=1

X`

∣∣∣∣∣ ≥ t

]
≤ 2 inf

θ∈(0,R−1)
exp

(
−θt+

m∑
`=1

σ2
` θ

2

2(1−Rθ)

)

= 2 inf
θ∈(0,R−1)

exp

(
−θt+

σ2θ2

2(1−Rθ)

)
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Choosing θ = t
σ2+Rt

< 1
R

then leads to our desired final bound.

Lemma 4.1.6. E[|X|n] ≤ n
∫∞

0
P [|X| ≥ t]tn−1dt, ∀n > 0

Proof.∫
Ω

|X|np(x)dx =

∫
Ω

(∫ ∞
0

1{0≤y≤|X|n}dy

)
p(x)dx

=

∫ ∞
0

∫
Ω

P [|X|n ≥ y] dy Fubini’s Theorem

= n

∫ ∞
0

∫
Ω

P [|X|n ≥ tn] tn−1dt change of variable y = tn

= n

∫ ∞
0

∫
Ω

P [|X| ≥ t] tn−1dt

We now introduce some definitions about a large class of random variables which

will help us prove in a general way many important and useful results for JL maps.

Definition 4.1.7 (Sub-exponential Random Variable). We say that X ∈ R is sub-

exponential random variable if ∃β, κ > 0 such that

P [|X| ≥ t] ≤ βe−κt, ∀t > 0

We can understand this as saying that the random variable decays exponentially.

Definition 4.1.8 (Sub-gaussian Random Variable). We say that X ∈ R is subgaus-

sian random variable if ∃β, κ > 0 such that

P [|X| ≥ t] ≤ βe−κt
2

, ∀t > 0

Again, we understand this as saying that the random variable decays faster than

exponential, at a rate comparable to a Gaussian. What types of random variables fit

these definitions? The following examples provide some indication as to the richness

of the classification.
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Example 4.1.9. If X is sub-gaussian, then X2 is sub-exponential with the same β

and κ:

βe−κt
2 ≥ P [|X| ≥ t] = P

[
|X|2 ≥ t2

]
but after a relabeling of t we rewrite as

βe−κt ≥ P
[
X2 ≥ t

]
for all t > 0.

Example 4.1.10. All bounded random variables, e.g. Radamacher, Bernoulli, uni-

form on bounded interval, all discrete random variables, are subgaussian.

Example 4.1.11. A Gaussian random variable X ∼ N (0, 1) is sub-gaussian with

β = 1 and κ = 1/2

Theorem 4.1.12 (Bernstein’s Inequality for sub-expoential random variables). Let

X1, . . . , Xm be independent mean 0 sub-expoential random variables such that ∃β, κ >

0 where P [|X`| ≥ t] ≤ βe−κt, ∀t > 0,∀` ∈ [m]. Then

P

[∣∣∣∣∣
m∑
`=1

X`

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−(κt)2/2

2βm+ κt

)
Proof. By Lemma 4.1.6 we have

E [|X`|n] = n

∫ ∞
0

P [|X| ≥ t] tn−1dt

= βn

∫ ∞
0

e−κttn−1dt let κt = u

= βnκ−n
∫ ∞

0

e−uun−1du Notice Γ function definition

= βκ−nn!

Now apply Bernstein’s Inequality 4.1.5 with R = κ−1 and σ2
` = 2βκ−2 to obtain the

desired bound.
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Homework 4.1.1. Prove that if X is a bounded random variable then ∃t0 ∈ R+

such that X is sub-gaussian ∀β, κ > 0 satisfying t0 =
√

lnβ
κ

Homework 4.1.2. Prove that if X ∼ N (0, 1) then

P [|X| ≥ t] ≤ e−t
2/2,∀t > 0

Homework 4.1.3. Let X be uniformly distributed on [−1, 1] show that

E
[
|X|2

]
= 1/3

and that

E [exp (θX)] ≤ exp
(
θ2/6

)
= exp

(
θ2
E[|X|2]/2

)
4.2 Stability of Subgaussians as a Class of Random Variables

Lemma 4.2.1. If X is a sub-gaussian random variable with parameters β, κ > 0

then

‖X‖p = (E [|X|p])1/p ≤ κ−1β1/2p1/2, ∀p ≥ 1

Proof. By Lemma 4.1.6

E [|X`|p] = p

∫ ∞
0

P [|X| ≥ t] tp−1dt

=
p

(2κ)p/2

∫ ∞
0

P

[
|X| ≥ u√

2κ

]
up−1du let t =

u√
2κ

≤ pβ

(2κ)p/2

∫ ∞
0

e−u
2/2up−1du Xis sub-gaussian

=
pβ

2κp/2
Γ
(p

2

)
=

pβ

κp/2

√
π

2

(p
2

)p/2−1/2

e−p/2e1/6pΓ
(p

2

)
= κ−p/2βpp/2

[
1

2p/2
√
pπe−p/2+1/6p

]
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[
1

2p/2
√
pπe−p/2+1/6p

]
is monotonically decreasing for p ≥ 1 and is bounded by 1 from

above, which then taking p-th root leads to the desired final bound.

Lemma 4.2.2. If X is sub-gaussian with parameters β, κ then ∃c ∈ (0, κ) and

c̃ ≥ 1 + βcκ−1

1−cκ−1 such that E [exp (cX2)] ≤ c̃.

Proof. By using Lemma 4.1.6 with p← 2n then

E
[
|X|2n

]
≤ βκ−nn!

E
[
exp

(
cX2

)]
=

∫ ∞
0

∞∑
n=0

cnX2n

n!
p(x)dx

=
∞∑
n=0

cnE [X2n]

n!
Fubini’s Theorem

≤ 1 +
∞∑
n=1

cnβκ−n Series converges when c ∈ (0, κ)

= 1 +
βcκ−1

1− cκ−1

Theorem 4.2.3 (Alternative Characterization of Sub-gaussian Property). Let X ∈

R be a random variable

1. If X is sub-gaussian with E[X] = 0 then ∀c ∈ R+ with c > max
{

1
2κ

+ 4e2

κ
ln (1 + β) ,

√
2βe2

κ
√
π

}
then

(4.1) E [exp (θX)] ≤ exp
(
cθ2
)
, ∀θ ∈ R+

2. If 4.1 holds for some c ∈ R+ then E[X] = 0 and X is sub-gaussian with parameters

β = 2 and κ = 1
4c
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Proof. We begin with the second part of the statement of the theorem. Assume

inequality 4.1 holds.

P [X ≥ t] = P
[
exp

(
θX ≥ eθt

)]
≤ e−θtE [exp (θX)] Markov’s Inequality

≤ ecθ
2−θt by hypothesis

Setting θ = t
2c

minimizes the right hand side and we have P [X ≥ t] ≤ e
−t2
4c . We

can repeat the same argument to conclude that P [−X ≥ t] ≤ e
−t2
4c and so conclude by

a union bound that P [|X| ≥ t] ≤ 2e
−t2
4c , i.e. X is sub-gaussian with with parameters

β = 2 and κ = 1
4c

.

To see that the random variable must have mean zero, recall the bounds (1+x) ≤

ex, ∀x ∈ R. Use this bound, taking expectation with respect to the random variable

X, and using the series definition of the exponential we have

1 +E [θX] ≤ E [exp (θX)]

=⇒ 1 + θE [X] ≤ exp
(
cθ2
)

=⇒ θE [X] ≤ 1

2
cθ2 +O

(
θ4
)

So sending θ → 0 yields E [X] = 0.

Now we consider the first part of the theorem. Assume that the random variable X

is sub-gaussian with c > max
{

1
2κ

+ 4e2

κ
ln (1 + β) ,

√
2βe2

κ
√
π

}
. For the moment, consider

|θ| ≤ θ0 for some yet to be determined θ0
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E [exp (θX)] = 1 + θE [X] +
∞∑
n=2

θnE [Xn]

n!
Fubini, linearity of expectation

= 1 +
∞∑
n=2

θnE [Xn]

n!
mean zero

≤ 1 +
∞∑
n=2

|θ|nκn/2βnn/2√
2πnne−n

Lemma 4.2.1. Sterling’s formula

= 1 +
β√
2π

θ2e2

κ

∞∑
n=0

θn0κ
−n/2en re-indexing, |θ| ≤ θ0

= 1 + θ2 β√
2π

θ2e2

κ

1

1− 1
2

set θ0 =

√
κ

2e

≤ exp(cθ2) when c >

√
2βe2

κ
√
π

We now must consider the case when |θ| > θ0. We wish to show that

E [exp (θX)] ≤ exp
(
cθ2
)
⇐⇒ E

[
exp

(
θX − cθ2

)]
≤ 1

Notice that by completing the square, for any positive constant c

θX − cθ2 = −
(√

cθ − X

2
√
c

+
X2

4c

)
≤ X2

4c

So then

E
[
exp

(
θX − cθ2

)]
≤ E

[
exp

(
X2

4c

)]
In particular for constant 1

2κ
then,

E

[
exp

(
θX − 1

2κ
θ2

)]
≤ E

[
exp

(
κX2

2

)]
So then in Lemma 4.2.2, where for c = κ

2
we have for c̃ > 1 + βcκ−1

1−cκ−1 = 1 + β. Noting

this then we have that

E

[
exp

(κ
2
X2
)]
≤ 1 + β
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So combining the two inequalities we have

E [exp (θX)] ≤ exp

(
θ2

2κ

)
(1 + β)

Now let ρ = ln (1 + β) θ−2
0

E [exp (θX)] ≤ (1 + β) exp

(
θ2

2κ

)
= (1 + β) exp

(
−ρθ2

)
exp

(
θ2

2κ

)
exp

(
ρθ2
)

≤ (1 + β) exp
(
−ρθ2

0

)
exp

((
1

2κ
+ ρ

)
θ2

)
≤ exp

((
1

2κ
+ ρ

)
θ2

)

Noting that θ0 =
√
κ

2e
and ρ = 4e2

κ
ln (1 + β) we have then the desired bound.

Theorem 4.2.4 (Stability of Sub-gaussians). Let X = X1, . . . , Xm be independent

mean zero sub-gaussian random variables such that E [exp (θX`)] ≤ exp (cθ2) for

` ∈ [m], θ ∈ R+. Let a ∈ Rm and define z = 〈a, X〉. Then z is sub-gaussian with

1.

E [exp (θz)] ≤ exp
(
c‖a‖2

2θ
2
)

2.

P [|z| ≥ t] ≤ 2 exp

(
−t2

4c‖a‖2
2

)
, ∀t > 0

Proof. 1.

E

[
exp

(
θ

m∑
`=1

a`X`

)]
=

m∏
`=1

[exp (θa`X`)] X` independent

≤
m∏
`=1

exp
(
ca2

`θ
2
)

≤ exp
(
c‖a‖2

2θ
2
)
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2. This follows from part 2 of Theorem 4.2.3.

Definition 4.2.5. A sub-gaussian random variable X allows a parameter c if

E [exp (θX)] ≤ exp
(
cθ2
)
, ∀θ ∈ R+

Lemma 4.2.6. Let Z ∈ RN be a random vector with independent, mean zero, vari-

ance 1, sub-gaussian entries that all allow the same parameter c ∈ R+. Then

1.

E
[
|〈Z,x〉|2

]
= ‖x‖2

2, ∀x ∈ RN

2. 〈Z,x/‖x‖2〉 is sub-gaussian and also allows the parameter c

Proof. 1. We expand the square of the sum, use linearity of expectation, indepen-

dence of variables and the mean zero and variance of one of all the random vari-

ables to obtain:

E
[
|〈Z,x〉|2

]
= E

( N∑
`=1

Z`x`

)2


= E

[
N∑
`=1

N∑
k=1

Z`Zkx`xk

]

=
N∑
`=1

N∑
k=1

E [Z`Zk]x`xk

=
N∑
`=1

E
[
Z2
`

]
x2
` +

N∑
`=1

∑
k 6=`

E [Z`]E [Zk]x`xk

=
N∑
`=1

(1)x2
`

= ‖x‖2
2
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2. Follows from part 1. of Theorem 4.2.4

Theorem 4.2.7 (Concentration Inequality for Sub-gaussian Random Variables).

Let Φ ∈ Rm×N be a matrix with independent, mean zero, variance one sub-gaussian

entries that all allow parameter c. Then ∀x ∈ Rn and t ∈ (0, 1),

P
(∣∣m−1‖Φx‖2

2 − ‖x‖2
2

∣∣ ≥ t‖x‖2
2

)
≤ 2 exp

(
−c̃mt2

)
where c̃ depends only on c, c̃ = 1

8c(16c+1)

Proof. Let Y1, . . . ,Ym ∈ RN be the rows of the matrix Φ. Define

Z` = |〈Y`,x〉|2 − ‖x‖2
2, ` ∈ [m].

By Lemma 4.2.6 we have that E [Z`] = 0. Furthermore, 〈Y`,x/‖x‖2〉 is sub-gaussian

with parameter c. Now using the characterization of sub-gaussian random variables

seen in Theorem 4.2.3, we have that 〈Y`,x/‖x‖2〉 works as a sub-gaussian random

variable for β = 2 and κ = 1/4c with mean 0.

Therefore

P [|〈Y`,x/‖x‖2〉| ≥ r] ≤ βe−κr
2

Squaring the random variable then gives us a sub-exponential random variable con-

centration result,

P
[
|〈Y`,x/‖x‖2〉|2 ≥ r̃

]
≤ βe−κr̃

where r̃ = r2. Note



136

1

‖x‖2

(
m−1‖Φx‖2

2 − ‖x‖2
2

)
=

1

m

m∑
`=1

(
|〈Y`,x〉|2 − ‖x‖2

2

‖x‖2
2

)

=
1

m‖x‖2
2

m∑
`=1

Z`

We now have what we need to satisfy Bernstein’s inequality for sub-exponential

random variables. That is

P

[
1

m‖x‖2
2

∣∣∣∣∣
m∑
`=1

Z`

∣∣∣∣∣ ≥ t

]
= P

[∣∣∣∣∣
m∑
`=1

Z`
‖x‖2

2

∣∣∣∣∣ ≥ mt

]

≤ 2 exp

(
−mt2κ2

4β + 2κt

)
≤ 2 exp

(
−mt2c̃

)

when β = 2, κ = 1
4c

and c̃ = 1
8c(16c+1)

Theorem 4.2.8. Let S ⊂ RN be an arbitrary finite subset of RN . Let p, ε ∈ (0, 1).

Finally, let Φ ∈ Rm×N be a matrix with independent, mean zero, variance one, sub-

gaussian entries all allowing the parameter c. Then

(1− ε)‖x− y‖2
2 ≤ ‖

1√
m

Φ(x− y)‖2
2 ≤ (1 + ε)‖x− y‖2

2

will hold for all x,y ∈ S with probability at least p, provided that m ≥ 8c(16c+1)
ε2

ln
(
|S|2
1−p

)
.

Proof. The proof of this theorem is left as an exercise to the reader.

Theorem 4.2.9. Let S ⊂ CN be an arbitrary finite subset of CN , p, ε ∈ (0, 1). Then

Φ as in Theorem 4.2.8 will satisfy

(1− ε)‖x− y‖2
2 ≤ ‖

1√
m

Φ(x− y)‖2
2 ≤ (1 + ε)‖x− y‖2

2
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will hold for all x,y ∈ S with probability at least p, provided that m ≥ 48c(16c+1)
ε2

ln
(

4|S|2
1−p

)
.

Proof. The proof of this theorem is left as an exercise to the reader.

Theorem 4.2.10. Let p, ε ∈ (0, 1) and Φ as in Theorem 4.2.8. Choose m such that

m ≥ s

(
32c(16c+ 1)

ε2

)
ln

((
eN
s

) (
48
ε

)2

(1− p)1/s

)

then 1√
m

Φ will have the (s, ε)-RIP property (see Definition 3.5.1) with probability at

least p.

Proof. The proof of this theorem is left as an exercise to the reader.

Homework 4.2.1 (Towards Φ being sparse). 1. f(x) = pδ(x)+ (1−p)3/2
√

2π
exp

(
−x2(1−p)

2

)
for p ∈ (0, 1). Show that X with density f is mean 0, variance 1 and sub-gaussian

with parameter c = 1
2(1−p)

2. Let X have density

f(x) = pδ(x) +
(1− p)

2

[
δ

(
x− 1√

1− p

)
+ δ

(
x+

1√
1− p

)]
for p ∈ (0, 1). Show that X with density f is mean 0, variance 1 and sub-gaussian

with parameter c = 1
1−p

3. Consider Theorem 4.2.7 and how c has to scale in order to end up having fewer

non-zero entries in Φ with the same probability decay.

Homework 4.2.2. Prove Theorem 4.2.8 (Hint: use union bound) and discuss why

it also implies a proof of Theorem 3.1.3.

Homework 4.2.3. Prove that if Φ ∈ Rm×N is an ε-JL map of both S ⊂ RN and

T ⊂ RN then Φ is an ε-JL map of any R ⊂ CN with < (R) ⊂ S and = (R) ⊂ T .
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Homework 4.2.4. Prove Theorem 4.2.10. Hint: see Homework 3.2.2 and Theorem

3.3.1 as well as the following consequence of Sterling’s approximation(
N

s

)s
≤
(
N

s

)
≤
(
eN

s

)s
, ∀N, s ∈ Z+, N ≥ s

Homework 4.2.5 (optional). Suppose X is a Radamacher random variable. Show

that X allows a parameter c = 1
2

(Definition 4.2.5), i.e. E [exp (θX)] ≤ exp
(
θ2

2

)
.

4.3 Bounded Orthonormal Systems and the RIP

Let D ⊂ Rd and ν be a probability measure on D.

Let B = {φ1, . . . , φN} be an orthonormal system of functions. That is φj : D →

C, ∀j ∈ [N ] with ∫
D
φj(t)φk(t)dν(t) = δjk

Definition 4.3.1. We call an orthonormal system B a bounded orthonormal system

(BOS) with constant K if

K = max
j∈[N ]
‖φj‖∞ = max

j∈[N ]
sup
t∈D
|φj(t)| <∞

Example 4.3.2 (Trigonometric Polynomials K = 1). Let D = [0, 1] and let ν be

the uniform (Lebesgue) measure on [0, 1]. For ω ∈ Z define φω(t) = e2πiωt

Example 4.3.3 (Columns of Discrete Fourier Transform). Let D = [N ] and let ν

be the counting measure on [N ]. The DFT matrix is defined as

Fn,k =
1√
N
e−

2πink
N , ∀k, n ∈ [N ]

and so the discrete functions φk(n) =
√
NFt,k are the normalized columns of F

Example 4.3.4 (Unitary Matrix). Let D = [N ] and let ν be the counting measure

on [N ]. Then any unitary matrix U , where we use the columns to form discrete
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functions is a BONS where

K = max
n,k∈[N ]

∣∣∣√NUn,k∣∣∣
Example 4.3.5 (Chebyshev Polynomials of the First Kind). Consider the following

polynomials

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

...

Tn+1(x) = 2xTn(x)− Tn−1(x)

Let D = [−1, 1] and for A ⊂ D let

ν(A) =
1

π

∫
A

dx√
1− x2

ν be the measure. The set B =
{
T̃0(x) = 1, T̃1(x) =

√
2x, . . . , T̃n(x) =

√
2Tn

}
is a

bounded orthonormal system with respect to ν whereK = maxj∈[N ] maxx∈[−1,1]

∣∣∣T̃j∣∣∣ =

√
2.

Another equivalent definition for the polynomials is Tj(x) = cos(j arccos(x))

We conclude this section with a theorem that describes how to construct an RIP

matrix by sampling a BOS.

Theorem 4.3.6. Let Φ ∈ Cm×N be a matrix formed by sampling m points t1, . . . , tm ∈

D independently according to ν for the BOS B = {φ1, . . . , φN} and setting Φ`,k =

φk(t`), ∀` ∈ [m], k ∈ [N ].

If for ε ∈ (0, 1) we have

m ≥ cK2

ε2
s ln4N
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then with probability at least 1−N− ln3N the matrix 1√
m

Φ with have the RIP of order

(s, ε). Here c > 0 is an absolute constant independent of s,K, ε,N

See proof of Theorem 12.32 in [12].

Homework 4.3.1. Prove that K ≥ 1 must always hold for any BOS. Give an

example of an orthonormal system for which K =∞ i.e. that isn’t bounded

Homework 4.3.2. Verify that {φω(t)}ω∈Z is a BONS with K = 1.

Homework 4.3.3. Verify that {φk(n)}k∈[N ] is a BONS with K = 1.

4.4 Interpolation, Function Approximation from Randomly Sampled Data

We now proceed to show an application of Theorem 4.3.6. Our project will be to

find a suitable approximation to a function which lies (nearly) in the span of some

BOS of interest. We introduce some notation

Given our domain D ⊆ RD Suppose we have a function f : D → C where

f(t) =
N∑
j=1

xjφj(t) + ε(t)

for t ∈ D. We will imagine that the function ε is some relatively small function with

respect to some yet to be determined norm, and so we see that f lies nearly in the

span of the BOS B = {φ1, . . . , φN}.

