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Bott-Samelson varieties are an important tool in geometric representation
theory [1], [3], [25], [10]. They were originally defined as desingularizations of
Schubert varieties and share many of the properties of Schubert varieties. They
have an action of a Borel subgroup, and the projective coordinate ring of a
Bott-Samelson variety splits into certain generalized Demazure modules (which
also appear in other contexts [22], [23]).

Standard Monomial Theory, developed by Seshadri and the first author [15],
[16], and recently completed by the second author [20], gives explicit bases for
the Demazure modules associated to Schubert varieties. In this paper, we extend
the techniques of [20] to give explicit bases for the generalized Demazure modules
associated to Bott-Samelson varieties, thus proving a strengthened form of the
results announced by the first and third authors in [12]. (See also [13].) We also
obtain more elementary proofs of the cohomology vanishing theorems of Kumar
[10] and Mathieu [25]; of the projective normality of Bott-Samelson varieties;
and of the Demazure character formula.
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1 Basis Theorem

In this section we state the main results which we prove in the rest of the paper.
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1.1 Demazure modules

Let G be a reductive algebraic group of rank n over an algebraically closed
field k, g its Lie algebra, and U(g) its universal enveloping algebra. (To avoid
technicalities, we deal with finite-dimensional g, but our results extend straight-
forwardly to symmetrizable Kac-Moody algebras.) Choose a Cartan subgroup
H ⊂ G, and a Borel subgroup B ⊃ H . For i = 1, . . . , n, we then have positive
and negative simple root vectors Ei and Fi generating g; the Cartan subalgebra
h; the Borel subalgebra b generated by Ei and h; the simple roots αi and coroots
α∨

i = [Ei, Fi]; the fundamental weights �i with 〈�i, α
∨
j 〉 = δij and the weight

lattice X =
⊕n

i=1 Z�i; and the simple reflections si :X→X, λ �→ λ−〈λ, α∨
i 〉αi,

generating the Weyl group W .
An element λ ∈ X is a one-dimensional representation λ : h → k, and it

extends to a one-dimensional b-module denoted kλ. For a dominant weight
λ ∈ X+ :=

⊕n
i=1 Z+�i, we let Vλ denote the Weyl module of highest weight

vector vλ with b · vλ = λ(b) vλ for b ∈ b. (That is: over the rational numbers,
Vλ,Q is the irreducible GQ-module; Vλ,Z ⊂ Vλ,Q is the smallest Z-submodule
containing vλ and closed under the operations El

i/l! and F l
i /l! for l ≥ 0, i ∈ [1, n];

and in general Vλ = Vλ,k := Vλ,Z ⊗Z k.) We also have the dual module V ∗
λ . For

k of characteristic zero, Vλ and V ∗
λ are irreducible G-modules.

Given an arbitrary word, meaning a sequence i = (i1, . . . , ir) with ij ∈
{1, 2, . . . n}; as well as a multiplicity list m = (m1, . . . , mr) with mj ∈ Z+; we
let

λ1 := m1�i1 , . . . , λr = mr�ir .

We define the generalized Demazure module Vi,m as a certain B-submodule of
the tensor product Vλ1 ⊗ · · · ⊗ Vλr :

Vi,m := ui1· (vλ1 ⊗ ui2· (vλ2 ⊗ · · · ⊗ uir−1· (vλr−1 ⊗ uir· (vλr )) · · · )),

where ui =
⊕

l≥0 kF l
i /l! denotes the hyperalgebra of a single negative root

vector. (By convention, if r = 0, so that i is the empty word, we set Vi,m = k0,
the trivial one-dimensional B-module.) The dual B-module V ∗

i,m is a quotient
of V ∗

λ1
⊗ · · · ⊗ V ∗

λr
. We will explain in §1.4 how these modules arise from Bott-

Samelson varieties.
The ordinary Demazure module Vλ(w) ⊂ Vλ is essentially a special case.

Given w ∈ W , choose the word i so that w = si1 · · · sir is a reduced decomposi-
tion, and hence

Vλ(w) := ui1· · ·uir· vλ .

Given a weight λ = l1�1 + · · · + ln�n, choose multiplicities (m1, . . . , mr) as
follows. Suppose the rightmost occurrence of i = 1 in the word i is at position
k: that is, ik = 1, ij �= 1 for j > k. Then let mk = l1. (If i = 1 does not occur
in i, let m1 = 0.) Next let k′ be the rightmost occurrence of i = 2 in i, and let
mk′ = l2. Proceed in this way for each i, then let mj = 0 if it has not already
been defined. Finally, let λ′ =

∑
i�∈i li�i, where the sum runs over those i which

do not occur anywhere in i. Then Vλ(w) ∼= kλ′ ⊗ Vi,m, with w(λ′) = λ′.
This paper revolves around the following
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Problem: Find explicit bases for the generalized Demazure module Vi,m and
its dual V ∗

i,m.
From now on, we will assume i and m are fixed, so that we can refer to ii,

or r, or λ1, . . . , λr without ambiguity.