Suppose we have samples f(t1), . . . , f(tm) for points t1, . . . , tm randomly sampled

according to ν

Our goal then is to find f̃ based on the samples such that ‖f − f̃‖ is small. We

will argue that if m� N then you can solve with instance optimal guarantees with

s on the order m/ log (N/s).
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Consider the following system of equations

f(t1)

f(t2)

...

f(tm)


=



φ1(t1) φ2(t1) . . . φN(t1)

φ1(t2) φ2(t2) . . . φN(t2)

...
. . .

...

φ1(tm) φ2(tm) . . . φN(tm)



x


+



ε(t1)

ε(t2)

...

ε(tm)


In this problem, our left hand side is given, the matrix Φ has the RIP property

according to Theorem 4.3.6 and `1 minimization will allow us to approximate a

sparse x which we then use directly to write f̃ in terms of the given BOS, f̃(t) =∑N
j=1 = x̃jφj(t).

Theorem 4.4.1. Choose δ > 0 and η > 0. Let U ∈ RN×N be an orthonormal

matrix obeying U∗U = I and maxi,j |Fi,j| ≤ K/
√
N . Define a random sampling

matrix H ∈ Rm×N with rows chosen i.i.d. uniformly at random from the rows of U

and set Φ = 1√
m
H. Then with probability at least 1− e−η

∣∣‖Φx‖2
2 − ‖x‖2

2

∣∣ ≤ max
(
δ, δ2

)
‖x‖2

2

will hold ∀x ∈ Ks provided

m ≥ cK2
⌈ s

2δ2

⌉ (
ln4N + η

)
where c is a universal constant.

Note that when δ < 1, we have Theorem 12.32 from [12].

Lemma 4.4.2. Let δ, s ∈ [1,∞) be such that Φ ∈ C
m×N has the RIP of order(

2
⌈
s
δ

⌉
, 1

2

)
. Then, Φ will also satisfy

(4.2) max
S⊂[N ],|S|≤s

‖Φ∗SΦS − I‖2→2 = sup
x∈Ks\{0}

|‖Φx‖2
2 − ‖x‖2

2|
‖x‖2

2

≤ δ

2
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Proof. Choose x ∈ Ks \ {0}.

T = supp(x) = {j1, . . . , js} ⊂ [N ]

Let d = gcd
(
s,
⌈
s
δ

⌉)
. Denote n = s

d
.

Define a cover of T by S1, S2, . . . Sn ⊂ T where

S` =
{
j(`−1)d+1 mod s, . . . , j(`−1)d+d sδe mod s

}
Note that each j` ∈ T will belong to k =

d sδe
d

sets (So for example, if s = 21, δ = 4,

then we would have n = 7 sets length 6 each. Any element from the original set T

of size s = 21 would appear in precisely 2 sets S`)

So x = 1
k

∑n
`=1 xS` and ‖x‖2

2 = 1
k

∑n
j=1 ‖xS`‖2

2 Now consider the quantity
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∣∣‖Φx‖2
2 − ‖x‖2

2

∣∣ = |〈Φx,Φx〉 − 〈x,x〉|

=

∣∣∣∣∣〈Φ
(

1

k

n∑
j=1

xSj

)
,Φ

(
1

k

n∑
i=1

xSi

)
〉 − 〈

(
1

k

n∑
j=1

xSj

)
,

(
1

k

n∑
i=1

xSi

)
〉

∣∣∣∣∣
=

1

k2

∣∣∣∣∣
n∑
j=1

n∑
i=1

(
〈ΦSj∪SixSj ,ΦSi∪SjxSi〉 − 〈xSj ,xSi〉

)∣∣∣∣∣
=

1

k2

∣∣∣∣∣
n∑
j=1

n∑
i=1

(
〈Φ∗Sj∪SiΦSj∪SixSj ,xSi〉 − 〈xSj ,xSi〉

)∣∣∣∣∣
=

1

k2

∣∣∣∣∣
n∑
j=1

n∑
i=1

〈
(

Φ∗Sj∪SiΦSj∪Si − I
)

xSj ,xSi〉

∣∣∣∣∣
≤ 1

k2

n∑
j=1

n∑
i=1

∣∣∣〈(Φ∗Sj∪SiΦSj∪Si − I
)

xSj ,xSi〉
∣∣∣

≤ 1

k2

n∑
j=1

n∑
i=1

‖
(

Φ∗Sj∪SiΦSj∪Si − I
)

xSj‖2‖xSi‖2

≤ 1

k2

n∑
j=1

n∑
i=1

‖Φ∗Sj∪SiΦSj∪Si − I‖2→2‖xSj‖2‖xSi‖2

≤ 1

k2

n∑
j=1

n∑
i=1

1

2
‖xSj‖2‖xSi‖2

≤ 1

4k2

n∑
j=1

n∑
i=1

(
‖xSj‖2

2 + ‖xSi‖2
2

)
=

1

4k2

(
n∑
j=1

n‖xSj‖2
2 +

n∑
i=1

n‖xSi‖2
2

)

=
kn

2k2
‖x‖2

2

=
d

2
⌈
s
δ

⌉ s
d
‖x‖2

2

≤ s

2
(
s
δ

)‖x‖2
2

=
δ

2
‖x‖2

2

Rearranging terms, and taking the supremum then produces the desired bound.
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Equality between the quotient and operator norm is given in Lemma 3.5.6.

Lemma 4.4.3. Suppose that Φ ∈ Cm×N has the RIP of order (s, ε). Then ∀x ∈ CN

1. ‖Φx‖2 ≤
√

1 + ε
[
‖x‖1√
s

+ ‖x‖2

]
2. ‖Φ‖2→2 = σ1(Φ) ≤

√
1 + ε

(√
N
s

+ 1
)

Proof. Suppose {jk}N−1
k=0 is an ordering of the entries of x in descending magnitude,

i.e. |xjk | ≥
∣∣xjk+1

∣∣. Now partition the indices {jk}Nk=1 into
⌊
N
s

⌋
+ 1 blocks of size at

most s, e.g. S0 = {j0, . . . , js−1} , S1 = js, . . . , j2s−1, . . . Thus

‖Φx‖2 =

√√√√√bNs c∑
`=0

‖ΦS`xS`‖2
2

≤
bNs c∑
`=0

‖ΦS`xS`‖2

≤
√

1 + ε

bNs c∑
`=0

‖xS`‖2 Φhas (s, ε)− RIP

≤
√

1 + ε

‖xS0‖2 +
1√
s

bNs c∑
`=0

‖xS`‖1

 Lemma 3.6.1

≤
√

1 + ε

(
‖x‖2 +

‖x‖1√
s

)
which corresponds to the first inequality. Now using Holder’s inequality, we con-

clude that ‖x‖1 ≤
√
N‖x‖2. Using this on the ‖x‖1 term from the above inequality,

and noting that the bound holds for the supremum over all x such that ‖x‖2 = 1,

we obtain our second inequality.

Next we study a theorem wish will allow us to construct JL maps from BOS based

RIP matrices.
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Theorem 4.4.4 (Krahmer-Ward). Let S ⊂ RN have |S| = M . Suppose that Φ ∈

R
m×N has the RIP of order (2s, η/4) for some η, p ∈ (0, 1) and s ≥ 16 ln

(
4M
p

)
. Let

ψ ∈ {−1, 1}N have i.i.d. uniform Radamacher entries. Then

(1− η) ‖x‖2
2 ≤ ‖ΦDiag(ψ)x‖2

2 ≤ (1 + η) ‖x‖2
2

∀x ∈ S with probability at least 1− p

Proof. Let x ∈ S. We may assume without loss of generality by a scaling argument

that ‖x‖2 = 1.

Let k =
⌈
N
s

⌉
. Order the indices [N ] based on descending magnitude of the entries

of x and then partition these indices into the minimal number of disjoint blocks

S1, . . . , Sk of at most size s. So S1 ⊂ [N ] contains the s largest entries of x and so

on.

Denote the diagonal matrix which has entries along its diagonal equal to the

entries of the vector ψ as Dψ. For our choice of ψ then Dψ ∈ {−1, 0, 1}N×N . Now

we consider the following decomposition of the norm
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‖ΦDψx‖2
2 = 〈ΦDψ (xS1 + xS̄1

) ,ΦDψ (xS1 + xS̄1
)〉

= 〈ΦDψxS1 ,ΦDψxS1〉+ 2〈ΦDψxS1 ,ΦDψxS̄1
〉+ 〈ΦDψxS̄1

,ΦDψxS̄1
〉

= ‖ΦDψxS1‖2
2 + 2〈ΦDψxS1 ,ΦDψxS̄1

〉+ 〈ΦDψxS̄1
,ΦDψxS̄1

〉

= ‖ΦDψxS1‖2
2 + 2〈ΦDψxS1 ,ΦDψxS̄1

〉+ 〈ΦDψ

(
k∑
j=2

xSj

)
,ΦDψ

(
k∑
i=2

xSi

)
〉

= ‖ΦDψxS1‖2
2 + 2〈ΦDψxS1 ,ΦDψxS̄1

〉+
k∑
j=2

k∑
i=2

〈ΦDψxSj ,ΦDψxSi〉

= ‖ΦDψxS1‖2
2 + 2〈ΦDψxS1 ,ΦDψxS̄1

〉+
k∑
j=2

k∑
i=2i 6=j

〈ΦDψxSj ,ΦDψxSi〉+
k∑
j=2

〈ΦDψxSj ,ΦDψxSj〉

=
k∑
j=1

‖ΦDψxSj‖2
2︸ ︷︷ ︸

Term I

+ 2〈ΦDψxS1 ,ΦDψxS̄1
〉︸ ︷︷ ︸

Term II

+
k∑
j=2

k∑
i=2i 6=j

〈ΦDψxSj ,ΦDψxSi〉︸ ︷︷ ︸
Term III

We will proceed then to bound each of the three terms.

Term (I): Note that Dψ is unitary and also does not change the sparsity of xSj .

Since Φ has the RIP of order (2s, η/4) we have

k∑
j=1

‖ΦDψxSj‖2
2 ≤

(
1 +

η

4

) k∑
j=1

‖DψxSj‖2
2 =

(
1 +

η

4

) k∑
j=1

‖xSj‖2
2 =

(
1 +

η

4

)
‖x‖2

2

The lower bound is obtained in an analogous way, and so we have(
1− η

4

)
‖x‖2

2 ≤ Term I ≤
(

1 +
η

4

)
‖x‖2

2

Term (II): Note that since Dψ is a diagonal matrix, DψxS̄1
= DxS̄1

ψ

〈ΦDψxS1 ,ΦDψxS̄1
〉 = 〈ΦS1DψS1xS1 ,ΦS̄1

DxS̄1
ψS̄1
〉

= 〈DxS̄1
Φ∗S̄1

ΦS1DψS1xS1 ,ψS̄1
〉
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Note that the left vector in the inner product is deterministic save for the term

DψS1 whereas the vector on the right depends on ψS̄1
; since the entries of psi are

i.i.d. and the support of ψS̄1
and ψS1 are of course disjoint, we have that the two

vectors are independent of each other. Denote a = DxS̄1
Φ∗
S̄1

ΦS1DψS1xS1 , the inner

product then becomes

〈a,ψS̄1
〉 =

∑
j∈S̄1

ajψj

Note that by independence E[ajψj] = E[aj]E[ψj] and furthermore that E[ψj] =

0, since ψj is a Radamacher random variable. And since |ajψj| = |aj| if we can

argue that aj is bounded, then we will have satisfied the hypothesis of Hoeffdings’

inequality, Theorem 4.1.2. Note that a ∈ `2 implies that aj is bounded. Note that

for a generic diagonal matrix D, and compatible generic matrix A that ‖DA‖2→2 ≤

‖D‖∞‖A‖2→2. Of interest to us is
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‖DxS̄1
Φ∗S̄1

ΦS1DψS1xS1‖2 =
‖a‖2

2

‖a‖2

=
〈a, a〉
‖a‖2

= 〈 a

‖a‖2

, a〉

= sup
‖z‖2=1

〈z, a〉

= sup
‖z‖2=1

∑
j≥2

〈zSj , DxS̄j
Φ∗S̄jΦS1DψS1xS1〉

≤ sup
‖z‖2=1

∑
j≥2

‖zSj‖2‖xS1‖2‖DxS̄j
Φ∗S̄jΦS1DψS1‖2→2

≤ sup
‖z‖2=1

∑
j≥2

‖zSj‖2‖xS1‖2‖DxS̄j
‖∞‖Φ∗S̄jΦS1‖2→2‖DψS1‖∞

≤ sup
‖z‖2=1

∑
j≥2

‖zSj‖2‖xS1‖2‖xS̄j‖∞‖Φ
∗
S̄j

ΦS1‖2→2

≤ sup
‖z‖2=1

∑
j≥2

‖zSj‖2 (1)

(
‖xj−1‖2√

s

)(η
4

)
≤ η

4
√
s

sup
‖z‖2=1

∑
j≥2

‖zSj‖2‖xj−1‖2

≤ η

4
√
s

sup
‖z‖2=1

1

2

∑
j≥2

‖zSj‖2
2 + ‖xj−1‖2

2

≤ η

4
√
s

So the sum of mean zero, bounded random variables in Term II, 〈ΦDψxS1 ,ΦDψxS̄1
〉,

satisfies Hoeffdings’ inequality and thus

(4.3) P [|〈ΦDψxS1 ,ΦDψxS̄1
〉| ≥ t] ≤ 2 exp

(
−8st2

η2

)
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Term (III): Denote B = DxSj
Φ∗SjΦSiDxSi

k∑
j=2

k∑
i=2
i 6=j

〈ΦDψxSj ,ΦDψxSi〉 =
k∑
j=2

k∑
i=2
i 6=j

〈ψ, DxSj
Φ∗SjΦSiDxSi

ψ〉

= ψ∗Bψ

Observe that

(B)k,` =


xkΦ

∗
kΦ`x` if k, ` ∈ [N ] \ S1, k 6= `

0 otherwise

And so B is a symmetric matrix with zeros along its axis. In order to apply Lemma

4.4.5, which is stated and proved below, we need to show that the operator norm and

Frobenius norm are bounded. Consider then the operator norm of B. We bound it

by use of Cauchy-Schwarz, operator norm bounds and bounds similar to those seen

in the Term II bound.
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‖B‖2→2 = sup
‖z‖2=1

〈z, Bz〉

≤ sup
‖z‖2≤1

k∑
j=2

k∑
`=2
` 6=j

〈zj, DxSj
Φ∗SjΦS`DxS`

z`〉

≤ sup
‖z‖2≤1

k∑
j=2

k∑
`=2
` 6=j

‖zj‖2‖DxSj
‖Φ∗SjΦS`DxS`

z`‖2

≤ sup
‖z‖2≤1

k∑
j=2

k∑
`=2
` 6=j

‖zj‖2‖z`‖2‖xSj‖∞‖Φ∗SjΦS`‖2→2‖xS`‖∞

≤ sup
‖z‖2≤1

k∑
j=2

k∑
`=2
` 6=j

‖zj‖2‖z`‖2

‖xSj−1
‖2√

s

η

4

‖xS`−1
‖2√

s

=
η

4s
sup
‖z‖2≤1

k∑
j=2

k∑
`=2
`6=j

(
‖zj‖2‖xSj−1

‖2

) (
‖z`‖2‖xS`−1

‖2

)

≤ η

4s
sup
‖z‖2≤1

1

4

k∑
j=2

k∑
`=2
` 6=j

(
‖zj‖2

2 + ‖xSj−1
‖2

2

) (
‖z`‖2

2 + ‖xS`−1
‖2

2

)
≤ η

4s
sup
‖z‖2≤1

1

2

(
‖z‖2

2 + ‖x‖2
2

)
=

η

4s

Using Homework ??, ‖xSt‖∞ ≤ ‖xSt−1‖2/
√
s:

‖B‖F =
k∑
j=2

k∑
t=2
t6=j

∑
i∈Sj

∑
`∈St

(xiΦ
∗
iΦ`x`)

2

≤
k∑
j=2

k∑
t=2
t6=j

∑
i∈Sj

x2
i ‖DxSt

Φ∗StΦi‖2
2

≤
k∑
j=2

k∑
t=2
t6=j

∑
i∈Sj

x2
i ‖xSt‖∞‖Φ∗StΦix`‖2

2 ≤
(η

4

)2
k∑
j=2

‖xSj‖2
2

k∑
t=2
t6=j

‖xSt−1‖2
2

s
≤ η2

16s

So both the operator and Frobenius norm of B is bounded, and we can apply

Lemma 4.4.5 to conclude that
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(4.4) P [|Term III| ≥ r] ≤ 2 exp

(
−2 min

{
3r2

8η2
,
r

8η

})
Setting t = η/8 and r = η/2 in Equations 4.3 and 4.4 we have that

(4.5)

(
1− 7

8
η

)
‖x‖2

2 ≤ ‖ΦDiag(ψ)x‖2
2 ≤

(
1 +

7

8
η

)
‖x‖2

2

fails to hold with at most probability

2

[
exp

(
−s
8

+

)
+ exp

(
−s
16

+

)]
by the union bound over the events |Term II| ≥ t and |Term III| ≥ r. Note that

using s ≥ 16 ln
(

4M
p

)
we can conclude that

2

[
exp

(
−s
8

+

)
+ exp

(
−s
16

+

)]
≤ p

M

Union bounding over all M points in S then, we have that the norm inequality

4.5 fails with at most probability p for any x ∈ Sand so taking the complement we

have that the inequality holds for ∀x ∈ S with probability at least 1− p.

Lemma 4.4.5 (Radamacher Chaos). Let B ∈ RN×N be symmetric with zeros on its

diagonal, and let ψ ∈ RN be a Radamacher random vector. Then for t > 0

P [|ψ∗Bψ| ≥ t] ≤ 2 exp

(
−min

{
3t2

128‖B‖2
F

,
t

32‖B‖2→2

})

=


2 exp

(
−3t2

128‖B‖2F

)
0 < t ≤ 4

3

‖B‖2F
‖B‖2→2

2 exp
(

−t2
32‖B‖2→2

)
t > 4

3

‖B‖2F
‖B‖2→2

Proof. We estimate E [exp (θψ∗Bψ)], the moment generating function of the random

variable ψ∗Bψ.

E [exp (θψ∗Bψ)] ≤ E [exp (4θψ∗Bψ′)]
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where we have applied Lemma 4.4.6

= EψEψ′

[
exp

(
4θ

N∑
k=1

ψ′k

(
N∑
j=1

ψjBjk

))]

denote a, where ak =
∑N

j=1 ψjBjk. So
∑N

k=1 ψ
′
k

(∑N
j=1 ψjBjk

)
= 〈ψ′, a〉.

= EψEψ′ [exp (4θ〈ψ′, a〉)]

By Homework 4.2.5, the entries of ψ′ are subguassian random variables which allow

parameter 1/2. So by Theorem 4.2.4, 4〈ψ′, a〉 is itself a subguassian random variable

which allows the parameter
16‖a‖22

2
. That is Eψ′ [exp (θ4〈ψ′, a〉)] ≤ exp

(
θ2 16‖a‖22

2

)
by

definition of subguassian random variable (see Theorem 4.2.3 and Definition 4.2.5).

Thus we can eliminate the inner expectation over ψ′ using the subgaussian bound

≤ Eψ
[
exp

(
θ2 16‖a‖2

2

2

)]

= Eψ

exp

8θ2

N∑
k=1

(
N∑
j=1

ψjBjk

)2


Note that
∑N

k=1

(∑N
j=1 ψjBjk

)2

= 〈Bψ, Bψ〉, where we have used symmetry of B.

Furthermore 〈Bψ, Bψ〉 = (Bψ)∗(Bψ) = ψ∗B∗Bψ = ψ∗B2ψ. So we can rewrite

the above inequality as

(4.6) E [exp (θψ∗Bψ)] ≤ E
[
exp

(
8θ2ψ∗B2ψ

)]
Consider the following

ψ∗B2ψ = ψ∗
(
B2 −Diag(B2) + Diag(B2)

)
ψ

= ψ∗
(
Diag(B2)

)
ψ +ψ∗

(
B2 −Diag(B2)+

)
ψ

= Trace(B2) +ψ∗
(
B2 −Diag(B2)

)
ψ

= ‖B‖2
F +ψ∗

(
B2 −Diag(B2)

)
ψ
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Observe that ψ∗ (Diag(B2))ψ = Trace(B2) since it is equivalent to diag(B2)∗(ψ∗ψ)

where diag(B2) is the vector formed by the diagonal entries of B2, and ∗ denotes

entry-wise multiplication; thus (ψ ∗ ψ) = {1}N . Also, ‖B‖2
F =

∑N
`=1 ‖b`‖2

2 =∑N
`=1〈b`,b`〉 = Trace(B2). So estimating the right hand side of inequality 4.6 with

these facts,

E
[
exp

(
8θ2ψ∗B2ψ

)]
= E

[
exp

(
8θ2
[
‖B‖2

F +ψ∗
(
B2 −Diag(B2)

)
ψ
])]

= exp
(
8θ2‖B‖2

F

)
E
[
exp

(
8θ2ψ∗

(
B2 −Diag(B2)

)
ψ
)]

Now, using Lemma 4.4.6 where y = diag(B2) we obtain

≤ exp
(
8θ2‖B‖2

F

)
E
[
exp

(
32θ2ψ∗B2ψ′

)]
Again, we will employ the subguassian bound - in this instance ã is a vector with

entries ãk =
∑N

j=1 ψj(B
2)jk. So

∑N
k=1 ψ

′
k

(∑N
j=1 ψj(B

2)jk

)
= 〈ψ′, ã〉. We note that

32〈ψ′, ã〉 is subgaussian random variable which allows parameter
1024‖ã‖22

2
and that

‖ã‖2
2 =

∑N
k=1

(∑N
j=1 ψj(B

2)jk

)2

= ψ∗B4ψ. We obtain the bound

≤ exp
(
8θ2‖B‖2

F

)
E
[
exp

(
512θ4ψ∗B4ψ′

)]

The matrix B4 and B2 are both positive definite; we can use this along with the the

operator norm to arrive at the following bound for the argument of the exponential

function above:

0 < ψ∗B4ψ = 〈B2ψ, B2ψ〉

= ‖B2ψ‖2
2

= ‖B2ψ‖2‖B2ψ‖2

≤ ‖B‖2
2→2ψ

∗B2ψ
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So then noting that the argument is positive on the right hand side, we have

E
[
exp

(
8θ2ψ∗B2ψ

)]
≤ exp

(
8θ2‖B‖2

F

)
E
[
exp

(
512θ4‖B‖2

2→2ψ
∗B2ψ

)]
= exp

(
8θ2‖B‖2

F

)
E

[
exp

(
8θ2ψ∗B2ψ

)64θ2‖B‖22→2

]
Consider the function g(y) = y64θ2‖B‖22→2 , if 64θ2‖B‖2

2→2 < 1 then g(y) is con-

cave and so by Jensen’s inequality E[g(y)] ≤ g(E[y]). So in particular, for y =

exp (8θ2ψ∗B2ψ) we obtain

≤ exp
(
8θ2‖B‖2

F

) (
E
[
exp

(
8θ2ψ∗B2ψ

)])64θ2‖B‖22→2

Now after a rearrangement of terms and noting the bound in 4.6 we have

(4.7) E [exp (θψ∗Bψ)] ≤ E
[
exp

(
8θ2ψ∗B2ψ

)]
≤ exp

(
8θ2‖B‖2

F

1− 64θ2‖B‖2
2→2

)
when θ < 1/8‖B‖2→2. We can now use the established inequality on the moment

generating function to bound the probability as stated in the hypothesis by way of

Markov’s inequality:

P [ψ∗Bψ ≥ t] = P
[
exp (ψ∗Bψ) ≥ eθt

]
≤ e−θtE [exp (θψ∗Bψ)]

≤ exp

(
−θt+

8θ2‖B‖2
F

1− 64θ2‖B‖2
2→2

)
Now in the event that 0 < t <≤ 4

3

‖B‖2F
‖B‖2→2

we set θ = (16‖B‖2→2)−1 and obtain from

4.7 2 exp
(
−3t2

128‖B‖2F

)
. When t > 4

3

‖B‖2F
‖B‖2→2

set θ = 3t
64‖B‖2F

. We have then our desired

result

P [|ψ∗Bψ| ≥ t] ≤


0 < t ≤ 4

3

‖B‖2F
‖B‖2→2

2 exp
(

−t2
32‖B‖2→2

)
t > 4

3

‖B‖2F
‖B‖2→2
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Lemma 4.4.6 (Decoupling). Let B ∈ RN×N be a symmetric matrix with zeros on

its diagonal. Let ψ ∈ RN be a vector of independent, mean zero random variables.

If f : R→ R is a convex function then

E = E [f (ψ∗Bψ)] ≤ E [f (4ψ∗ (B + Diag(y))ψ′)]

where ψ′ denotes an i.i.d vector with the same distribution as ψ and y ∈ RN is

arbitrary.

Proof. Let δ ∈ [0, 1]N be a Bernouli random vector where the entries are i.i.d and

equal to 1 or 0 with equal probability. Note that E [δk(1− δj)] = 1/4 for j 6= k

E = E [f (ψ∗Bψ)]

= Eψ

f
 N∑

k,j
k 6=j

ψjBjkψk




= Eψ

f
4

N∑
k,j
k 6=j

Eδ [δk(1− δj)]ψjBjkψk




≤ EψEδ

f
4

N∑
k,j
k 6=j

δk(1− δj)ψjBjkψk




≤ EδEψ

f
4

N∑
k,j
k 6=j

δk(1− δj)ψjBjkψk




where we have used Jensen’s inequality and Fubini’s Theorem. Denote the set σ(δ) =

{j ∈ [N ]|δj = 1}, i.e. the set of indices where the Bernouli random vector is equal

to one.

≤ EδEψ|σ(δ)
Eψ|

σ(δ)

f
4

∑
j∈σ(δ)

∑
k∈σ(δ)

ψjBjkψk


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Notice that ψj and ψk are independent given j ∈ σ(δ) and k ∈ σ(δ), so we are able

to replace ψk with ψ′k with no change in expectation.

≤ EδEψ|σ(δ)
Eψ′|

σ(δ)

f
4

∑
j∈σ(δ)

∑
k∈σ(δ)

ψjBjkψ
′
k


Note that E ≤ EδEψEψ′

[
f
(

4
∑

j∈σ
∑

k∈σ̄ ψ
′
kBkjψj

)]
implies that there exists at

least one particular Bernouli vector δ∗ such that the inequality holds, i.e. if not,

then the inequality in expectation over δ could not hold. Let us denote σ = σ(δ∗);

the indices of the entries of the now fixed vector δ∗ where the value is one.

≤ Eψ|σEψ′|σ

[
f

(
4
∑
j∈σ

∑
k∈σ̄

ψjBjkψ
′
k

)]

Since Eψ′|σ [ψ′k] = 0 = Eψ|σ [ψj] we can include additional summands in the following

way

≤ Eψ|σEψ′|σ

[
f

(
4
∑
j∈σ

{∑
k∈σ̄

ψjBjkψ
′
k +

∑
k∈σ

ψjBjkEψ′|σ [ψ′k]

}
+ 4

∑
j∈σ

Eψ|σ [ψj]
∑
k∈σ

Bjkψ
′
k

)]

Now denote B̃ = B + diag(y); and use this matrix in the previously introduced

summands to obtain

≤ Eψ|σEψ′|σ

[
f

(
4
∑
j∈σ

{∑
k∈σ̄

ψjBjkψ
′
k +

∑
k∈σ

ψjB̃jkEψ′|σ [ψ′k]

}
+ 4

∑
j∈σ

Eψ|σ [ψj]
∑
k∈σ

B̃jkψ
′
k

)]

Now by linearity of expectation we have

= Eψ|σEψ′|σ

[
f

(
Eψ′|σEψ|σ

[
4
∑
j∈σ

{∑
k∈σ̄

ψjBjkψ
′
k +

∑
k∈σ

ψjB̃jkψ
′
k

}
+ 4

∑
j∈σ

ψj
∑
k∈σ

B̃jkψ
′
k

])]

= Eψ|σEψ′|σ

[
f

(
Eψ′|σEψ|σ

[
4
∑
j∈σ

∑
k

ψjB̃jkψ
′
k + 4

∑
j∈σ

∑
k∈σ

ψjB̃jkψ
′
k

])]

= Eψ|σEψ′|σ

[
f

(
Eψ′|σEψ|σ

[
4
∑
j,k

ψjB̃jkψ
′
k

])]
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Apply Jensen’s inequality on the inner expectations to write

≤ Eψ|σEψ′|σEψ′|σEψ|σ

[
f

(
4
∑
j,k

ψjB̃jkψ
′
k

)]

= EψEψ′

[
f

(
4
∑
j,k

ψjB̃jkψ
′
k

)]
rewriting the sum as vector-matrix multiplication and noting that we have the ex-

pectation over each random vector we have

= E

[
f
(

4ψ∗B̃ψ′
)]

Homework 4.4.1. Show that ‖Φ∗StΦi‖2
2 ≤

(
η
4

)2
when i 6∈ St and Φ has the RIP of

order (2s, η/4)

Homework 4.4.2. Show that B ∈ Cm×N is ε-JL map of S ⊂ R
N if and only if

C ∈ R2m×N where

C =

<(B)

=(B)


is an ε-JL map of S ∈ RN . Use this to show that Theorem 4.4.4 holds as stated if

Φ ∈ Cm×N . Hint: Use the first part of the exercise to argue that a real matrix has

the desired Krahmer-Ward property, and again using the exercise to argue that the

real matrix having the Krahmer-Ward property implies the complex matrix must as

well.

Homework 4.4.3. Show thatB ∈ Cm×N is ε-JL map of S =
{
xj + iyj|xj,yj ∈ Rb

}
⊂

C
N if and only if

A =

 <(B) −=(B)

=(B) <(B)

 ∈ R2m×2N
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is an ε-JL map for S̃ where

S̃ =

xi

yi


Homework 4.4.4. Use the previous homework problems to prove the following

variant of Theorem 4.4.4: Let S ⊂ CN with |S| = M . Suppose that Φ ∈ Cm×N is

(2s, η/4)-RIP matrix for η, δ ∈ (0, 1) and s ≥ 16 ln (4M/δ). Let ψ1,ψ2 ∈ RN have

i.i.d Radamacher entries then

(1− η)‖x‖2
2 ≤ ‖ΦDiag(ψ1)<(x) + iDiag(ψ2)=(x)‖2

2 ≤ (1 + η)‖x‖2
2

4.5 General Metric Space Embeddings

Definition 4.5.1. A metric space is a pair (S, ρ) where S is a set and ρ : S×S → R
+

satisfies

1. ρ(x, y) = 0 ⇐⇒ x, y ∈ S

2. ρ(x, y) = ρ(y, x)∀x, y ∈ S

3. ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

Definition 4.5.2. A finite metric space is a metric space where |S| is finite

Definition 4.5.3. A compact metric space is a metric space (S, ρ) where |S| may be

infinite and has the property that every open cover of S contains a finite subcover.

That is, for all collections of points {xi}i×I ⊂ S and radii {ri} ∈ R+ \ {0} where

S =
⋃
i∈I {y ∈ S|ρ(xi, y) < ri} there exists a finite cover, F ⊆ I such that S =⋃

i∈F {y ∈ S|ρ(xi, y) < ri}. Equivalently, a compact metric space has the property

that for any ε > 0, the ε-covering number with respect to ρ is finite.

Example 4.5.4 (Norm Induced Metric). Let S ⊂ RN and let ρ : S × S → R
+ be

ρ(x,y) = ‖x− y‖ where ‖ · ‖ is any norm on RN . Then (S, ρ) is a metric space.
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Example 4.5.5 (Weighted Graph Metric Space). Let (V,E) be an undirected, con-

nected weighted graph with no loops or multiple edges. V is the set of vertices and

E ⊂ V ×V is the set of edges, we may define w : E → (0,∞) as the weight function,

where w(v, v) = 0 for v ∈ V . A path from vertex p to q where p, q ∈ V is a set of

edges e1, . . . , ed ∈ E such that ej = (u, v) is in the path if and only if ej−1 = (·, u)

and ej+1 = (v, ·) for j = 2, . . . , d − 1 and e1 = (p, ·), ed = (·, q). That is, a string of

edges that connects p and q.

The shortest path distance from p to q for p, q ∈ V

ρ(p, q) = inf
E∈(p,q)−paths

∑
ej∈E

w(ej)

defines a metric for V

MSP
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Figure 4.1: Example of a weighted graph using airport codes as the nodes. The edges could repre-
sent available flights over a certain period of time, and the weights could be travel time
in hours

Example 4.5.6 (Edit Distance over Words). Let A be some alphabet, a finite

set of elements such as the letters in the English language. Let V =
⋃N
j=1 A

j =
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⋃N
j=1 A× A× · · · × A︸ ︷︷ ︸

Cartesian product of Aj-times with itself

. That is, V is the set of tuples of A with length

less than or equal to where N is the length of the longest word. We will build an

edge set in the following way. For any pair (x, y) ∈ V 2 such that x = (z, u) for some

z, u ∈ ∅ ×
⋃N−1
j=1 Aj with

y ∈ {(a, z, u), (z, a, u), (a, u, a)}

for some a ∈ A. That is, (x, y) is a pair of words, where y differs from x by an

insertion of a single letter. We assign the weight function w whereeach edge in the

edge set has weight one. So for example w(at, cat) = 1 and w(rat, cat) = 2 if we

consider the alphabet A to be the 26 letters of the English alphabet.

Example 4.5.7 (Manifold). Let M ⊂ R
N be a compact, smooth, Riemannian

manifold of RN . Then (M, geodesic distance) is a compact metric space.

A central question then for our study of metric spaces and embeddings is as

follows: given a large, potentially complicated finite metric space, such as the graph

example given in 4.5.6. Can we compute approximate distance in a different metric

more quickly? A related problem is then can we compress a table of distances (e.g.

for a graph (V,E) then the distance table has
(|V |

2

)
entries to store) such that the

table take less storage while still approximately preserving distance. As is typical in

our applications we wish to understand how to trade accuracy for time and space in

some optimal way.

Definition 4.5.8 ((α, β)-Distortion Embedding). Let α, β ∈ (0,∞) with α ≤ β.

An (α, β)-distortion embedding of a metric space (X, ρ) into (Y, η) is a function

f : X → Y such that

αη (f(x, f(y))) ≤ ρ(x,y) ≤ βη (f(x,y))
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Where our interest lies in finding functions f and η which are able to be computed

quickly (as compared to ρ(·, ·)). Or, finding metric spaces Y which are easier to store

in comparison to X.

Definition 4.5.9. If α = β = 1 then f in Definition 4.5.8 is called an isometric

embedding.

Example 4.5.10. Let ε ∈ (0, 1), S ⊂ RN be finite, and define S × S → R
+ to be

dNS (x,y) = ‖x−y‖2. The JL lemma ensures that there exists a
(
(1 + ε)−1/2, (1− ε)−1/2

)
-

distortion embedding of (S, dNS ) into
(
S ′ ⊂ Rm, dNS′

)
where m = O

(
log |S|
ε2

)
. Further-

more the embeddings are easy to generate as random matrices.

We are wish to find embeddings into RN with an `p-norm defined metric on the

space Y ⊂ RN - this is desirable since `p-norms are easier to implement and compute

than metrics in the original metric space.

Definition 4.5.11. We say that (X, ρ) is an (α, β)-embeddable into `p(RN) if there

exists (α, β)-distortion embedding of (X, ρ) into S ⊂ RN , ‖x − y‖p with |X| = |S|.

That is, when (X, ρ) is (α, β)-embeddable into `p(RN) there exists f : X → S ⊂ RN

such that

α‖f(x)− f(y)‖p ≤ ρ(x, y) ≤ β‖f(x)− f(y)‖p, ∀x, y ∈ X

Definition 4.5.12. We say that (X, ρ) embeds isometrically into `pN if there exists

(1, 1)-distortion embedding of (X, ρ) into `p(RN)

Theorem 4.5.13. Every finite metric space (X, ρ) embeds isometrically into `∞|X|

Proof. Define f : X → R
|X|. Consider each element of the metric space X ={

x1, . . . , x|X|
}

. Our function then returns a vector of length |X| such that f(xj) =(
ρ(x1, xi), . . . , ρ(x|X|, xi)

)
.
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Consider then the infinity norm of the vectors in the metric space Y

‖f(x)− f(xj)‖∞ ≥
∣∣∣(f(xi)− f(xj))j

∣∣∣
= |ρ(xj, xi)− ρ(xj, xj)|

= ρ(xi, xj)

which holds for any choice of i, j ∈ [|X|]. We have then that β = 1 We now consider

the lower bound of ρ(xi, xj)

∣∣(f(xi)− f(xj))k
∣∣ = |ρ(xk, xi)− ρ(xk, xj)|

≤ ρ(xi, xj)

where we have used the reverse triangle inequality. Since this holds for any choice of

k ∈ [|X|], it will hold for the maximum over k.

‖f(x)− f(xj)‖∞ = max
k∈[|X|]

∣∣(f(xi)− f(xj))k
∣∣

and so we have then that α = 1. Thus f defines an isometric embedding into

`∞(R|X|)

Computationally, in the proof above, we are simply storing all distances between

pairs of elements of X through the use of f .



ρ(x1, x1) . . . ρ(x1, xi) . . . ρ(x1, x|X|)

ρ(x2, x1) . . . ρ(x2, xi) . . . ρ(x2, x|X|)

...
...

...

ρ(x|X|, x1) . . . ρ(x|X|, xi) . . . ρ(x|X|, x|X|)



f(xi)
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Definition 4.5.14. A subset C ⊆ X is called an ε-cover of (X, ρ) if ∀x ∈ X, ∃y ∈ C

such that ρ(x, y) < ε. The ε-covering number of (X, ρ) is the cardinality of a minimal

ε-cover of (X, ρ).

As can be seen in Homework 4.5.4, for approximation purposes, it is sufficient

to embed a cover of a compact metric space to preserve approximately all metric

distances in X, even when the set has an infinite number of points, and that distance

computations will required N ρ-distance computations. If (X, ρ) has low dimension

structure this can be done efficiently using for example a cover-tree construction as

shown in [3]

Homework 4.5.1. Show that every finite metric space is a compact metric space

Homework 4.5.2. Show that a metric space (S, ρ) from Example 4.5.4 is a compact

metric space if and only if S is closed and bounded with respect to Euclidean distance.

Hint: Recall that any two norms ‖ · ‖∗, ‖ · ‖† on RN , there exists positive constants

D,C such that

D‖x‖∗ ≤ ‖x‖† ≤ C‖x‖∗, ∀x ∈ RN

Homework 4.5.3. Show that (α, β)-distortion embedding is always one-to-one such

that |X| ≤ |Y | when one exists.

Homework 4.5.4. Let Cρ
ε = N denote the ε covering number of (X, ρ) (see Defini-

tion 3.2.2) then

1. N is finite if (X, ρ) is a compact metric space.

2. Prove there exists a map f : X → `∞(RN) such that

|d∞N (f(x), f(y))− ρ(x, y)| < 2ε, ∀x, y ∈ X
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Application 4.5.15 (Computing the diameter of a set). We now consider a partic-

ular, more useful, embedding into `∞(RN) that will reveal for S ⊆ Rn, its diameter

diamp(S) = maxx,y∈S ‖x− y‖p.

Similar to the naive nearest neighbor problem the computation, the diameter of

a set takes O(n|S|2) to compute since it requires a distance calculation between all

pairs of points.

Lemma 4.5.16. If p > q ≥ 1 then ‖x‖p ≤ ‖x‖q, ∀x ∈ Rn

Proof. Consider

‖x‖pp =
n∑
j=1

|xj|p

=
n∑
j=1

|xj|q|xj|p−q

≤ max
j
|xj|p−q

(
n∑
j=1

|xj|q
)

Note that

max
j∈[n]
|xj|q ≤

n∑
j=1

|xj|q ⇐⇒ max
j∈[n]
|xj|p−q ≤

(
n∑
j=1

|xj|q
) p−q

q

=
(
‖x‖qq

) p−q
q

therefore

‖x‖pp ≤
(
‖x‖qq

) p−q
q ‖x‖qq

= ‖x‖pq

which implies the result after taking p-th root

Lemma 4.5.17. Let p > 1. Then

‖x‖p ≤ ‖x‖1 ≤ ‖x‖pn1−1/p

holds ∀x ∈ Rn
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Proof. Apply lemma 4.5.16 and Holder’s Inequality.

Lemma 4.5.18. If (S, dn1 ) is a finite `1(Rn) metric space then it can be isometrically

embedded into `∞(R2n) using a linear embedding f : S → R
2n.