1.2 Standard tableaux

We recall the machinery of Lakshmibai-Seshadri paths ([17], [18]) needed to
index our bases of Vi,m.

Let XR := X ⊗Z R be the real form of the weight lattice. A path is a
piecewise-linear map π : [0, 1] → XR (up to reparametrization) with π(0) = 0.
For a weight λ ∈ X , we let πλ denote the straight-line path: πλ(t) := tλ; and
π1 ∗ π2 denotes the concatenation of two paths. The weight of a path is its
endpoint, wt(π) := π(1).

Let Wλ ⊂ W be the stabilizer of a weight λ ∈ X , and use > to denote the
Chevalley-Bruhat order on W and on the coset space W/Wλ. Let λ ∈ X+ be a
dominant weight. An LS-chain of shape λ is a pair of lists

(τ1 > · · · > τq; 0 = a0 < a1 < · · · < aq = 1),

where τj ∈ W/Wλ and aj ∈ Q, such that for each j there exists a chain in the
Bruhat order τj = σ0 > σ1 > · · · > σp = τj+1 with �(σk+1) = �(σk) + 1 and
aj(σk+1λ − σkλ) ∈

⊕n
i=1 Zαi for each k. An LS-chain corresponds to a path

π : [0, 1] → XR, whose linear pieces are defined by:

π(t) =
k−1∑
j=1

(aj − aj−1)τjλ + (t − ak−1)τkλ for ak−1 ≤ t ≤ ak.

We call a path an LS-path if it can be so constructed from a (necessarily unique)
LS-chain. We will frequently refer to LS-paths by their defining LS-chains, and
abuse notation by writing: π = (τ1 > · · · > τq; a0 < · · · < aq).

The lowering root operators fi act on a path π in the usual way [18]. Since
we will only consider fi acting on an LS-path or a concatenation of LS-paths,
we may equivalently define these operators as in [17]. That is, let Q be the
minimum value of the function t �→ 〈π(t), α∨

i 〉 for t ∈ [0, 1]. Let t1 be the largest
t for which this minimum Q is attained, and let t2 ∈ [0, 1] be the smallest t > t1
where the function attains Q+1 (if there exists any such t). Now split our path
π into three segments π = π1 ∗ π2 ∗ π3, corresponding to t ∈ [0, t1], t ∈ [t1, t2],
and t ∈ [t2, 1]. Define the root operator

fi(π) := π1 ∗ siπ2 ∗ π3,

where siπ2 is the path t �→ si(π2(t)). If there exists no t2 as above, then fi(π)
is undefined.

We may also define the raising root operators ei analogously, so that ei

reflects the portion of π between t′1 and t′2, where t′2 is the smallest t for which
〈π(t), α∨

i 〉 attains its minimum Q, and t′1 is the largest t < t′2 where the function
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attains Q+1 (if there exists such t). We thus have ei(fi(π)) = π whenever fi(π)
is defined, and wt(fiπ) = wt(π) − αi, wt(eiπ) = wt(π) + αi.

Recall our notation λ1 = m1ωi1 , . . . , λr = mrωir for our fixed data i,m. A
tableau or LS-monomial of shape (λ1, . . . , λr) is a concatenation Π = π1∗· · ·∗πr,
where πj is an LS-path of shape λj . A given tableau can be divided in only one
way into such a concatenation of LS-paths of the proper shapes. Indeed, all LS-
paths of shape λj have length |λj | (in the W -invariant metric); so if we divide
the path Π into pieces of length |λ1|, . . . , |λr|, and successively translate the
division points to the origin, we obtain the unique LS-path factors π1, . . . , πr.

We will usually refer to the tableau Π by the corresponding r-tuple of LS-
chains, and write: Π = (π1, . . . , πr). If we list all the Weyl group cosets in all
the chains π1, · · · , πr, we obtain a long list which we denote

Π = (τ11, τ12, . . . , τ1p1 , τ21, . . . , τrpr),

where τjp is a coset modulo Wλj in the LS-chain πj . When convenient we will
reindex this long list as Π = (τ1, τ2, . . . , τN ).

Denote by [1, r] the set of integers {1, 2, . . . , r}. For any subset of indices
J = {a < b < · · · } ⊂ [1, r], we have a subword i(J) = (ia, ib, . . . ) of our
fixed word i = (i1, . . . , ir). We also define w(i) = si1si2 · · · sir ∈ W , so that
w(i(J)) = siasib

· · · , the Weyl group element corresponding to the subword i(J).
We say that i is reduced if r = �(w(i)), the Bruhat length; and similarly for the
subword i(J). Further, we write J (j) := J ∩ [1, j], so that w(i(J (j))) is an initial
subword of w(i(J)). If i(J) is reduced, then so is i(J (j)).