Proof. Let S̃ ⊂ R2n be the set {−1, 1}n, all possible vertices of the n-cube. Noting

sgn(x) =


1 x ≥ 0

−1 x < 0

we have the following identity between the `1-norm and maximum of inner products

over S̃. Observe, on one hand:

‖x‖1 =
n∑
j=1

|xj| =
n∑
j=1

sgn(xj)xj ≤ max
y∈S̃
〈y,x〉

on the other hand, using Holder’s inequality

max
y∈S̃
〈y,x〉 ≤ ‖y‖∞‖x‖1 = ‖x‖1

and so ‖x‖1 = maxy∈S̃〈y,x〉. We define our embedding f : Rn → R
2n as

f(x) = (〈x,y〉)y∈S̃

As seen above, ‖x‖1 = ‖f(x)‖∞, and so we see that f is the embedding of S into

`∞(R2n)

Note that diam∞(S) can be computed in time linear in |S|. We can see this by
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considering the following calculation

diam∞(S) = max
x,y∈S

‖x− y‖∞

= max
x,y∈S

max
j∈[2N ]

|xj − yj|

= max
j∈[2N ]

max
x,y∈S

|xj − yj|

= max
j∈[2N ]

∣∣∣∣max
x∈S

xj −min
y∈S

yj

∣∣∣∣

but for any coordinate j, maxx∈S xj requires |S| comparisons. Likewise for miny∈S yj.

Since there are 2N coordinates then, this calculation takesO(2N |S|) time to compute.

Algorithm 4.5.1 Diameter in `p-norm of S

Input: S ⊆ RN , p ∈ [1,∞)
Output: Estimate for diamp(S)

for x in S do
Compute x′ = f(x) ∈ R2N where f defined as in Lemma 4.5.18

end for
for each j ∈ [2n] do
Mj ← maxx′∈S′ xj
mj ← minx′∈S′ xj
`j ←Mj −mj

end for
return maxj∈[2n] `j

Recall that f(x) is computed by taking 2N inner products of vectors of length

n. Since this is computed for each element of x ∈ S the runtime of the first loop of

Algorithm 4.5.1 is O(|S|N2N). The second loop requires comparing |S| values for

each of the 2N coordinates for a runtime of O|S|2N . Thus the overall runtime of the

algorithm is O(|S|N2N).

The brute force method requires computing the `p-norm of the difference of all

possible pairs of vectors. Each norm computation takes on order N operations and

there are on order |S|2 such pairs to compute for an overall runtime of O(|S|2N). So

when |S| ≥ 2N then the Algorithm 4.5.1 will save time.
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Theorem 4.5.19. Algorithm 4.5.1 outputs an estimate E that satisfies

diamp(S) ≤ E ≤ n1− 1
pdiamp(S)

Proof. Denote the output of the algorithm as E. Note that by Lemma 4.5.18, we

have that `1(RN) is embedded isometrically into `∞(R2N ) by f . That is

E = max
x,y
‖f(x)− f(y)‖∞ = max

x,y
‖x− y‖1

On the other hand, by Lemma 4.5.16, ‖x − y‖p ≤ ‖x − y‖1 and also ‖x − y‖1 ≤

n1− 1
p‖x− y‖p. Combining then these results we see

diamp(S) ≤ diam1(S) = E ≤ n1− 1
pdiam(S)

Our algorithm and theorem then demonstrate that we can productively use the

fact that all finite metric spaces embed into `∞. This depended greatly

4.6 Frechet Embedding Methods for Finite Metric Spaces

Definition 4.6.1 (Frechet Embedding). Let (X, ρ) be a finite metric space. Let

Sj ⊂ X for j ∈ [r] be r non-empty subsets. Let α1, . . . , αr ∈ R. The Frechet

embedding f of (X, ρ) into `p(Rr) is given by

(4.8) f(x)j = αj min
z∈Sj

ρ(z,x), ∀x ∈ X, j ∈ [r]

Lemma 4.6.2. Let (X, ρ) be a finite metric space. Let f : X → R
r be a Frechet

embedding as in Definition 4.8 where α1 = α2 = · · · = αr. Then

‖f(x)− f(y)‖p ≤ αr1/pρ(x,y)

∀p ≥ 1, ∀x,y ∈ X
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Proof. Fix x,y ∈ X. We will show that for any nonempty subset S ⊆ X

(4.9) |ρ(x, S)− ρ(y, S)| ≤ ρ(x,y)

where ρ(x, S) = minz∈S ρ(x, z). If 4.9 holds then(
r∑
j=1

|αρ(x, Sj)− αρ(y, Sj)|p
)1/p

≤ α

(
r∑
j=1

|ρ(x,y)|p
)1/p

= αr1/pρ(x,y)

To see that 4.9 holds, if S is nonempty, ρ(x, S) ≤ ρ(x,w), ∀x ∈ X, ∀w ∈ S by

definition. Now suppose w̃ ∈ S is the minimizer for ρ(y, S) = ρ(y, w̃). Then

ρ(x, S)− ρ(y, S) ≤ ρ(x, w̃)− ρ(y, w̃)

≤ ρ(x,y)

Similarly, ρ(y, S)−ρ(x, S) holds when w̃ is the minimizer for the distance ρ(x, S).

Lemma 6.4 indicates that any constant Frechet embedding will satisfy some (γ, β)-

distortion criteria with β = αr1/p. So the main difficulty is to find a lower bound for

the distortion. We would ideally want a bound that is proportional to r1/p i.e. some

small c̃ so that γ = r1/pc̃

An embedding into `2(RO(log2 |X|)) for any finite metric space (X, ρ)

1. Let j = 1, . . . , blog2 |X|c+ 1

2. For each j above, construct m random subsets Ai,j ⊆ X, ∀i ∈ [m] by drawing 2j

entries from X i.i.d uniformly at random.

Theorem 4.6.3 (Bourgain). Let f : X → R
qm be defined by

f̃(y)mi:m(i+1) = (
1

m
min
z∈Ai,1

, . . . ,
1

m
min

z∈Ai,m
)

where q denotes blog2 |X|c+ 1. There exists universal constants c, c̃ ∈ R+ such that

c̃ρ(x,y) ≤ ‖f̃(x)− f̃(y)‖2 ≤ qρ(x,y)
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holds ∀x,y ∈ X with high probability provided that

m ≥ c log2 |X|

The theorem asserts that there exists (c̃,O(log2 |X|))-distortion embedding of

(X, ρ) into `2(O(log2
2 |X|)). We can further improve the compression by use of an

ε-JL map. Schematically

(X, ρ) Bourgain−−−−−−→ (f̃(X ′), `2(RO(log2 |X|))) ε-JL−−→ (Φ(f̃(X)), `2(RO(log2 |X|)))

Corollary 4.6.4. There exists (1,O(log |X|))-distortion embeddings of (X, ρ) into

`2(RO(log |X|))

What then is achieved in terms of compression for such an embedding? Note that

storing all pairwise distances in the original metric requires O(|X|2)-space. Embed-

ding via the Bourgain Theorem and a JL map would result in O(|X| log |X|)-space

where we have approximations of quality O(log |X|) distortion. There are known

examples of metric spaces where the upperbound of the distortion is achieved by this

approach; that state of affairs is not satisfactory for large |X| and so our next result

will address this deficiency by allowing for a range of space-accuracy trade-offs.

Goal. We desire an (α, β)-distortion embedding (X, ρ) into `∞(Rñ) where ñ ≤ |X|

with a distortion ratio β/α = D, where D is any odd value we choose (i.e. we will

be interested in the case D ≥ 3 and D ≤ log |X|).

Towards this goal, let p = |X|−1/q where q = D+1
2

> 1.

Now let j = 1, . . . , q, define pj = min(1/2, pj). Let m ≥ 24γn1/q ln |X| for any

γ ≥ 1 we may choose.

Construct random subsets of X in the following way: for each j = 1, . . . , q and

i = 1, . . . ,m choose a subset Ai,j ⊆ X where each element of X is included in Ai,j

with probability pj.
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Define f ′ : X → R
mq by

(4.10) (f ′(v))i,j = ρ(v, Ai,j), ∀j ∈ [q], i ∈ [m],v ∈ X

Note that based on the definitions, mq = O(qγ|X|1/q ln |X|)

Theorem 4.6.5. The random embedding f ′ into `∞(Rmq) as seen in 4.10 will satisfy

1

D
ρ(u,v) ≤ ‖f ′(u)− f ′(v)‖∞ ≤ ρ(u,v)

∀u,v ∈ X with provability at least 1− |X|2(1−γ) where D = 2q − 1

How does this compare in terms of storage? Recall that an isometric embedding of

(X, ρ) into `∞ requires O(|X|2) space. The embedding f ′ on the other hand requires

O(Dγ|X|
2

D+1
+1 ln |X|) space.



Chapter V

LJL Embeddings of Arbitrary Subsets of RD, Manifold
Models, Manifold Learning, and Dimensionality Reduction

(MTH 994 Lectures 8 – 10)

5.1 Gaussian Widths and Applications (MTH 994 Lecture 8)

Definition 5.1.1. The Gaussian width of a set T ⊂ R
N is denoted w(T ) and is

defined as

w(T ) = Eg

[
sup
x∈T
〈g,x〉

]
where g ∈ RN is a Gaussian random vector with i.i.d entries gj ∼ N (0, 1). We define

w(∅) = 0.

As we shall see shortly, the Gaussian width is most useful when we consider

normalized vectors, i.e. we consider w(T̃ ) where T̃ = {t/‖t‖2|t ∈ T}. Additionally,

the width of a set is unchanged if we consider its closure w(T ) = w(T )

Lemma 5.1.2. ∀T ⊆ RN , w(T ) ≥ 0

Proof. The proof is left as an exercise.

Lemma 5.1.3. If S ⊆ T then w(S) ≤ w(T )

Proof. The proof is left as an exercise.

Lemma 5.1.4. Let U ∈ RN×N be unitary, y ∈ RN and T ⊆ RN . Then w(U(T ) +

y) = w(T )
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Proof.

E

[
sup

x∈U(T )+y

〈g,x〉

]
= E

[
sup
z∈T
〈g, Uz + y〉

]
= E

[
sup
z∈T
〈g, Uz〉+ 〈

]
+E [g,y〉] linearity of E

= E

[
sup
z∈T
〈U∗g, z〉

]
Lemma 2.5.1

=

√
1

(2π)N

∫
RN

fT (U∗g) e−
‖g‖22

2 dg fT (U∗g) = sup
z∈T
〈g, Uz〉+ 〈

=

√
1

(2π)N

∫
U∗RN

fT (h) e−
‖Uh‖22

2 |detU∗|dh change of variable h = U∗g

=

√
1

(2π)N

∫
RN

fT (h) e−
‖h‖22

2 dh |det(U)| = 1, ‖Uh‖2 = ‖h‖2

= w(T )

Example 5.1.5. Consider B`2

N = B`2

N (0, 1), the unit `2-ball in RN . Then

w
(
B`2

N (0, 1)
)

= E

[
sup
x∈B`2N

〈g,x〉

]

= E [‖g‖2] g/‖g‖2 ∈ B`2

N

≤
(
E
[
‖g‖2

2

])1/2
Jensen’s inequality

=

(
E

[
N∑
j=1

g2
j

])1/2

=
√
N

A lower bound in terms of
√
N can likewise be found and so we see w(T ) ≈

√
N .

Example 5.1.6. Consider T = BN(0, 1) ∩ LkB, the unit `2-ball intersected with a

k-dimensional subspace. Note that there exists U unitary such that

U
({

(x1, . . . , xk, 0, . . . , 0)|x2
1 + · · ·+ x2

k = 1
})

= B
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We can use the previous example then to show that w(T ) ≤
√
k

Lemma 5.1.7. If a ∈ R, T, S ⊆ RN then

1. w(T + S) = w(T ) + w(S)

2. w(aT ) = |a|w(T )

Proof. The proof is left as an exercise.

Lemma 5.1.8. Let T ⊆ RN then

w(T − T ) = 2w(T )

Proof. Immediate consequence of Lemma 5.1.7.

Lemma 5.1.9. Let T ⊆ RN then

1√
2π

diam(T ) ≤ w(T ) ≤
√
N

2
diam(T )

where diam(T ) = sup {‖x− y‖2|x,y ∈ T}

Proof. Fix x,y ∈ T

w(T ) =
1

2
w(T − T ) Lemma 5.1.8

=
1

2
E

[
sup

u−v∈T−T
〈u− v,g〉

]
≥ 1

2
E [max (〈x− y,g〉, 〈y − x,g〉)]

=
1

2
E [|〈x− y,g〉|]

But 〈x−y,g〉 ∼ N (0, ‖x−y‖2) so |〈x− y,g〉| is a folded normal distribution, which

has an expectation of ‖x − y‖2

√
2
π

and so taking the supremum over all distances

x− y we have the lower bound:

1

2
‖x− y‖2

√
2

π
=

1√
2π

diam(T ) ≤ w(T )
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Now consider

w(T ) =
1

2
w(T − T ) Lemma 5.1.8

=
1

2
E

[
sup

u−v∈T−T
〈u− v,g〉

]
Cauchy-Schwarz

≤ 1

2
E

[
sup
u−v
‖u− v‖2‖g‖2

]
≤
√
N

2
diam(T )

which corresponds to our desired upper bound

Lemma 5.1.10. w(T ) is finite if and only if T is bounded.

Proof. The proof is left as an exercise.

The following two lemmas will be used to show that the gaussian width of a set

and the set’s convex hull are equal.

Lemma 5.1.11. If C ⊆ T ⊆ R
N is an ε-cover of T then conv(C) is a 2ε-cover of

conv(T ).

Proof. Let x ∈ conv(T ) and y ∈ conv(T ) be such that ‖x−y‖2 < ε. By Caratheodory’s

Theorem then ∃t, . . . , tÑ ∈ T such that
∑Ñ

`=1 α`t` where Ñ ≤ N + 1, αell >

0∀` ∈ [Ñ ]. For every t` ∈ T let z` ∈ C be such that ‖t` − z`‖2 ≤ ε. So

z =
∑Ñ

`=1 α`z` ∈ conv(C) and

‖z− x‖2 ≤ ‖x− y‖2 + ‖y − z‖2

≤ ε+ ‖
Ñ∑
`=1

α`(t` − z`)‖2

≤ ε+
Ñ∑
`=1

α`‖t` − z`‖2

≤ 2ε
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Lemma 5.1.12. If C ⊆ RN is a finite set then w(C) = w(conv(C)

Proof. Consider C =
{
c1, . . . , c|C|

}
⊂ RN . By definition of convex hull, we have

w(conv(C)) = E

[
sup

z∈conv(C)
〈g, z〉

]

= E

 sup
{α1,...,α|C|,

∑
αj=1}

〈g,
|C|∑
j=1

αjcj〉


= E

 sup
{α1,...,α|C|,

∑
αj=1}

αj〈g, cj〉


= E

[
sup
j∈[|C|]
〈g, cj〉

]

= w(C)

Since the sum is maximized then when αj = 1 for arg minj〈g, cj〉

Theorem 5.1.13. Let T ⊆ RN be bounded. Then w(T ) = w(conv(T ))

Proof. Note that T ⊂ conv(T ) and so by Lemma 5.1.3 w(T ) ≤ w(conv(T )).

Now assume for eventual contradiction that w(T ) is not greater than w(conv(T )).

So then ∃ε′ such that ε′ = w(conv(T ))−w(T ) > 0. Now let ε = ε′
√
N/4 > 0 and let

C ⊆ T be an ε-cover of T . Thus

w(conv(T )) = E

[
sup

x∈conv(T )

〈g,x〉

]

= E

[
sup

x∈conv(T )

〈g,x〉

]

= E [〈g,xg〉]

since fg(x) = 〈g,x〉 is a continuous function over a compact set, the set will contain

its maximizers; denote such a maximizer by xg. Since C is an ε-cover of T , by Lemma
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5.1.11 we have that conv(C) is an 2ε-cover of conv(T ) and therefore ∃x′g ∈ conv(C)

such that xg = x′g + η where ‖η‖2 ≤ 2ε Thus

w(conv(T )) = E [〈g,xg〉]

≤ E

 sup
x∈conv(C)
y∈B(0,2ε)

〈g,x + y〉


= E

[
sup

x∈conv(C)
〈g,x〉

]
+E

[
sup

y∈2εB(0,1)

〈g,y〉

]

= w(conv(C)) + w(2εB(0, 1))

= w(C) + 2εw(B(0, 1))

≤ w(C) + 2ε
√
N

Where we have used Lemma 5.1.7, and Theorem 5.1.13 and calculation for width of

unit ball seen in Example 5.1.6

= w(T ) +
ε′

2

< w(T ) + ε′

= w(conv(T ))

which is a contradiction, we negate the hypothesis and conclude that w(conv(T )) ≤

w(T ) ≥ w(conv(T )) i.e. w(T ) = w(conv(T ))

Lemma 5.1.14. Let g ∼ N (0, 1). Then for θ ∈ R, E [exp(θg)] = exp
(
θ2

2

)
.
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Proof.

E [exp(θg)] =
1√
2π

∫ ∞
−∞

eθxe−x
2/2dx

= e
θ2

2
1√
2π

∫ ∞
−∞

e−
1
2

(x2−2θx+θ2)dx

= e
θ2

2
1√
2π

∫ ∞
−∞

e−
1
2

(x−θ)2

dx

= e
θ2

2

Note that we can apply Theorem 4.2.4 and Lemma 5.1.14 to conclude that

E [exp (θ〈g,x)] ≤ exp

(
1

2
‖x‖2

2θ
2

)
where g ∼ N (0, I)

Theorem 5.1.15. Let X0, . . . , XM−1 be a sequence of mean zero, subgaussian ran-

dom variables (not necessarily independent) satisfying E [exp(θX`)] ≤ exp (c`θ
2) , ∀` ∈

[M ]. Let c = max`∈[M ] c`. Then

E

[
max
`∈[M ]

X`

]
≤ 2
√
c lnM

E

[
max
`∈[M ]

|X`|
]
≤ 2
√
c ln(2M)

Proof. The inequalities hold when M = 1 since E[X`] = 0 = ln 1. So we may assume
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M ≥ 2. Consider for β ∈ R+,

βE

[
max
`∈[M ]

X`

]
= E

[
max
`∈[M ]

βX`

]
= E

[
max
`∈[M ]

ln exp (βX`)

]
= E

[
ln max

`∈[M ]
exp (βX`)

]

≤ E

ln
∑
`∈[M ]

exp (βX`)


≤ ln

E
∑
`∈[M ]

exp (βX`)


where we have used Jensen’s inequality stated in terms of concave function ln(Y ),

E[lnY ] ≤ lnE[Y ]

= ln

∑
`∈[M ]

E [exp (βX`)]


≤ ln

(
M exp

(
cβ2
))

= ln (M) + cβ2

where we have used linearity of expectation and uniform subgaussian bound on the

moment generating functions of random variables X`

Now after a rearrangement of terms and setting β =
√

lnM
c

we obtain

E

[
max
`∈[M ]

X`

]
≤ 2
√
c lnM

To obtain the second inequality in the theorem statement, we note that max`∈[M ] {|X`|} =

maxj∈[2M ] {Yj} where Y2` = X`, Y2`+1 = −X`. I.e., consider the set of random vari-

ables and their opposites, which will have the same maximum as the absolute value.
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We can then apply the first inequality on this doubled set to obtain.

E

[
max
`∈[M ]

|X`|
]
≤ 2
√
c ln 2M

Example 5.1.16. [Upper bound for Gaussian Width of Finite Set] Let T ⊂ RN be

a finite set of cardinality M . Note that for z = x − y, x,y ∈ T , g ∼ N (0, I) the

random variable X = 〈g, z〉 is distributed normally with variance equal to the square

of `2-norm of z, i.e. X ∼ N (0, ‖x−y‖2
2) by Lemma 2.5.1 and X is subgaussian with

parameter 1
2
‖x− y‖2

2 by Theorem 4.2.4 and Lemma 5.1.14. Observe

w(T ) =
1

2
w(T − T )

=
1

2
E

[
sup
x,y∈T

〈g,x− y〉
]

=
1

2
E

[
sup
x,y∈T

〈g,x− y〉
]

=
1

2
E

[
max

`∈[|T−T |]
X`

]
≤ 1

2

(
2

√(
1

2
max
x,y∈T

‖x− y‖2
2

)
lnM2

)

= diam(T )
√

lnM

where we have applied Theorem 5.1.15.

Example 5.1.17 (Gaussian Width of Standard Basis). Let T = {±ej}Nj=1 ⊂ R
N be

the set of standard basis vectors and their opposites in RN . Observe

w(T ) = E

[
max
j∈[N ]

max (〈g, ej〉, 〈g,−ej〉)
]

= E

[
max
j∈[N ]
|gj|
]
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Theorem 5.1.18. Let g ∼ N (0, IN×N) for N ≥ 2. Then E [‖g‖∞] ≥ 0.265
√

lnN .

.2.6

Proof. Consider the following upper bound on the probability that the absolute value

of a gaussian random variable is less than some positive number δ

P [|g| < δ] = 1− P [|g| ≥ δ]

= 1− P [g < −δ ∪ g > δ]

= 1− 2P [g > δ]

= 1−
√

2

π

∫ ∞
δ

e−
t2

2 dt

≤ 1−
√

2

π

∫ 2δ

δ

e−
t2

2 dt

≤ 1−
√

2

π

∫ 2δ

δ

e−
(2δ)2

2 dt

≤ 1−
√

2

π
δe−2δ2

Thus

(5.1) P [|g| < δ] ≤ 1−
√

2

π
δe−2δ2

Now observe the following calculation for the expectation of the infinity norm of a

Gaussian vector

E [‖g‖∞] = E

[
max
j∈[N ]
|gj|
]

=

∫ ∞
0

P

[
max
j∈[N ]
|gj| ≥ t

]
dt

=

∫ ∞
0

(
1− P

[
max
j∈[N ]
|gj| < t

])
dt

=

∫ ∞
0

1− P

 ⋂
j∈[N ]

|gj| < t

 dt
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We have that the entries are i.i.d guassian and so we can apply the product property

=

∫ ∞
0

(
1− (P [|g| < t])N

)
dt

≥
∫ δ

0

(
1− (P [|g| < t])N

)
dt

≥
∫ δ

0

(
1− (P [|g| < δ])N

)
dt

= δ
(

1− (P [|g| < δ])N
)

applying 5.1 from above we obtain

≥ δ

1−

(
1−

√
2

π
δe−2δ2

)N


Now let δ =
√

lnN
2

=

√
lnN

2

1−

(
1−

√
lnN

π

1

N

)N


≥
√

lnN

2

(
1− exp

(
−
√

lnN

π

))

≥
1− exp

(
−
√

ln 2
π

)
√

2
lnN

≥ 0.265 lnN

Homework 5.1.1. Prove that fT (z) = supx∈T 〈z,x〉 is continuous whenever T ⊆ RN

is bounded.

Homework 5.1.2. Prove that ∃C ∈ R+ such that |f(z)| ≤ C‖z‖2, ∀z ∈ RN when-

ever T is bounded.
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Homework 5.1.3. Prove Lemma 5.1.2

Homework 5.1.4. Prove Lemma 5.1.3

Homework 5.1.5. Prove Lemma 5.1.7

Homework 5.1.6. Prove Lemma 5.1.10

Homework 5.1.7. Let B`1

N be the `1 unit ball in RN .

1. Show that w(B`1

N ) = E [‖g‖∞] ,g ∼ N (0, IN×N)

2. 0.265
√

lnN ≤ w(B`1

N ) ≤ 2
√

ln 2N

3. Show that ∃T ⊂ RN such that upper bound in Example 5.1.16 is tight up to a

constant.

5.2 Covering Number and Gaussian Widths (MTH 994 Lecture 9)

Definition 5.2.1. A mean 0 Gaussian process, (Xt)t∈T is a collection of random

variables with the property that for all finite subsets T0 ⊂ T ⊂ R
N there exists

σ ∈ R+ where ∑
t∈T0

atXt ∼ N (0, σ)

Example 5.2.2. The collection (〈g, t〉) t ∈ T where g ∼ N (0, IN×N) is a mean zero

guassian process ∀T ⊆ RN . To see why, consider

1. 〈g, t〉 ∼ N (0, ‖t‖2)

2. a〈g, t〉 ∼ N (0, a‖t‖2)

3.
∑

t∈T0
at〈g, t〉 ∼ N (0, ‖

∑
t ∈ T0att‖2)

Note that 〈g, t〉 and 〈g, s〉 for t, s ∈ T0 are not independent unless supp(t)∩supp(s) =

∅. Of course our definition of Gaussian width is the supremum of this collection of
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random variables.

E

[
sup
t∈T
〈g, t〉

]
Example 5.2.3. Given T ⊆ RN let Xt ∼ N (0, σ) where Xt and Xs are independent

when t 6= s then ∑
t∈T0

atXt ∼ N (0, σ

√∑
t∈T0

a2
t)

Theorem 5.2.4 (Sudahov-Fernique Inequality). Let (X)t∈T and (Y )t∈T be mean

zero Gaussian processes. Assume that

E
[
(Xt −Xs)

2
]
≤ E

[
(Yt − Ys)2

]
then

E

[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

Yt

]
Proof. In light of Theorem 5.2.4, consider two random variables, Xt, Yt of the form

seen in Example 5.2.2, Xt = 〈g1, t〉, Yt = 〈g2, t〉 for all t ∈ T ⊆ R
N where gi ∼

N (0, σi), i = 1, 2 then σ1 ≤ σ2 if and only if

E
[
(Xt −Xs)

2
]

= σ2
1‖t− s‖2

2

≤ σ2
2‖t− s‖2

2

= E
[
(Yt − Ys)2

]
for all t, s ∈ T . Note then

E [|Xt|] =

∫ ∞
0

P [|Xt| ≥ a] da

≤
∫ ∞

0

P [|Yt| ≥ a] da = E [|Y )t|]

and so it is a reasonable suggestion that the supremum then would also hold, i.e.

E

[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

Yt

]
See section 7.2.3 in ?? for a full proof of this result.



184

Lemma 5.2.5. Let A ∈ Rm×N , T ⊂ RN then

w(AT ) ≤ ‖A‖T−T,2→2w(T )

≤ ‖A‖2→2w(T )

Proof. Naturally, ‖A‖T−T,2→2 ≤ ‖A‖2→2 since T − T ⊂ RN . We will apply Theorem

5.2.4 on a well chosen Xt and Yt to achieve the first bound on w(AT )). Consider

Yt = ‖A‖T−T,2→2〈g, t〉 and Xt = 〈g, At〉

E
[
(Yt − Ys)2

]
= E

[
(〈g, ‖A‖T−T,2→2(t− s)〉)2]

= (‖A‖T−T,2→2‖2)2 ‖t− s‖2
2

≥ ‖A(t− s)‖2
2

= E
[
(〈g, A(t− s)〉)2]

= E
[
(Xt −Xs)

2
]

and thus we can apply Theorem 5.2.4 and conclude

w(AT ) = E

[
sup
t∈T
〈g, At〉

]
≤ E

[
sup
t∈T
〈g, ‖A‖T−T,2→2t〉

]
= ‖A‖T−T,2→2w(T )

Theorem 5.2.6 (Subakov’s Minorization for Gaussian Widths). Let T ⊂ R
N be

bounded. Then ∀ε ≥ 0 we have

w(T ) ≥ Cε
√

logC`2
ε (T )

where C ∈ R+ is an absolute universal constant independent of both ε and T bounded

below by 0.265√
2
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Proof. Let Pε be a maximal ε-packing of T , and its cardinality (packng number)

denoted P `2

ε is finite by Lemma 3.2.6 and by Lemma 3.2.5 we have P `2

ε ≤ C`2

ε .

Since Pε ⊆ T we have that w(T ) ≤ w(Pε) by Lemma 5.1.3. Now consider the

Gaussian process, (Yt)t∈Pε = {〈g, t〉}t∈Pε . We will compare that to a new Gaussian

process (Xt)t∈Pε =
{

ε√
2
gt

}
t∈Pε

where gt ∼ N (0, 1) are i.i.d for each distinct t ∈ Pε

(i.e. white noise). Observe on one hand, since Yt − Ys ∼ N (0, ‖t− s‖2) for t 6= s:

E [(〈g, t− s)] = Var [Yt − Y s]

= ‖t− s‖2
2

≥ ε2

since t, s are distinct points in Pε. On the other hand, using independence we see:

E
[
(Xt−Xs)

2] = E
[
X2

t

]
− 2E [Xt]E [Xs] +E

[
X2

s

]
= ε2

And so

E
[
(Xt −Xs)

2
]
≤ E

[
(Yt − Ys)2

]
and thus using the definition of Gaussian width and Theorem 5.2.4, and denoting

g ∈ RP `
2
ε the Gaussian random vector with entries (g)t = gt

w(Pε) = E

[
sup
t∈T

Yt

]
≥ E

[
sup
t∈T

Xt

]
=

ε√
2
E [‖g‖∞]

≥ ε√
2

(0.265)
√

lnN

by an appeal to Theorem 5.1.18



186

We desire an upper bound of the Gaussian width of a set in terms of the covering

number. First however we will need a lemma:

Lemma 5.2.7. Let T ⊂ RN be bounded. If w(T0) ≤ C for all finite T0 ⊆ T then

w(T ) ≤ C

Proof. Choose ε > 0 and let Cε ⊂ T be a finite ε-cover of T . Then T ⊂ Cε+εBN
`2 (0, 1)

and

w(T ) = w(T )

≤ w(Cε + εBN
`2 (0, 1))

= w(Cε) + w(εBN
`2 (0, 1))

≤ C + ε
√
N

since this holds ∀ε > 0 we get the result in the limit.

Theorem 5.2.8 (Dudley Inequality for Gaussian Widths). Let T ⊂ RN be bounded,

and denote ∆ = supx∈T ‖x‖2 <∞ then

1. w(T ) ≤ 4
√

2
∫ ∆/2

0

√
ln (C`2

ε (T ))dε

2. E [supt∈T |〈g, t〉|] ≤ 4
√

2
∫ ∆/2

0

√
ln (2C`2

ε (T ))dε

Proof. Denote ∆ = supx∈T ‖x‖2. We proceed in three parts.

Chaining definitions Pick any arbitrary finite subset T0 ⊂ T . We will define a

tree on T0. The tree will provide a means to find a path from a root node C0 = {0}

to any (other) point in x ∈ T0 through a set of cover sets Cj with increasingly small

covering radii. Towards this:

Let εj = ∆2−j. Naturally, by our definitions ε0 ≥ ‖x− 0‖2 = ‖x‖2.

Let Cj ⊆ T0 be a minimal εj-cover of T0.
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Since |T0| is finite, there exists some smallest natural number n where Cn = T0

(e.g. arg minn∈N εn ≤ minx,y∈T0 ‖x− y‖2)

Let fj : Cj → Cj−1 be a function that assigns x ∈ Cj to some point in Cj−1 that

is within εj−1 distance, i.e.

‖x− fj(x)‖2 ≤ εj−1, ∀x ∈ Cj

This is well defined since Cj−1 defines a εj-cover of T0.

Note then that we can create a path then from any point x ∈ T0 to 0 in the

following manner then:

x, fn(x), fn−1(fn(x)), . . . ,
n

©
`=0

f`(x) = 0

Figure 5.1: Schematic of chaining scheme and path

Induction on Gaussian Widths of Covers Consider the following hypothesis

(5.2) w(Cj) ≤ 2
√

2 ln |C1|ε1 +

j∑
`=2

4
√

2 ln |C`| (ε` − ε`+1) ∀j = 1, . . . , n
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We consider the base case, j = 1. First note 〈g,x〉 ∼ N (0, ‖x‖2) and thatE[exp(θ〈g,x〉)] ≤

exp
(
‖x‖22

2
θ
)

, for g ∼ N (0, In×n) - that is, we have Gaussian random variables that

admit the subgaussian parameter c =
‖x‖22

2
(see Lemma 4.2.6)

By definition of Gaussian width and Theorem 5.1.15

w(C1) = E

[
max
x∈C1

〈g,x〉
]

≤

√
4

(
max
x∈C1

‖x‖2
2

2

)
ln |C1|

≤ ∆
√

2 ln |C1|

≤ 2
√

2 ln |C1|ε1

Now assume that the hypothesis 5.2 holds for j and prove it holds for j + 1.

Consider

w(Cj+1) = E

[
max

x∈Cj+1

〈g,x〉
]

= E

[
max

x∈Cj+1

〈g,x− fj+1(x) + fj+1(x)〉
]

≤ E
[

max
x∈Cj+1

〈g,x− fj+1(x)〉
]

+E

[
max

x∈Cj+1

〈g, fj+1(x)〉
]

Now apply Theorem 5.1.15 to the random variables 〈g,x − fj+1(x)〉 and note that

fj+1(Cj+1) ⊂ Cj to obtain

≤

√
4

(
1

2
max

x∈Cj+1

‖x− fj+1(x)‖2
2

)
ln |Cj+1|+E

[
max
x∈Cj
〈g,x〉

]

≤

√
4

(
1

2
max

x∈Cj+1

‖x− fj+1(x)‖2
2

)
ln |Cj+1|+ w(Cj)

Apply now the induction hypothesis on w(Cj)

≤

√
4

(
1

2
max

x∈Cj+1

‖x− fj+1(x)‖2
2

)
ln |Cj+1|+

j∑
`=2

4
√

2 ln |C`| (ε` − ε`+2) + 2
√

2 ln |C1|ε1
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Now note that

εj = ∆2−j = 4∆2−j
(
2−1 − 2−2

)
= 4

(
∆2−(j+1) −∆2−(j+2)

)
= 4(εj+1 − εj+2)

So after a rearrangement of terms, we conclude

w(Cj+1) ≤ 2
√

2 ln |C1|ε1 +

j+1∑
`=2

4
√

2 ln |C`| (ε` − ε`+1)

= 4
√

2 ln |C1| (ε1 − ε2) +

j+1∑
`=2

4
√

2 ln |C`| (ε` − ε`+1)

=

j+1∑
`=1

4
√

2 ln |C`| (ε` − ε`+1)

Integrating and bounding with T Using our claim from the previous section

w(Cn) = w(T0)

≤
j+1∑
`=1

4
√

2 ln |C`| (ε` − ε`+1)

= 4
√

2

j+1∑
`=1

∫ ε`

ε`+1

√
ln |C`|dε

Notice that |C`| = C`2

ε`
(T0) ≤ C`2

ε (T0), ε ∈ [ε`+1, ε`]

≤ 4
√

2

j+1∑
`=1

∫ ε`

ε`+1

√
lnC`2

ε (T0)dε

= 4
√

2

∫ ∆/2

εn+1

√
lnC`2

ε (T0)dε

≤ 4
√

2

∫ ∆/2

0

√
lnC`2

ε (T0)dε

C`2

ε (T0) ≤ C`2

ε (T )

≤ 4
√

2

∫ ∆/2

0

√
lnC`2

ε (T )dε

That is, we have a uniform bound on w(T0) for all |T0| <∞ and so by Lemma 5.2.7

we conclude that

w(T ) ≤ 4
√

2

∫ ∆/2

0

√
lnC`2

ε (T )dε

The proof of part 2 of the theorem statement is left as an exercise.
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Theorem 5.2.9. Let T ⊂ RN and Φ ∈ Rm×N have independent, mean zero, variance

one subgaussian entries. Then with high probability we have

‖x− y‖2 − δ ≤ ‖
1√
m

Φ(x− y)‖2 ≤ ‖x− y‖2 + δ

holds ∀x,y ∈ T where δ = Cw(T )√
m

for an absolute constant C > 0 that only depends

on the subgaussian parameters of the entries of Φ.

Proof. See Proposition 9.3.2 [32]

The constant C can be understood in terms of the subgaussian parameters of Φ

by looking at Lemma 4.2.1 and Propositions 2.5.2 and Lemma 3.4.2 in [32].

Corollary 5.2.10. Let S ⊂ R
N be a finite set and Φ ∈ Rm×N have independent

mean zero, variance one, subgaussian entries. Then with a fixed probability we have

that

(1− ε)‖x− y‖2 ≤ ‖
1√
m

Φ(x− y)‖2 ≤ (1 + ε)‖x− y‖2

holds ∀x,y ∈ S whenever

m ≥ c′ ln (1 + |S|)
ε2

for an absolute constant c′ > 0 that is independent of the set S

Proof. Apply Theorem 5.2.9 to the set

T =

{
x− y

‖x− y‖2

|x,y ∈ S,x 6= y

}
∪ {0}

and so we have with high probability that∣∣∣∣‖ 1√
m

Φ(u− v)‖2 − ‖u− b‖2

∣∣∣∣ ≤ δ

holds ∀u,v ∈ T . In particular, when u = x−y
‖x−y‖2 and v = 0 which yields
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∣∣∣∣‖ 1√
m

Φ(x− y)‖2 − ‖x− y‖2

∣∣∣∣ ≤ δ‖x− y‖2

To see that the lower bound on the dimension m holds we use Example 5.1.16 to see

that

δ =
cw(T )√

m
≤ ε

c̃√
c′

diam(T ) ln(|T |)√
ln(1 + |S|)

but T ⊆ B`2(0, 1) and |T | ≤ |S|2 thus for large enough c′ then δ ≤ ε

Definition 5.2.11. We say that Φ ∈ Cm×N has the generalized Restricted Isometry

Property of order (s, δ) for δ > 0 and sparsity 0 < s < N if

∣∣‖Φx‖2
2 − ‖x‖2

2

∣∣ ≤ max
(
δ, δ2

)
‖x‖2

2

holds ∀x ∈ CN with ‖x‖0 ≤ s

Recall that if Φ has RIP of order (2
⌈
s
δ

⌉
, 1

2
) then it has the generalized RIP of

order (s, δ) for all δ ≥ 1 by Lemma 4.4.2 - so matrices with the property defined in

5.2.11 exist for any choice of parameters (s, δ) by applying constructions for ε < 1 as

stated in Theorem 4.2.10.

Additionally, Theorem 4.4.1 asserts that
√

N
m
RFD matrices have the generalized

RIP of order (s, δ) with probability at least 1− e−η whenever

m ≥ c
⌈ s

2δ2

⌉ (
ln4N + η

)
Definition 5.2.12. Let L = dlog2Ne, δ > 0 and s ∈ [N ] \ {0}. For ` ∈ [L + 1] let

(s`, δ`) = (2`s, 2`/2δ) be a sequence of sparsity and distortion levels. We will say that

Φ ∈ Rm×N satisfies the multi-resolution RIP (MRIP) of order (s, δ) if it satisfies the

generalized RIP of order (2`s, 2`/2δ), ∀` ∈ [L+ 1].
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Note that Theorem 4.4.1 implies an
√

N
m
RF matrix will have the MRIP of order

(s, δ) with probability 1− e−η provided

m ≥ c
⌈ s

2δ2

⌉
(1 + η) log4N, ∀N > 1

Theorem 5.2.13. Let T ⊂ R
N have r(T ) = supv∈T ‖v‖2 ≤ ∞. Suppose that Φ

has MRIP of order
(

200(1 + η), δr(T )
cmax(r(T ),w(T ))

)
where c > 0 is an absolute constant.

Then for ψ ∈ {−1, 1}N , a vector with i.i.d. uniform Radamacher entries.

sup
x∈T

∣∣‖ΦDiag(ψ)x‖2
2 − ‖x‖2

2

∣∣ ≤ max(δ, δ2)r(T )2

will hold with probability 1− e−η.

Note that if we want to state Theorem 5.2.13 with the usual multiplicative error

guarantees for some arbitrary set S ⊂ RN , apply the theorem to the set

T =

{
x− y

‖x− y‖2

|x,y ∈ S,x 6= y

}
∪ {0}

Note then that r(T ) = 1 and we have the bound

(
1−max(δ, δ2)

)
‖x− y‖2

2 ≤ sup
x∈T
‖ΦDiag(ψ)(x− y)‖2

2 ≤
(
1 + max(δ, δ2)

)
‖x− y‖2

2

Homework 5.2.1. Show that

1. C`2

ε

(
BN
`2 (0, 1)

)
≤ e

N
c2ε2 for any ε > 0. Is this a better bound than the bound found

in Corollary 3.2.7 for any ε?

2. Use part 1.) to bound C`2

ε

(
BN
`1 (0, 1)

)
3. Let T ⊆ RN be finite. Prove that w(T ) ≥ 0.265√

2
(minx,y∈T ‖x− y‖2)

√
ln |T |

Homework 5.2.2. Prove part 2 of Theorem 5.2.8.
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Homework 5.2.3. Prove that the Gaussian complexity, γ(T ) = E [supx∈T |〈g,x〉|]

satisfies

1. w(T ) = 1
2
w(T − T ) = 1

2
γ(T − T )

2. Recall that E [|〈g, z〉|] where g ∼ N (0, I) =
√

2
π
‖z‖2 (see Definition 2.1.7). show

that

γ(T ) ≤ 2w(T ) +

√
2

π
‖y‖2

holds ∀y ∈ T

Homework 5.2.4. Show that Theorem 4.4.1 implies an
√

N
m
RF matrix will have

the MRIP of order (s, δ) with probability 1− e−η provided

m ≥ c
⌈ s

2δ2

⌉
(1 + η) log4N, ∀N > 1



Chapter VI

Sublinear-Time Compressive Sensing, Sparse Fourier
Transforms, and the Fast Approximation of Functions of
Many Variables (MTH 994 Lectures 11 – ∞, Partially

Transcribed by Craig Gross)

6.1 “Slow” combinatorial compressive sensing using binary low coher-
ence matrices

We will now discuss how coherence propertries can be combined with deterministic

constructions to achieve compressive sensing with quadratic dependence on sparsity

s (compared with linear dependence for probabilistic approaches seen so far) but

which do offer faster recovery and also guarantee error bounds (i.e. no chance of

failure)

Definition 6.1.1 (Coherence). Let Φ ∈ C
m×N be a matrix with `2-normalized

columnsϕ0, . . . ,ϕN−1 having ‖φj‖ = 1 ∀j ∈ [N ]. The coherence µ(Φ) = maxi 6=j |〈ϕj,ϕi|

Note that if U is orthonormal, then µ(U) = 0. If U contains two identical columns

then µ(U) = 1. So we see that µ(Φ) ∈ [0, 1]. Compared to other matrix properties

of interest for compressive sensing settings, coherence is easy to compute.