Let Π be a tableau of shape (λ1, . . . , λr), considered as a sequence (π1, . . . , πr)
of LS-chains πj , producing the long list of cosets Π = (τ11, . . . , τrpr ).

Definition. We say Π is a liftable-standard tableau (or just liftable) if there
exists a long chain of position-sets (J11 ⊃ · · · ⊃ Jrpr) such that for all j, p, the
subword i(J (j)

jp ) is reduced and

w(i(J (j)
jp )) ≡ τjp modulo Wλj .

Now consider the tableau Π as a concatenation of LS-paths π1 ∗ · · · ∗ πr.

Definition. We say a tableau Π is a constructable-standard tableau (or is
constructable) if it can be written as

Π = f l1
i1

(πλ1 ∗ f l2
i2

(πλ2 ∗ · · · f lr
ir

(πλr ) · · · ))

for some l1, . . . , lr ∈ Z+.

Note that for any l1, . . . , lr ∈ Z+, the path Π defined by previous formula is
a concatenation of LS-paths of the correct shapes, and is thus a tableau, which
is constructable-standard by the definition. (See [18, §§2.6, 4.2].)

Given an arbitrary path Π of shape (λ1, . . . , λr), we may test whether it is a
standard tableau as follows. Define the highest raising etop(Π) := el(Π), where
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l is maximal such that el(Π) is defined. Let etop
i1

(Π) = π′
1 ∗ · · · ∗π′

r (division into
pieces of length |λ1|, . . . , |λr|). If π′

1 �= πλ1 , then Π is not standard. Otherwise,
let Π′ = π′

2 ∗ · · · ∗ π′
r and let etop

i2
(Π′) = π′′

2 ∗ · · · ∗ π′′
r . If π′′

2 �= πλ2 , then Π is
not standard. If we can continue in this way, raising by eij and removing intial
factors πλj , until we obtain the one-point path (of length 0), then Π is standard;
otherwise it is not.

Example. Let G = GL3, i = (1, 2, 1, 2) a non-reduced word, m = (2, 1, 0, 1),
X = Zε1 ⊕ Zε2, �1 = ε1, �2 = ε1 + ε2, λ1 = 2ε1, λ2 = ε1 + ε2, λ3 = 0,
λ4 = ε1 + ε2.

A typical LS-path of shape λ is: π = (s1 > e; 0 < 1
2 < 1) = πε(2) ∗ πε(1),

a concatenation of two length-one segments. (For legibility we write ε(1), ε(2)
instead of ε1, ε2; and πµ denotes a straight-line path.)

Now consider the tableau Π = πε(2) ∗ πε(1) ∗ πε(1)+ε(3) ∗ πε(2)+ε(3). Divid-
ing Π into segments of lengths 2, 1, 0, 1, we get the LS-path factors of shapes
λ1, . . . , λ4: Π = π1 ∗ π2 ∗ π3 ∗ π4, where:

π1 = πε(2) ∗ πε(1) = (s1 > e; 0 < 1
2 < 1),

π2 = πε(1)+ε(3) = (s2; 0 < 1),
π3 = π0 = (e; 0 < 1), the one-point path,

π4 = πε(2)+ε(3) = (s2s1; 0 < 1).

This path has the lifting: J11 = {1, 2, 3, 4}, J12 = {2, 3, 4}, J21 = {2, 3, 4},
J31 = {3, 4}, J41 = {3, 4}; since:

w(i(J (1)
11 )) = w(i1) = s1 ≡ τ11 mod Wλ1

w(i(J (1)
12 )) = w(∅) = e ≡ τ12 mod Wλ1

w(i(J (2)
21 )) = w(i2) = s2 ≡ τ21 mod Wλ2

w(i(J (3)
31 )) = w(i3) = s1 ≡ e ≡ τ31 mod Wλ3

w(i(J (4)
41 )) = w(i3i4) = s1s2 ≡ τ41 mod Wλ4

Furthermore, Π is constructable, since:

Π = f1(π2ε(1) ∗ f2(πε(1)+ε(2) ∗ f1f2(πε(1)+ε(2)) ) )
= f1(πλ1 ∗ f2(πλ2 ∗ f1(πλ3 ∗ f2(πλ4) ) ) )

Theorem 1 A tableau Π is liftable if and only if it is constructable. We call
such Π a standard tableau of shape (λ1, . . . , λr).