We will show how low coherence matrices have the RIP property, and in turn can

be used as JL maps. In order to do this, we will need the following classic theorem

from linear algebra.

194
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Theorem 6.1.2 (Gerschgorin Disc). Let λ be an eigenvalue of a square matrix A ∈

C
N×N . Then there exists an index j ∈ [N ] such that

|λ− Ajj| ≤
∑

`∈[N ]\{j}

|Aj`|

Proof. Let (λ,u) be an eigenpair of the matrix. Let j be the index corresponding

to the largest entry of the eigenvector, i.e. |uj| = ‖u‖∞. Then
∑

`∈[N ] Aj`u` = λuj.

That is since Au = λu, the j-th entry of the vector Au is the inner product of the

j-th row of A with u scaled by λ.

Now, moving the term Ajjuj to the other side, we obtain

∑
`∈[N ]\{j}

Aj`u` = (λ− Ajj)uj

Using the triangle inequality and bounding with the infinity norm, we have

|λ− Ajj||uj| ≤
∑

`∈[N ]\{j}

|Aj`u`| =⇒ |λ− Ajj||uj| ≤ uj
∑

`∈[N ]\{j}

|Aj`|

Dividing each side then by |uj| yields the desired result. Note that every eigenpair

may have a different center and radius, depending on which entry of the eigenvector

is of largest magnitude.

Corollary 6.1.3. Every eigenvalue of A lies in at least one of the N circular disks

in the complex plane with centers Ajj and radii
∑

i 6=j |Aij|. Moreover if m of these

disks form a connected domain that is disjoint from the other N−m disks, then there

are m eigenvalues of A within the domain.

Theorem 6.1.4. Let Φ ∈ Cm×N be a matrix with `2-normalized columns, take s ∈

[N ]. Then ∀s-sparse vectors x ∈ CN

(1− (s− 1)µ(Φ))‖x‖2 ≤ ‖Φx‖2
2 ≤ (1 + (s− 1)µ(Φ))‖x‖2

2
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Proof. Let S ⊂ [N ], |S| ≤ s. Then the matrix Φ∗SΦS ∈ Cs×s formed by omitting

all columns of Φ not in S is positive semi-definite. Denote its largest and smallest

eigenvalues as λmax, λmin. If x is s-sparse and S = supp(x) then

‖Φx‖2
2 = ‖ΦSxS‖2

2

= 〈ΦSxS,ΦSxS〉

= 〈Φ∗SΦxS,xS〉

≤ λmax‖xS‖2
2

≤ λmax‖x‖2
2

In a similar fashion we can show that ‖Φx‖2
2 ≥ λmin‖x‖2

2. That is we have

λmin‖x‖2
2 ≤ ‖Φx‖2

2 ≤ λmax‖x‖2
2

Gerschgorin’s Disc theorem implies that there exists some index j ∈ S such that∣∣∣λ− (Φ∗SΦS)jj

∣∣∣ ≤ s∑
i 6=j

∣∣∣(Φ∗SΦS)ij

∣∣∣
However, we know that (Φ∗SΦS)ij = 〈ϕi,ϕj〉, so

|λ− 1| ≤
s∑
i 6=j

|〈ϕi,ϕj〉| ≤ (s− 1)µ(Φ)

Theorem 6.1.4 immediately implies the following

1. Φ has the RIP of order (s, (s− 1)µ(Φ)).

2. For Φ∗SΦS ∈ CN×N , all of its non-zero eigenvalues are contained in the interval

[1− (s− 1)µ(Φ∗SΦS), 1 + (s− 1)µ(Φ∗SΦS)]

Definition 6.1.5. Let K,α ∈ [N ] := {0, . . . , N − 1}. A matrix A ∈ {0, 1}m×N is

(K,α)-coherent if the following conditions hold:
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1. Every column of A contains at least K ones, and

2. For every j, ` ∈ [N ], j 6= `, the inner product of the columns aj and a` satisfies

〈aj, a`〉 ≤ α.

Homework 6.1.1. Fix ω ∈ [N ] \ {0} and let X` = exp
(

2πiu`ω
N

)
where u` are i.i.d.

uniformly in [N ] random variables ∀` ∈ [m].

1. Prove that 0 = E
[

1
m
<(X`)

]
= E

[
1
m
=(X`)

]
2. Use Theorem 4.1.2 twice to show that

P

[
1

m

∣∣∣∣∣
m∑
`=1

X`

∣∣∣∣∣ ≥ t

]
≤ p

N − 1

for any choice of p ∈ (0, 1) provided m ≥ 4
t2

ln 4(n−1)
p

3. Let A ∈ Cm×N be given by

A`,ω =
1√
m

exp

(
2πiu`ω

N

)
, ` ∈ [m], ω ∈ [N ]

Show that the columns of A are `2-normalized and that the coherence of µ(A) < ε

with probability greater than 1− p provided

m ≥ 4

ε2
ln

(
4(N − 1)

p

)

4. Show that A has the RIP of order (s, ε) for A with high probability when

m ≥ C
s2

ε2
ln

(
4(N − 1)

p

)

Goal. Keep α small while making K large.

Proposition 6.1.6 (Welch bound). For a matrix A ∈ {0, 1}m×N , the coherence

satisfies

max
1≤j 6=`≤N

∣∣∣∣〈 aj
‖aj‖2

,
a`
‖a`‖2

〉∣∣∣∣ ≥
√

N −m
m(N − 1)

.
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The Welch bound then gives a lower bound on the number of rows for a (K,α)-

coherent matrix:

α

K
≥

√
N −m
m(N − 1)

=⇒ m ≥ K2

α2

N −m
N − 1

.

When, for example, m ≤ N/2 (which we henceforth assume), we must then have

m = Ω(K2/α2).

Example 1 ([18], Theorem 2). Fix some probability threshold σ ∈ [0, 1), and generate

M ∈ {0, 1}m×N where each entry is i.i.d. Bernoulli, i.e.,

mi,j =


1 with probability p

0 with probability 1− p,

where

p =
log4/e

(
3N2

1−σ

)
K (1 + o(1))

for some K ≥ α ≥ 2 log4/e

(
3N2

1−σ

)
. Then M will be (K,α)-coherent with probability

at least σ provided that m ≥ cK2/α.

6.1.1 Deterministic block constructions

Example 2 ([10] and [21]).

1. Choose a prime p ∈ [N ].

2. For each j ∈ [N ] we will consider the representation of j in base p, denoted

j = j0 + j1p+ j2p
2 + · · ·+ jdlogpNe−1p

dlogpNe−1,

where j0, . . . , jdlogpNe−1 ∈ [p].

3. Now, we map every j ∈ [N ] to the polynomial

Qj(x) := j0 + j1x+ · · ·+ jdlogpNe−1x
dlogpNe−1,

over the finite field Zp.
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0

...

0

· · · 1 · · ·
0

...

0

0

...

0

· · · 1 · · ·
0

...

0

...
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

b = 0

b = 1

j· · · · · ·

...

` = 0

...

` = Qj(0)

...

` = p− 1

` = 0

...

` = Qj(1)

...

` = p− 1

Figure 6.1: Deterministically constructed low coherence matrix M by the process described in 2.

4. Define M = (m0, . . . ,mN−1) ∈ {0, 1}p2×N by

m`+bp,j =


1 if Qj(b) = `,

0 otherwise,

of the form depicted in 6.1.

We now consider the coherence of M ,

〈mj,m`〉 = |{b ∈ [p] : Qj(b) = Q`(b) ⇐⇒ (Qj −Q`)(b) = 0}|.

Since Qj − Q` is a polynomial of degree at most
⌈
logpN

⌉
− 1, it can have at most⌈

logpN
⌉

zeros. Thus, M is a
(
p,
⌈
logpN

⌉)
-coherent matrix with p2 rows separated

into p blocks.

Example 3 (Construction by error-correcting codewords). We can view the previous

construction as a special case of the construction of a (K,α)-coherent matrix where
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we view the columns as binary error-correcting codewords with Hamming weight K

by specifying a lower bound on the Hamming distance.

Indeed, writing M = (m0, . . . ,mN−1) ∈ {0, 1}m×N where each codeword mj ∈

{0, 1}m has Hamming weight K (that is, K nonzero entries), we calculate 〈mj,m`〉

in terms of the Hamming distance ∆(mj,m`) := |{i ∈ [m] : (mj)i 6= (m`)i}|. Let

ik ∈ [m] be an index of mj such that (mj)ik = 1 The corresponding entry of m` will

either satisfy

1. (m`)ik = 1, and therefore this index increases 〈mj,m`〉 by one or,

2. (m`)ik = 0, and therefore this index increases ∆(mj,m`) by one. Additionally,

this “mismatched one” in mj must have a corresponding “mismatched one” some-

where in m` (since both codewords have the same Hamming weight) which again

increases ∆(mj,m`) by one.

Thus, after iterating through all K ones in mj, we account for 〈mj,m`〉 and exactly

half of ∆(mj,m`), that is

〈mj,m`〉 = K − ∆(mj,m`)

2
.

A lower bound for the Hamming distance of 2(K − α) will then ensure that M is

(K,α)-coherent.

In 2, each column has a Hamming weight of exactly p when viewed as an error-

correcting codeword. The Hamming distance ∆(mj,m`) is twice the number of block

indices b which are not zeros of Qj −Q`. By same argument as before, this “number

of non-zeros” is at least by p−
⌈
logpN

⌉
, giving

∆(mj,m`) ≥ 2
(
p−

⌈
logpN

⌉)
.

Thus, in the context of error-correcting codewords, we have again shown that the

matrix constructed in 2 is
(
p,
⌈
logpN

⌉)
-coherent.
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1 0 1 0 0 1 0 0

0 1 0 1 0 1 0 0

1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 0 1 0 0 1 0 0

...
. . .





I2

I3

· · ·

· · ·

0 1 2 3 · · ·j =

[j ≡ 0 mod 2]

[j ≡ 1 mod 2]

[j ≡ 0 mod 3]

[j ≡ 1 mod 3]

[j ≡ 2 mod 3]

...

p1 = 2

p2 = 3

Figure 6.2: Deterministically constructed low coherence matrix M by the process described in 4 for
q = 1.

Example 4 (A Fourier friendly construction [19, 20]). Let

p0 = 1, p1 = 2, p2 = 3, p3 = 5, . . . , p` = the `th prime.

1. For some starting index q ∈ N, fix the K sequential primes pq, . . . , pq+K−1.

2. Define M ∈ {0, 1}(
∑K−1
`=0 pq+`)×N with rows indexed by

(`, h) ∈ ([q, q +K − 1] ∩N)× [p`]

by

m(`,h),j =


1 if j ≡ h mod pq+`,

0 otherwise.

6.2 gives an example of this constructed matrix for starting index q = 1. We now

obtain K blocks of rows (one for each prime) where each column contains exactly

one 1 in each block.

Considering the coherence of M , we calculate

〈mj,m`〉 = |{p ∈ {pq, . . . pq+K−1} : ` ≡ j mod p}| =: |R|.

By the Chinese Remainder Theorem, the product of all primes in R must divide

|`− j| < N . This restricts R to sets of primes whose product is strictly less than N .

Thus, for j 6= `,

α := min{m ∈ [K] : pqpq+1 · · · pq+m ≥ N}
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provides an upper bound on the cardinality of R and therefore the coherence of M .

Then,

pαq ≤ pqpq+1 · · · pq+α−1 < N,

giving that α ≤
⌊
logpq N

⌋
, and therefore M is

(
K,
⌊
logpq N

⌋)
-coherent. Addition-

ally, if q is chosen so that pq−1 < K ≤ pq, bounds on q [11] and the prime number

theorem give that pK+q−1 = O(K logK), and therefore M has

m =
K−1∑
`=0

pq+` = O(K2 logK)

columns.

Theorem 6.1.7. For all x̃ ∈ CN with ‖x̃‖0 ≤ s, if we set K = s blogsNc /ε, then

(1− ε)‖x̃‖2
2 ≤ ‖Mx̃‖2

2 ≤ (1 + ε)‖x̃‖2
2.

Proof. The coherence of M/
√
K is bounded by ε/s which implies the restricted

isometry property (RIP) of order s by standard arguments, e.g., [13, Theorem 5.3].

Now how is this matrix Fourier friendly? Let Ñ =
∏q+K−1

`=q p` and M̃ ∈ {0, 1}m×Ñ

be as above with, e.g., K ≤ pq < 2K (which is possible by Bertrand’s postulate) where

K = s blogsNc /ε. Recall that these assumptions imply s � N � Ñ . Additionally

let f̂ ∈ CÑ be such that
∑

j>N |f̂j| is small (e.g., zero) and suppose that {f̂j}j∈[N ] has

a good s-sparse approximation (e.g., because it’s s-sparse). In this case, we can use

compressive sensing methods to recover f̂ using only the values of M f̂ . Moreover, we

can compute these values quickly by the following observations.

First, we see that

M̃ f̂ = M̃FÑ×Ñ

(
F−1

Ñ×Ñ f̂
)

=: M̃FÑ×Ñ f ,
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where f :=
{
f
(

2πj

Ñ

)}
j∈[Ñ ]

is the vector of Ñ equally spaced samples from f(x) :=∑
j∈[Ñ ] f̂je

ijx. But note that

M̃FÑ×Ñ =

1 0 1 0 0 1 0 0

0 1 0 1 0 1 0 0

1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 0 1 0 0 1 0 0

...
. . .





Ipq Ipq Ipq

Ipq+1 Ipq+1

· · ·

· · · FÑ×Ñ

and therefore each row in the product is the product of a discrete spike train with

FÑ×Ñ . For example, following the same indexing scheme as M̃ ,

(
M̃FÑ×Ñ

)
(`,h),k

=
1

Ñ

Ñ
pq+`

−1∑
j=0

e

−2πi(h+jpq+`)k

Ñ =


1

pq+`
e
−2πihk
Ñ if k ≡ 0 mod Ñ

pq+`
,

0 otherwise.

Note then that this product is extremely sparse, with each block corresponding to pq+`

having at most pq+` nonzero columns, which makes for at most m nonzero columns.

Additionally, the resulting structure of the product allows one to compute

M̃ f̂ = M̃FÑ×Ñ f =



Fpq×pq

(
f
(

2πj
pq

))
j∈[pq ]

Fpq+1×pq+1

(
f
(

2πj
pq+1

))
j∈[pq+1]

...

Fpq+K−1×pq+K−1

(
f
(

2πj
pq+K−1

))
j∈[pq+K−1]


via K fast Fourier transforms of size at most Pq+K−1 = O(K logK). Thus, M̃ f̂ can

be computed in O(K2 log2K log logK) time if we have sampling access to f . By our

assumption that K = s blogsNc /ε for compressive sensing, we effectively compute

M f̂ in

O
(

s2

log2 s
log2N (log s+ log logN)2 log (log s+ logN)

)
= O

(
s2 log2+εN

)
= O

(
s2 log3N

)
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time, which is sublinear in N when s� N .

However, while we can compute the samples of M f̂ in sublinear time, standard

compressive sensing algorithms are all O(N)-time, so the entire recovery process will

not be sublinear. The solution which we now pursue will be to avoid these standard

RIP based recovery algorithms.

6.2 Toward sublinear-time compressive sensing using low coherence ma-
trices

6.2.1 Majority δ-reconstructing matrices

We begin with some definitions and examples toward an alternative to the RIP.

Running Example. The matrix A ∈ {0, 1}4×6 given by

A =



1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1


is (2, 1)-coherent.

Definition 6.2.1. If M has at least K ones in every column, then M(n) ∈ {0, 1}K×N

for n ∈ [N ] is the K ×N submatrix of M created by selecting the first K rows of M

with nonzero entries in the nth column.

Running Example. For n = 2,

A =



1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1



column 2

7→ A(2) =

 1 1 1 0 0 0

0 0 1 0 1 1


column 2 is all ones
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and for n = 5,

A =



1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1



column 5

7→ A(5) =

 0 1 0 1 0 1

0 0 1 0 1 1

 .

column 5 is all ones

Definition 6.2.2. IfM has at leastK ones in every column, thenM ′(n) ∈ {0, 1}K×N−1

is the K × (N − 1) submatrix of M(n) created by removing its nth column.

Running Example. For n = 2 and n = 5 as above,

A′(2) =

1 1 0 0 0

0 0 0 1 1

 and A′(5) =

0 1 0 1 0

0 0 1 0 1

 .

Definition 6.2.3. For x ∈ CN , after ordering its entries by magnitude

|xj1| ≥ |xj2| ≥ . . . ≥ |xjN |

(where ties are broken for |xji | =
∣∣xji+1

∣∣ so that ji ≤ ji+1), we define the index sets

Sk,1 := {j1, . . . , jk}, Sk,2 := {jk+1, . . . , j2k}, . . . , Sk,r := {j(r−1)k+1, . . . , jN},

for r =
⌊
N−1
k

⌋
+ 1.

Definition 6.2.4. For x ∈ CN and any index set S ⊆ [N ] we define the restriction

of x to S denoted x|S ∈ CN to be the vector with entries

(x|S)j :=


xj if j ∈ S

0 otherwise.

Definition 6.2.5. Given x ∈ CN , the s-sparse vector xs ∈ CN is defined as xs :=

x|Ss,1 .
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We can now present our alternative to the RIP.

Definition 6.2.6 (Majority δ-reconstructing). Let δ ∈ (0, 1), and M ∈ {0, 1}m×N

have at least K ones in every column. We will say that M is majority δ-reconstructing

for x ∈ CN if the set

(6.1) Bn :=
{
j :
∣∣∣(M(n)x)j − xn

∣∣∣ ≤ δ
∥∥x− xb1/δc

∥∥
1

}
⊆ [K]

has cardinality |Bn| > K/2 for all n ∈ [N ].

Note. More generally, one can change the fraction involved in the cardinality lower-

bound of Bn in Definition 6.2.6 from K/2 to c−2
c
K for any c ≥ 4. Doing so allows for

modified reconstruction procedures in the next section. Furthermore, Theorem 6.3.3

guarantees that such matrices can be constructed for any desired c ≥ 4.

6.2.2 Reconstruction algorithm

For measurements of a vector taken with a δ-reconstructing matrix, we provide

6.2.1 to rapidly construct an approximation. It was first used in the sublinear-time

Fourier setting in [19] and with (K,α)-coherent matrices in [2]. In the algorithm,

n ∈ C
m represents arbitrary additive errors on our measurements of x given by

y = Mx + n, and n|M(n) ∈ CK contains the K entries of n ∈ Cm associated with

the K rows of M(n) in M .

Algorithm 6.2.1 Median recovery, MR : Cm × {0, 1}m×N × P([N ])×N→ CN .

INPUT: y = Mx + n, M , S ⊆ [N ], s. OUTPUT: z|S̃ ∈ (C × [N ])min(|S|,2s) (interpreted as
vector in CN ). for n ∈ S Let <(zn) ← median of <

(
M(n)x + n|M(n)

)
entries. Let =(zn) ←

median of =
(
M(n)x + n|M(n)

)
entries. Sort {zn}n∈S by magnitude so that |zn1

| ≥ . . . ≥ |zn|S| |.
S̃ := {n1, . . . , nmin(2s,|S|)}. Output z|S̃ with

(z|S̃)
j

:=

{
zj if j ∈ S̃
0 otherwise

as an approximation to x .
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Complexity analysis

• 6.2.1–6.2.1 can be performed in O(|S| ·K)-time using fast median algorithms [5]

assuming that the rows of M(n) can be identified in O(K)-time for any n ∈ [N ].

Note that this is indeed the case for our Fourier-friendly matrices in 4 by simply

computing n mod pq+` for K values of `.

• 6.2.1 can be performed in O(|S| log |S|) time using, e.g., merge sort [24].

• 6.2.1–6.2.1 output z|S̃ in a compressed format in O(s)-time and space.

Therefore, the total runtime/flop count of 6.2.1 is O (|S| ·max (K, log |S|)). Thus,

the algorithm is fast if |S| and K are small. In 6.2.2, we will analyze when it is also

accurate.

Note. 6.2.1 is trivially parallelizable, since the zn values can be computed in parallel,

and efficient parallel sorting methods exist (see e.g. [27] for a comparison of several

standard parallelized sorting algorithms).

Note. If one changes Definition 6.2.6 to require that |Bn| > c−2
c
K for any even c ≥ 4

then one may use a median-of-means strategy in 6.2.1–6.2.1 as opposed to simply

taking medians. More explicitly, this can be done by, e.g., modifying Line 6.2.1 to

instead compute <(zn) by first sorting the entries of <
(
M(n)x + n|M(n)

)
,

<
(
M(n)x + n|M(n)

)
j1
≥ <

(
M(n)x + n|M(n)

)
j2
≥ · · · ≥ <

(
M(n)x + n|M(n)

)
jK
,

and then setting

<(zn)← Mean

(
<
(
M(n)x + n|M(n)

)
jb 2(K−1)

c c+1

, . . . ,<
(
M(n)x + n|M(n)

)
j
K−b 2(K−1)

c c

)
.

If the noise vector n has, e.g., mean 0 i.i.d. random entries, then such median-

of-means strategies can help to reduce the effect of the noise on the zn estimates.
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However, herein we will generally assume that n represents an arbitrary (and deter-

ministic) set of measurement errors.

Theoretical analysis

The following theorem provides approximation guarantees for the output of 6.2.1.

Theorem 6.2.7 (Modified from [2]). Let β ∈ [1,∞), s ∈ [N ], and x,n ∈ C
N .

Suppose that M is majority δ-reconstructing for x ∈ C
N with δ ≤ 1

s
, and that

S ⊆ [N ] contains the set

Cs.β :=

{
n ∈ [N ] : |xn| > β

(
‖x− xs‖1

s
+ ‖n‖∞

)}
.

Then,

‖x−MR(Mx + n,M, S, s)‖2 ≤ ‖x− x2s‖2 + Cβ

(
‖x− xs‖1√

s
+
√
s‖n‖∞

)
for an absolute constant Cβ ∈ R+ depending only on β. Furthermore, Cβ ≤ 6+2

√
2β.

We will prove 6.2.7 with the help of a couple of lemmas.

Lemma 6.2.8. Every zn estimate produced in 6.2.1–6.2.1 of 6.2.1 satisfies

|zn − xn| ≤
√

2

(
‖x− xs‖1

s
+ ‖n‖∞

)
.

Proof. This follows directly from the majority δ-reconstructing property of M for x ∈

C
N . Indeed, since the set Bn in the definition of M being majority δ-reconstructing

for x ∈ CN has cardinality |Bn| > K/2, reordering the vector <(M(n)x+n|M(n))j∈[K]

by magnitude ensures that there exists indices in Bn of elements in the reordered

vector which lay on either side of the median <(zn). Thus, there exists some j ∈ Bn

such that

|<(zn)−<(xn)| ≤
∣∣<(M(n)x + nM(n))j −<(xn)

∣∣ ≤ |(M(n)x)j + nj − xn|

≤ ‖x− xs‖1

s
+ ‖n‖∞ =: δ′(6.2)
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where the first inequality holds by the previous argument, and the third inequality

holds by the definition of Bn. Similarly, |=(zn)−=(xn)| ≤ δ′. Thus,

|zn − xn| ≤
√

(δ′)2 + (δ′)2 =
√

2δ′.

Lemma 6.2.9. If n ∈ Cs,β \ S̃ for S̃ in 6.2.1 of 6.2.1, then

|xn| ≤
(
β + 2

√
2
)(‖x− xs‖1

s
+ ‖n‖∞

)
.

Proof. Note first that under the reordering |xj1| ≥ . . . ≥ |xjN |, j` ∈ Cs,β implies that

jk ∈ Cs,β for all 1 ≤ k ≤ `. When N > 2s,

‖x− xs‖1 ≥
2s∑

`=s+1

|xj`| ≥ s|xj2s+1|.

Thus, Cs,β ⊆ S2s,1 ∩ S for all β ≥ 1, giving |Cs,β| ≤ min(2s, |S|) = |S̃|. Therefore if

n ∈ Cs,β \ S̃, there must exist some j ∈ S̃ \ Cs,β in particular satisfying

|xj| ≤ β

(
‖x− xs‖1

s
+ ‖n‖∞

)
and |zj| ≥ |zn|.

Hence, for δ′ as in (6.2),

βδ′ +
√

2δ′ ≥ |xj|+
√

2δ′ ≥ |zj| ≥ |zn| ≥ |xn| −
√

2δ′

where the second and fourth inequalities hold by 6.2.8.

Lemma 6.2.10. The distance between x and x|Cs,β in `2 can be bounded by

∥∥x− x|Cs,β
∥∥

2
≤ ‖x− x2s‖2 +

√
2sβ

(
‖x− xs‖1

s
+ ‖n‖∞

)
.

Proof. Since Cs,β ⊆ S2s,1,

∥∥x− x|Cs,β
∥∥2

2
= ‖x− x2s‖2

2+
∑

n∈S2s,1\Cs,β

|xn|2 ≤ ‖x− x2s‖2
2+2sβ2

(
‖x− xs‖1

s
+ ‖n‖∞

)2

.
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We are now prepared to prove our theorem concerning the output of the Median

Recovery algorithm.

Proof of 6.2.7. Let δ′ :=
‖x−xs‖1

s
+ ‖n‖∞ as in (6.2). Then,

‖x−MR(Mx + n,M, S, s)‖2 ≤ ‖x− x|S̃‖2 + ‖x|S̃ − z|S̃‖2

≤ ‖x− x|S̃‖2 +
√

2s(
√

2δ′),

by 6.2.8. Splitting S̃ = Cs,β t (S̃ \ Cs) followed by applications of 6.2.10 and 6.2.9 on

these pieces respectively, we bound

‖x−MR(Mx + n,M, S, s)‖2 ≤
∥∥x− x|Cs,β

∥∥
2

+

√ ∑
n∈Cs,β\S̃

|xn|2 + 2
√
sδ′

≤ ‖x− x2s‖+

√ ∑
n∈Cs,β\S̃

|xn|2 + (2 +
√

2β)
√
sδ′

≤ ‖x− x2s‖+

√
2s
(

(β + 2
√

2)δ′
)2

+ (2 +
√

2β)
√
sδ′

= ‖x− x2s‖2 +
(√

2(β + 2
√

2) + 2 +
√

2β
)√

sδ′

as desired.

Corollary 6.2.11. Under the assumptions of 6.2.7, we will also have

‖x−MR(Mx,M, S, s)‖2 ≤ C ′β
‖x− xs‖1√

s

when n = 0. Here, C ′β ∈ R+ is an absolute constant with C ′β ≤ Cβ + 1 for Cβ the

constant in 6.2.7.

Proof. By [13, Proposition 2.3], we have

‖x− x2s‖2 ≤
‖x− xs‖1√

s
,

finishing the proof.
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Recap. Up to now, we have seen that there are some nice (K,α)-coherent matrix

constructions, including one that allows for sublinear-time evaluations of M x̂ when-

ever one has access to x ∈ CÑ (or sampling access to the trigonometric polynomial

f(x) =
∑

ω∈[N ] x̂ωe
iωx). Additionally, we have seen that the majority δ-reconstructing

property allows for standard compressive sensing error guarantees to be obtained.

Next. We will

1. relate (K,α)-coherent matrices to the majority δ-reconstructing property by show-

ing how to construct matrices with this property using any (K,α)-coherent matrix

(including, crucially, our Fourier friendly matrix), and

2. then consider fast algorithms for rapidly finding small sets S ⊇ Cs,β. This will

allow the Median Recovery algorithm to run in sublinear-time while still having

good error bounds.

6.3 Constructions of majority δ-reconstructing matrices

We will give two sets of majority δ-reconstructing matrix constructions using

(K,α)-coherent matrices. Both sets will have meaningful representations in the

Fourier context.

1. The first type construction will hold for all x ∈ CNdeterministically, but will have

a suboptimal number of rows.

2. The second type of construction will have a near-optimal number of rows, but

will only hold for a given (but a priori unknown) single vector x ∈ CN with high

probability.

We begin with the following lemmas to help with the deterministic construction.
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Lemma 6.3.1. Suppose M ∈ {0, 1}m×N is (K,α)-coherent. Let n ∈ [N ], s ∈

[1, K/α] ∩N, and x ∈ CN−1. Then at most sα of the entries in M ′(n)x ∈ CK will

have magnitude greater than or equal to ‖x‖1/s.

Proof. By Markov’s inequality, we have∣∣∣∣{j : |(M ′(n)x)j| ≥
‖x‖1

s

}∣∣∣∣ ≤ s

‖x‖1

‖M ′(n)x‖1

≤ s‖M ′(n)‖1→1.

Furthermore, if we denote the columns M ′(n) = (m′k)k∈[N−1] and M(n) = (m`)`∈[N ],

we calculate

‖M ′(n)‖1→1 = max
k∈[N−1]

‖m′k‖1

= max
`∈[N ]\{n}

〈m`,mn〉

≤ α,

finishing the proof.

Lemma 6.3.2. Suppose M ∈ {0, 1}m×N is a (K,α)-coherent matrix. Let n ∈ [N ],

s ∈ [1, K/α] ∩ N, S ⊂ [N ] with |S| ≤ s, and x ∈ C
N−1. Then M ′(n)x and

M ′(n) (x− x|S) will differ in at most sα of their K entries.

Proof. Let 1 ∈ CN−1 be the vector of all ones. We have for B := {j : (M ′(n)x)j 6=

(M ′(n)(x− x|S))j} that

(6.3) |B| =
∣∣∣{j : (M ′(n)x|S)j 6= 0

}∣∣∣ ≤ ∣∣∣{j : (M ′(n)1|S)j ≥ 1
}∣∣∣

since the nonzero entries of M ′(n) are all ones. Now, we may apply 6.3.1 to 6.3 with

M ′(n) applied to 1|S, which has ‖1|S‖1 = |S| ≤ s to learn that |B| ≤ αs.

We are now prepared to provide our first majority δ-reconstructing matrix con-

struction.
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Theorem 6.3.3 (Modified from [2]). Suppose M is (K,α)-coherent. Let s :=

1/δ ∈ [1, K/α] ∩ N and c ∈ [4,∞) ∩ N. If K > cα/δ, then M will be majority

δ-reconstructing for all x ∈ CN . In particular, the cardinality of Bn (6.1) will be

such that |Bn| >
(
c−2
c

)
K for all n ∈ [N ] and x ∈ CN .

Proof. Let n ∈ [N ] and x ∈ CN . Furthermore, let y ∈ CN−1 be x with xn removed

so that

yj =


xj if j < n

xj+1 if j ≥ n.

Finally, let m0, . . .mN−1 ∈ {0, 1}K be the columns of M(n).

We have that

M(n)x = xnmn +M ′(n)y = xn1+M ′(n)y.

6.3.2 tells us that at most sα = α/δ entries ofM ′(n)y differ from those inM ′(n) (y − ys).

Of the remaining entries of M ′(n)y (of which there are at least K−sα), at most sα of

them have magnitudes greater than or equal to δ‖y − ys‖1 by 6.3.1 (since removing

the at most sα rows from M for which M ′(n) (y − ys) 6= M ′(n)y will leave us with

another (K − sα, α)-coherent matrix and s ∈ [1, K−sα
α

] as K > cαs > 2αs). Hence,

at least

K − 2sα = K − 2α

δ

= K − 2

c

cα

δ

> K − 2

c
K =

(
c− 2

c

)
K

entries of M ′(n)y will have magnitudes bounded above by

1

δ
‖y − ys‖2 ≤

1

δ
‖x− xs‖1.

The result follows after noting that c−2
c
≥ 1

2
for all c ∈ [4,∞).



214

Example 5. Recalling the Fourier-friendly matrices from 4, we note that setting

K = 4s blogsNc for pq−1 < K ≤ pq, will yield a majority (δ = 1/s)-reconstructing

matrix for any s ≤ N . It will have at most

m = O
(
s2 log2

sN log(s logsN)
)

rows.

If we use this Fourier-friendly matrix with the Median Recovery algorithm, 6.2.1,

we can approximate x̂ for any x ∈ CÑ using only O(m) samples from x, and the

algorithm will run in O(Ns logN)-time if S = [N ] is used.

Next. We still have two concerns to take care of.

1. How can we quickly find a smaller S containing Cs,β?

2. How can we reduce the number of rows in the Fourier-friendly construction to

scale linearly in s?
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Appendix A

Partial Examples of the .tex Style I Like (SVD CMSE Lec 5
Review Content – SVD Section)

Classical Building Blocks: Definitions, FFT, SVD, Linear and Semidefinite Program-

ming

[N ] = {0, . . . , N − 1}.

In this chapter we briefly introduce the reader to some of the fundamental al-

gorithms and techniques often used as building blocks to in order to construct of

methods for the analysis of massive data sets.

A.1 Some Notation

NEED TO REWRITE BELOW WITH RESPECTABLE NOTATION!!!!

INDEXES ALWAYS START FROM 0!!!!

:= for definitions, = for equalities that logically follow from those definitions.

n and N will always denote dimension sizes...

vectors (bolded), matrices, unitary, ENTRIES of matrix/vectors notation, · al-

ways denotes scalar multiplication (never a dot product).
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A∗ = conj. transpose, range(A)=column span of A = image of A when considered

as a linear map.

`p-norms of vectors

A ball in RN around a is B(a,radius)

vectors are considered equivalent to 1×N size matrices

computational complexity, operation counts (not time except for hueristic). Little

o and big O, theta, omega.

A.2 The Discrete Fourier Transform (DFT)

In later chapters a particular orthonormal basis of CN , known as the discrete

Fourier transform basis, will become important for computational reasons. In this

section we will define the discrete Fourier basis and then present an algorithm, called

the Fast Fourier Transform (FFT), for quickly expressing any given vector in terms

of the Fourier basis. The speed of the FFT in combination with the many interesting

and useful properties of the Fourier basis will allow for several developments later

on in Chapters ?? and ??. The reader should feel free to skip this section until just

before then.

Define

(A.1) f := e
−2πi
N
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and let F ∈ CN×N be the N ×N matrix defined by

(A.2) Fω,j :=
fω·j√
N

for ω, j ∈ [N ]. The matrix F is called the Discrete Fourier Transform (DFT)

Matrix of size N . It is not difficult to show that the columns of F form an orthonor-

mal basis of CN (i.e., one can easily show that F is a unitary matrix – see problem 1

below).

The Discrete Fourier Transform (DFT) of a vector v ∈ CN is simply

(A.3) v̂ := Fv

with entries given by v̂ω for all ω ∈ [N ] = {0, . . . , N − 1} ⊂ N. Similarly, the

Inverse Discrete Fourier Transform (IDFT) of a vector v ∈ CN is

(A.4) v̂-1 := F−1v = F ∗v.

As we shall see, the DFT walks hand in hand with our next definition.

The discrete convolution of two vectors u,v ∈ CN , denoted by u ? v ∈ CN , is

defined entrywise with its kth entry given by

(A.5) (u ? v)k :=
N−1∑
j=0

uj · v(k−j) mod N .
1

The discrete convolution of two vectors has the following useful relationship to the

two vectors’ Discrete Fourier Transforms.

Theorem A.2.1. Let u,v ∈ CN . Then

(A.6) (û ? v)ω =
√
N · ûωv̂ω

holds for all ω ∈ [N ].

1Recall that “x mod N” denotes the unique integer w ∈ [N ] satisfying x = w + k ·N for some k ∈ Z.
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Proof: To obtain (A.6) we compute

(A.7) (û ? v)ω =
1√
N

N−1∑
k=0

(u ? v)k f
ω·k =

1√
N

N−1∑
k=0

(
N−1∑
j=0

uj · v(k−j) mod N

)
fω·k.

Rearranging the final double sum we obtain

(A.8) (û ? v)ω =
1√
N

N−1∑
j=0

uj f
ω·j

(
N−1∑
k=0

v(k−j) mod N f
ω·(k−j)

)
=
√
N · ûωv̂ω.

Here we have used the fact that fn·N = 1 for all n ∈ Z so that fω·(k−j) = fω·((k−j) mod N)

always holds. 2

Theorem A.2.1 tells us that the DFT of the convolution of two vectors is equal

to the entrywise product of the DFTs of the two vectors. Using this relationship we

can compute the discrete convolution of u and v using their DFTs. Let u�v ∈ CN

denote the entrywise (or Hadamard) product of the two vectors u,v ∈ CN . That is,

let

(A.9) (u� v)j := ujvj

for all j ∈ [N ]. Theorem A.2.1 now directly implies that

(A.10) u ? v =
√
N ·̂̂u� v̂

-1

=
√
N · F ∗ (Fu� Fv) .

Note that the last expression of (A.10) could be computed quickly if we could find

a way to quickly calculate both Fu and F ∗u for any given u. As it turns out this is

in fact possible!

A.2.1 The Fast Fourier Transform (FFT)

As seen above, computing the DFT of a vector u ∈ CN requires the computation

of Fu. Computing Fu directly via a generic matrix-vector multiply requires O(N2)
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operations. The Fast Fourier Transform (FFT) allows us to reduce this computa-

tional cost from O(N2) operations to O(N lnN) operations. In what follows we will

outline the recursive construction of the FFT algorithm via sum splitting techniques.

Let u ∈ CN , and suppose that its dimension, N , has the prime factorization

N = p1 · p2 · · · pm, where p1 ≤ p2 ≤ · · · ≤ pm are N ’s prime factors.

Choose ω ∈ [N ]. It’s not too difficult to see that

(A.11) ûω =
1√
N

N−1∑
j=0

uj f
ω·j.

By splitting the sum (A.11) for ûω into p1 smaller subsums, one for each possible

residue modulo p1, we can see that

(A.12) ûω =
1√
N

p1−1∑
k=0

fω·k


N
p1
−1∑

j=0

uk+p1·j f
ω·p1·j

 .

Let’s now rewrite the internal sum of (A.12) in order to realize some progress.

Given k ∈ [p1], define u(k,p1) ∈ CN/p1 to be the vector whose entries are the entries

of u having indexes that are congruent to k modulo p1,

(A.13)
(
u(k,p1)

)
j

:= uk+j·p1

for all j ∈ [N/p1].2 Our equation (A.12) for ûω now becomes

ûω =
1
√
p1

p1−1∑
k=0

fω·k

 1√
N/p1

N
p1
−1∑

j=0

(
u(k,p1)

)
j
fp1·ω·j

(A.14)

=
1
√
p1

(
p1−1∑
k=0

fω·k
(
û(k,p1)

)
ω mod N

p1

)
.(A.15)

For the sake of clarity we emphasize that the vector û(k,p1) ∈ CN/p1 in (A.15) is

exactly Fu(k,p1), where F ∈ C
N
p1
× N
p1 is now the DFT Matrix of size N/p1. We

2Note that we used an integer divisor of N , i.e. p1, exactly to ensure that N
p1
∈ N.
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strongly recommend that you verify the equality of (A.14) and (A.15) for yourself

before reading further.

At this point it’s useful to ask ourselves what we’ve managed to accomplish by

reformulating (A.11) into (A.15). Mainly, we can now compute û ∈ CN with fewer

operations than before by computing it in two steps. First, we compute û(k,p1) ∈ C
N
p1

for all k ∈ [p1]. Next, we use the vectors û(0,p1), . . . , ̂u(p1−1,p1) computed in the first

step in order to compute each entry of û via (A.15). The first step can be accom-

plished with p1 matrix-vector multiplications, each of which can be computed using

O(N2/p2
1) operations (recall that û(k,p1) = Fu(k,p1), where F is the DFT Matrix of

size N/p1). Hence, the first step can be completed using O(N2/p1) total operations.

Step two only requires O(p1N) total operations in order to finish calculating û,

O(p1)-operations for each ûω. Putting it all together, we can see that (A.15) allows

us compute û ∈ CN using a grand total of O(p1N +N2/p1) operations, as opposed

to computing it directly via (A.3) using Θ(N2) operations.

Although the computational gain obtained from (A.15) is modest, it is impor-

tant to note that the sum-splitting technique used to obtain it can now be employed

again in order to compute each û(k,p1), k ∈ [0, p1), more quickly. That is, we may

split up the sum for (û(k,p1))ω into p2 additional sums, etc.. Repeatedly sum-splitting

in this fashion leads to the recursive Fast Fourier Transform (FFT) shown in Al-

gorithm A.2.1. Analogous sum-splitting leads to the Inverse Fast Fourier Trans-

form (IFFT) which can be obtained from Algorithm A.2.1 by replacing line 10’s

fkω by f−kω and replacing each û by a û-1.

We are now ready to analyze the computational complexity of the FFT. Let TN

be the number of operations used by Algorithm A.2.1 to compute û ∈ CN . In order

to determine an equation for TN we note that lines 6 – 8 require p1 · T N
p1

operations
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Algorithm A.2.1 Fast Fourier Transform (FFT)

1: Input: Vector u ∈ CN , Dimension N , Dimension’s prime factorization p1 ≤ · · · ≤ pm
2: Output: û ∈ CN

3: if N == 1 then
4: Return u
5: end if
6: for k from 0 to p1 − 1 do

7: û(k,p1) ← FFT
(
u(k,p1), N

p1
, p2 ≤ p3 ≤ · · · ≤ pm

)
8: end for
9: for ω from 0 to N − 1 do

10: ûω ← 1√
p1

(∑p1−1
k=0 fkω

(
û(k,p1)

)
ω mod N

p1

)
11: end for
12: Return û

while lines 9 – 11 use O(p1N) operations. Therefore we have

(A.16) TN = O(p1N) + p1 · T N
p1

.

However, Algorithm A.2.1 is recursively invoked again to compute û(0,p1), . . . , ̂u(p1−1,p1)

by sum-splitting in line 7. Taking this into account we can see that

(A.17) T N
p1

= O
(
p2N

p1

)
+ p2 · T N

p1p2

.

We now have

(A.18) TN = O(p1N)+p1 ·
(
O
(
p2N

p1

)
+ p2 · T N

p1p2

)
= O (N(p1 + p2))+p1p2 ·T N

p1p2

.

Repeating this recursive sum-splitting n ≤ m times shows us that

(A.19) TN = O

(
N ·

n∑
l=1

pl

)
+

n∏
l=1

pl · T N
p1···pn

.

Using that T1 = O(1) (see Algorithm A.2.1’s lines 3 – 5) we have

(A.20) TN = O

(
N ·

m∑
l=1

pl

)
+O(N) = O(m · pm ·N).

Note that m ≤ log2N while pm is N ’s largest prime factor. We have proven the

following theorem in the course of the subsequent discussion.
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Theorem A.2.2. Let u ∈ C
N and suppose that N has the prime factorization

N = p1 · · · pm, where p1 ≤ p2 ≤ · · · ≤ pm are the prime factors of N ordered from

smallest to largest. Then, we may compute û = Fu using O (N ·
∑m

l=1 pl) operations.

Theorem A.2.2 tells us that the FFT can significantly speed up computation of

the DFT. For example, if N is a power of 2 we’ll have m = log2N and pm = 2 leaving

Algorithm A.2.1 with an O(N lnN) operation count. This is a clear improvement

over the Θ(N2) operations required to in order to compute (A.3) directly. However,

if N has large prime factors the improvement is less impressive. In the worst case,

when N is prime, we have m = 1 and p1 = N . This leaves Algorithm A.2.1 with a

O(N2) runtime which, in practice, is slower than the direct method (A.3).

The inability of Algorithm A.2.1 to handle vectors with sizes containing large

prime factors isn’t a setback when one may dictate, with little or no repercussions,

the dimension of the vectors they work with. A popular choice is to simply force

N to be a power of 2. However, sometimes one simply needs to compute the DFT

of a vector whose size contains (or may contain) large prime factors. In the next

subsection we discuss how to do this efficiently.

A.2.2 The FFT for Vectors of Arbitrary Size

As discussed in the previous subsection, Algorithm A.2.1 may not be a very effi-

cient means of computing û ∈ CN when N contains large prime factors. One way

of addressing this issue is to rewrite û as a discrete convolution of two vectors of a

slightly larger dimension, Ñ , that contains only small prime factors. This discrete

convolution can then be computed quickly by Algorithm A.2.1 which will be efficient

for vectors of dimension Ñ .
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Let ω ∈ [N ]. We may rewrite ûω as

(A.21) ûω = f−
ω2

2 f
ω2

2 · ûω =
f
ω2

2

√
N
·
N−1∑
j=0

uj f
ω·j−ω

2

2 =
f
ω2

2

√
N
·
N−1∑
j=0

uj f
−(ω−j)2

2 f
j2

2 .

Note that the last sum in (A.21) resembles a convolution. In order to make the

resemblance more concrete we will define two new vectors.

Let Ñ = 2dlog2Ne+1. Now define ũ ∈ CÑ by

(A.22) ũj =

 uj · f
j2

2 if 0 ≤ j < N

0 if N ≤ j < Ñ

,

and define v ∈ CÑ by

(A.23) vh =


f
−h2

2 if 0 ≤ h < N

0 if N ≤ h ≤ Ñ −N

f
−(h−Ñ)2

2 if Ñ −N < h < Ñ

.

Equation (A.21) now becomes

(A.24) ûω =
f
ω2

2

√
N
·
Ñ−1∑
j=0

ũj · v(ω−j) mod Ñ =
f
ω2

2

√
N
· (ũ ? v)ω.

Note that this final convolution, ũ ? v ∈ CÑ , can be computed efficiently by the

FFT and IFFT using (A.10) since Ñ is a power of two. We have now established

the following theorem.

Theorem A.2.3. Let u ∈ CN . Then, û ∈ CN can be calculated using O(N lnN)

operations.

Theorem A.2.3 generalizes Theorem A.2.2 to handle all values of N efficiently.

We are now in the position to declare that the DFT of any vector in CN can be

calculated using only O(N lnN) operations!
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A.2.3 References

The FFT was first published and analyzed as a computer algorithm by Cooley

and Tukey in 1965 [7], despite similar techniques being utilized much earlier (e.g., by

Gauss and many others [16]). Cooley and Tukey’s algorithm is particularly efficient

for vector dimensions, N , whose prime factorizations contain only small prime fac-

tors. Later variants of the FFT [4, 29] allowed the FFT to also be utilized effectively

for vector sizes whose prime factorizations contain larger primes. This section has

primarily followed these three papers. For more information on Fourier methods and

algorithms we recommend that the interested reader consult the relevant chapters of

[28], [22], [8], or [6]. For a fast FFT implementation we recommend FFTW [14].

A.2.4 Exercises

1. Prove that the DFT matrix, F , is unitary.

2. Prove that ‖v̂‖2
2 = ‖v‖2

2 holds for all v ∈ CN . This equality is sometimes referred

to as Parseval’s equality in the context of the discrete Fourier basis.

3. Suppose p,N ∈ N are such that N/p ∈ N (i.e., suppose that p divides N). Given

u ∈ Cp, let v ∈ CN be a longer vector with entries given by

vj =

 upj/N if j ≡ 0 mod (N/p)

0 else

,

and let w ∈ CN be another longer vector with entries given by wj = uj mod p.

Compute the N -length DFTs v̂, ŵ ∈ CN in terms of the p-length DFT of u.

4. Let a, b, c ∈ [N ] be such that a is invertible modulo N .3 Furthermore, suppose

that u,v ∈ CN satisfy

vj = e
2πicj
N uaj+b

3A value a ∈ [N ] is invertible modulo N if there exists an h ∈ [N ] such that (a h) ≡ 1 mod N . Any a ∈ [N ]
that is relatively prime to N will be invertible modulo N by the Fermat-Euler Theorem.
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for all j ∈ [N ]. Calculate v̂ in terms of û. How does a affect v̂ when c = b = 0?

How does b affect v̂ when a = 1 and c = 0? How does c affect v̂ when a = 1 and

b = 0?

5. Let q(x) =
∑N−1

j=0 qjx
j and r(x) =

∑N−1
j=0 rjx

j be two polynomials of degree at

most N − 1. Define t(x) = q(x) · r(x) to be their product. We know that t(x) is a

polynomial of degree at most 2N − 2 which can be written as t(x) =
∑2N−2

j=0 tjx
j.

Show that t0, . . . , t2N−2 can be computed explicitly using only O(N lnN) opera-

tions.

6. Consider the matrix D2 ∈ NN×N whose entries are given by

(A.25) (D2)i,j =



−2 if i = j

1 if (i− j) ≡ 1 mod N

1 if (i− j) ≡ N − 1 mod N

0 otherwise

.

This is an example of a circulant matrix (see problem 8). Show that FD2 = EF ,

where E ∈ RN×N is a diagonal matrix with entires given by

(A.26) (E)i,j =

 2 cos(2πj/N)− 2 if i = j

0 if i 6= j

.

7. Let D2r ∈ NN×N be defined by D2r := Dr
2. Use the previous exercise to show that

FD2r = ErF for all r ∈ Z+.

8. Given a vector u ∈ CN we can define a circulant matrix Circ(u) ∈ CN×N with

entries given by

(Circ(u))i,j = u(j−i) mod N .

Show that Circ(u)F =
√
NFD, where D is a diagonal matrix with entries given
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by

(D)i,j =

 (Fu)j if i = j

0 if i 6= j

.

In other words, show that any given circulant matrix will have the columns of F

as its eigenvectors.

9. Let g : [0, 1] → R be a twice continuously differentiable and periodic function.

Any such g will have a Fourier series expansion of the form

(A.27) g(x) =
∑
ω∈Z

cωe
2πiωx ∀x ∈ [0, 1],

where the Fourier series coefficients cω ∈ C satisfy (i) cω = c−ω for all ω ∈ Z,

and (ii)
∑

ω∈Z |cω| < ∞. Let u ∈ RN be a vector whose entries are given by

uj = g(j/N) for all j ∈ [N ]. Show that the vector Fu has entries

(Fu)j =
√
N

∑
ω≡j mod N

cω.

10. Let u ∈ RN be a vector whose entries are given by a twice continuously differen-

tiable and periodic function g : [0, 1] :→ R as follows: uj = g(j/N) for all j ∈ [N ].

Use Taylor’s Theorem to explain why N2D2u should approximate values from the

second derivative of g quite well for large N , where D2 is the matrix defined by

(A.25). Next, use the Fourier series expansion of g′′ to argue that the matrix E

from (A.26) should have (E)ω,ω ≈ − (2πω/N)2 for all ω ∈ [N ].4 Finally, verify

that the entries of E do indeed have this property for large N .

11. COMPUTATIONAL EXERCISE: Implement both the FFT and the IFFT

for vectors of size 2n, n ∈ N. Produce a plot showing that each is indeed faster

than the corresponding naive method for directly computing the (I)DFT of an

arbitrary vector.

4The author grants you special permission to ignore cω for all ω /∈ [N ] when you make your argument.
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A.3 The Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) is arguably the most useful fact of Lin-

ear Algebra, which is itself arguably the most useful and ubiquitous of mathematical

subjects (with respect to computation in particular). The SVD’s utility in data anal-

ysis is underscored by the fact that it has been (re)discovered at least three times

in different scientific communities. In this section we will review the SVD of a given

matrix A ∈ Cn×N . Most sections of the book hereafter will use the SVD repeatedly

and often – it is well worth refreshing yourself here, and familiarizing yourself with

our notation, before moving on.

The following theorem defines, and guarantees the existence of, the SVD for an

arbitrary rectangular matrix A ∈ Cn×N .

Theorem A.3.1. Every A ∈ Cn×N can be decomposed into A = UΣV ∗, where:

1. U ∈ Cn×n and V ∈ CN×N are both unitary, and

2. Σ ∈ [0,∞)n×N is a unique diagonal matrix,

Σi,j =

 σj if i = j < the rank of A

0 otherwise

,

with σ0 ≥ σ2 ≥ · · · ≥ σr−1 ≥ 0, where r = the rank of A ≤ min(n,N).

The jth-largest diagonal entry of Σ, σj ∈ [0,∞), is called the jth singular value of

A.

The proof of Theorem A.3.1 follows from the next 2 lemmas which will also help

us establish some notation.

Lemma A.3.2. Let {w0, · · · ,wN−1} be an orthonormal basis for CN . Define sj :=
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‖Awj‖2, and

(A.28) hj :=

 0 if sj = 0

1
sj
Awj ∈ Cn if sj 6= 0

.

Finally, let W to be the unitary matrix (w0 · · ·wN−1) ∈ CN×N . Then,

A = (h0 · · ·hN−1)


s0 · · · 0

...
. . .

...

0 · · · sN−1

W ∗.

Proof: We have

(A.29) AW = (h0 · · ·hN−1)


s0 · · · 0

...
. . .

...

0 · · · sN−1

 ,

and W−1 = W ∗. Note that we are free to reorder the columns of W in order to

achieve s0 ≥ s1 ≥ · · · ≥ sN−1 ≥ 0. The resulting sequence of ordered sj-values will

be uniquely determined by W . The number of nonzero sj-values will equal the rank

of A if {w0, · · · ,wN−1} contains an orthonormal basis for the null space of A as a

subset.

Lemma A.3.2 already yields a large family of decompositions for A with sev-

eral of the structural properties promised by Theorem A.3.1. The next lemma tells

us how to choose W in order to ensure that the hj-vectors from (A.28) also yield

a matrix U ∈ C
n×n that is unitary. As a happy coincidence, our choice of W

will also both contain an orthonormal basis for the null space of A as subset of its

columns, and guarantee the uniqueness of the ordered sj-values subsequently induced

by Lemma A.3.2. Theorem A.3.1 will be proven as a result.
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Lemma A.3.3. The matrix U := (h0 · · ·hN−1) from (A.29) will be essentially uni-

tary if and only if w0, · · · ,wN−1 from (A.28) are an orthonormal set of eigenvectors

of A∗A ∈ CN×N .

Proof: Let λl be the eigenvalue of A∗A associated with an eigenvector wl for all

0 ≤ l < N . Considering the inner product of two nonzero hj-vectors from (A.28) we

have that

〈hj,hl〉 =
1

sjsl
〈Awj, Awl〉 =

1

sjsl
(Awj)

∗Awl =
1

sjsl
w∗j (A∗Awl) =

λl
sjsl

w∗jwl = 0

whenever j 6= l. Similarly, 〈hj,hj〉 = 1 will also hold for all nonzero hj by the

definition of sj.

Now suppose that U is unitary. Having both

1 = 〈hj,hj〉 =
1

s2
j

〈Awj, Awj〉 =
1

s2
j

〈wj, A
∗Awj〉

and

0 = 〈hl,hj〉 =
1

slsj
〈Awl, Awj〉 =

1

slsj
〈wl, A

∗Awj〉

hold whenever l 6= j necessitates that A∗Awj be a scalar multiple of wj. Thus, we

must choose w0, · · · ,wN−1 ∈ CN to be an orthonormal set of eigenvectors of A∗A

in order to obtain a unitary U = (h0 · · ·hN−1) in (A.29).

Finally, if the columns for U do not collectively span C
n we may use Gram-

Schmidt orthogonalization to add additional columns to U until it does (being careful

to associate them with zero sj-values). Then, we may discard any zero columns of

U until it is n × n (again, being careful to remove the associated zero rows of the

diagonal matrix of sj-values in (A.29)).

The singular value decomposition of a matrix reveals many of its most important

properties. The following theorem summarizes some of the most fundamental of

these.



231

Theorem A.3.4. Consider the singular value decomposition of A ∈ Cn×N , A =

UΣV ∗. Let r be the rank of A. The following statements hold:

1. The r nonzero singular values of A are exactly the square roots of the positive

eigenvalues of A∗A or AA∗.

2. The first r columns of U form an orthonormal basis for the column space of A

(i.e., for the range, or image, of A).

3. The last n − r columns of U form an orthonormal basis for the null space, or

kernel, of A∗.

4. The first r columns of V form an orthonormal basis for the row space of A (i.e.,

for the range, or image, of A∗).

5. The last N − r columns of V form an orthonormal basis for the null space, or

kernel, of A.

6. If n = N and A is Hermitian, then A will have λ as an eigenvalue if and only if

there exists a j ∈ [r] such that

• |λ| is the jth singular value of A (i.e., σj = |λ|),

• the jth column of V , vj ∈ CN , is an eigenvector of A associated with λ, and

• the jth column of U = sign(λ)vj.

Proof: See Exercise 2.

We now turn to a theorem and some corollaries that can be used to quickly

simplify bounds on singular values for the sum or products of matrices.

Theorem A.3.5. Let A,B ∈ Cn×N and q = min(n,N). The following inequalities

hold for the singular values of A,B,A+B, and AB∗
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1. σi+j−1(A+B) ≤ σi(A) + σj(B)

2. σi+j−1(AB∗) ≤ σi(A)σj(B)

for 1 ≤ i, j ≤ q, i+ j ≤ q + 1.

Proof. The theorem and proof can be found in [17].

Corollary A.3.6. 1. |σi(A+B)− σi(A)| ≤ σ1(B)

2. σi+j−1(AB∗) ≤ σi(A)σ1(B)

Proof. The proof of the corollary is left an exercise.

We are now prepared to concentrate on several other useful properties of the

singular values of a given matrix.

Homework A.3.1. Prove Corollary A.3.6 using Theorem A.3.5

Homework A.3.2. Suppose every entry of matrix A ∈ Cn×N is corrupted with

additive error in magnitude less than or equal to ε. How much can the singular value

σi(A) change for any i = 1, . . . ,min(n,M)?

A.3.1 Singular Values and Matrix Norms

Now discuss how singular values relate to the operator norm and Frobenius norm

of a matrix.

Definition A.3.7 (Frobenius Norm). The Froebenius norm of A ∈ Cn×N is

‖A‖F =

√∑
`,j

|A`,j|2 =
√

Trace(A∗A)

The equivalence of the two quantities in the definition can be seen by considering

that the diagonal entries of the matrix A∗A are in fact the `2-norm of the columns

of A. That is(A∗A)j,j = 〈aj, aj〉 = ‖aj‖2
2. Noting that the trace is the sum of the
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diagonal entries then we then have the equivalence of the two quantities seen in A.3.7.

For the same reason, the Froebenius norm can also be understood as equivalent to

the `2-norm of a vector with nM entries equal to the entries of A. To see how the

singular values relate to this norm, consider

‖A‖F =
√

Trace(A∗A)

=
√

Trace(V Σ∗U∗UΣV ∗)

=
√

Trace(V Σ∗ΣV ∗)

=
√

Trace(V ∗V Σ∗Σ)

=
√

Trace(Σ∗Σ)

=

√√√√min(n,N)∑
j=1

(σj(A))2

where we have used the cyclic property of the trace. Thus the ‖A‖F is equivalent to

the `2-norm of a vector formed by the singular values of A

We recall Definition 3.1.9, the operator norm of A ∈ Cn×N and will show how the

singular values relate to this norm.

The `2-operator norm of A ∈ Cn×N is

‖A‖2→2 = sup
x 6=0

‖Ax‖2

‖x‖
= sup
‖x‖2=1

‖UΣV ∗x‖2

Note that V is a unitary matrix, and so its columns form an orthonormal basis; so

for x ∈ CN we have that ∃α ∈ CN such that

x =
N∑
j=1

αjvj, ‖α‖2 = ‖x‖2 = 1
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Using this expansion of x in the basis defined by V along with the SVD of A, we

have

‖A‖2→2 = sup
‖α‖2=1

‖UΣV ∗

(
N∑
j=1

αjvj

)
‖2

= sup
‖α‖2=1

‖UΣ

(
N∑
j=1

αjV
∗vj

)
‖2

= sup
‖α‖2=1

‖UΣ

(
N∑
j=1

αjej

)
‖2

= sup
‖α‖2=1

‖U

(
N∑
j=1

αjσj(A)ej

)
‖2

= sup
‖α‖2=1

√√√√ N∑
j=1

(αjσj(A))2

Since the singular values are non-negative and in descending order, the sum above

is maximized for α = e1 i.e. α1 = 1, αj = 0∀j 6= 1. Thus ‖A‖2→2 = σ1(A).

A.3.2 Exercises

1. Use the singular value decomposition to help you construct a matrix A ∈ R2×2

with no eigenvectors whose square, A2 ∈ R2×2, has two eigenvectors. How many

eigenvectors will A709 have?

2. Prove Theorem A.3.4.

3. Use the singular value decomposition of A ∈ Cn×N to help you find a formula

for a matrix A† ∈ CN×n which inverts A on its range. More specifically, write a

formula for a matrix A† that satisfies both AA†A = A and A†AA† = A†. When

will A† = A−1 hold?

4. Let α, β ∈ Z \ {0}. The α
β
-power of a full rank matrix A ∈ CN×N is a matrix

B ∈ CN×N with the property that Bβ = Aα. Prove that there always exists a

unitary matrix W ∈ CN×N such that the α
β
-power of AW exists. When can W
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simply be the identity? How can one compute such a B and W for any given

A ∈ CN×N?

————————————————————————

–Operator form, sum of rank 1 matrices –matrix norms –Best low rank approx-

imation + regression (fitting a pointset...) – Computation section – Weyl’s bounds

and stability...

A.3.3 Computing the SVD of a Matrix

Notice that

A∗A = (UΣV∗)∗(UΣV∗)

= VΣ∗U∗UΣV∗

= VΣ2V∗.

Then, V contains the eigenvectors of A∗A as columns, and σ1, σ2, · · · , σq are the

squared eigenvalues of A∗A.

Numerically, we can use, e.g., the QR algorithm to find the eigenvalues of A∗A

to get the singular values of A. The shifted inverse power method, e.g., can be used

to calculate V. Similarly, from AA∗ we can find U.

A.4 A Brief Introduction to Linear and Semidefinite Programming?

A.5 A brief review of computational complexity and asymptotic nota-
tion?
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