Any set T of paths possesses a natural structure of crystal graph: namely,
the graph with vertex set T , and with i-colored edges {Π, fiΠ} (whenever both
Π and fiΠ lie in T ). For example, the crystal graph of an ordinary Demazure
module Vλ(w) is associated to the set of tableaux {f l1

i1
· · · f lr

ir
πλ | l1, . . . , lr ≥ 0},

where w = si1 · · · sir (reduced). Many important crystal graphs reduce to this
basic case.
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Theorem 2 The crystal graph on the set {Π} of standard tableaux of shape
(λ1, . . . , λr) is isomorphic (as an edge-colored graph) to a disjoint union of
crystal graphs of ordinary Demazure modules. For µ ∈ X+ a dominant weight,
the same is true of the set of paths {πµ ∗Π}, where Π runs over the standard
tableaux of shape (λ1, . . . , λr).

This is a combinatorial version of excellent filtration for the B-modules V ∗
i,m

and k∗
µ⊗V ∗

i,m. (See §2.4.)

1.3 Standard monomial bases

We use tableaux to index bases of B-modules, starting with the Weyl modules
Vλ, then proceeding to Vi,m.

For any Weyl module Vλ, the second author has constructed [20] a basis
{vπ} indexed by LS-chains π of shape λ, in which vπ is a weight vector with
weight wt(π). (See §3.1 below for details.) The basis {vπ}, inspired by the work
of Raghavan and Sankaran [26], is highly non-canonical, depending on several
arbitrary choices. However {vπ} is related to most “reasonable” bases of Vλ by
a triangular matrix. Actually, we shall find it more convenient to pair {vλ} with
bases of the dual module V ∗

λ .
To be more specific, define the following lexicographic partial order on LS-

chains. Given π = (τ1 > · · · ; 0 < a1 < · · · ) and θ = (σ1 > · · · ; 0 < b1 < · · · ),
we say π < θ if: τ1 < σ1 (in Bruhat order); or τ1 = σ1, a1 < b1; or τ1 = σ1,
a1 = b1, τ2 < σ2; etc. Note that the highest weight path is minimal in this
order, and a path is large in this order if it is far from the highest weight path.
We can extend this to tableaux by defining (π1, . . . , πr) < (θ1, . . . , θr) to mean:
π1 < θ1 (in the above order); or π1 = θ1 and π2 < θ2; etc.

Given a basis {pπ} of V ∗
λ indexed by LS-chains of shape λ, we say {pπ} is

triangular to {vπ} if
pπ = v∗π +

∑
θ>π

∝v∗θ

where ∝ indicates an appropriate scalar coefficient (possibly different in each
term). That is, 〈pπ, vπ〉 = 1, and 〈pθ, vπ〉 = 0 for all θ �≥ π. A certain basis {pπ}
defined in [20] obeys this triangular property for all groups G, as do most of the
other known bases of Weyl modules, at least for classical groups G (types An,
Bn, Cn, Dn).

Theorem 3 The following bases of V ∗
λ are triangular to {vπ}, for the specified

classes of reductive groups:
(a) Littelmann’s canonically defined LS-path basis [20], for all G;
(b) Lusztig’s dual canonical basis [21] (= Kashiwara’s upper crystal basis [8],
[6]), for classical G;
(c) Lakshmibai’s standard PBW basis [11], for classical G.
(d) Lakshmibai-Seshadri’s standard monomial basis [15], [16], for classical G.

Proof. For (a), see [20]. It is established in [26], [24] that, for the fundamental
representations V ∗

�i
, the bases (a), (b), and (d) coincide. But this implies the
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triangularity for an arbitrary V ∗
λ . The triangularity between (b) and (c) follows

from [11]. •
We expect that bases (b)–(d) possess the triangularity property for all G (in-
cluding the Kac-Moody case).

Any such system of bases {pπ} for each V ∗
λ gives a basis of V ∗

λ1
⊗ · · · ⊗ V ∗

λr

whose indexing set consists of all tableaux of shape (λ1, . . . , λr). The standard
tableaux pick out a subset of this basis which restricts to a basis of the quotient
V ∗
i,m.

Theorem 4 For every λ ∈ X+, let {pπ} be a basis of V ∗
λ which is triangular

to {vπ}. For Π = (π1, . . . , πr) a tableau of shape (λ1, . . . , λr), define

pΠ := pπ1 ⊗ · · · ⊗ pπr ∈ V ∗
λ1

⊗· · ·⊗ V ∗
λr

.

Then {pΠ}, where Π runs over the standard tableau of shape (λ1, . . . , λr), re-
stricts to a basis of V ∗

i,m. We call this a standard monomial basis of V ∗
i,m.

Since we may assume pΠ to have weight wt(Π), we can use the combinatorics
of tableaux to compute the character of Vi,m. Let R = Z[X ] =

⊕
λ∈X Zeλ be the

group ring of the weight lattice X . The Weyl group acts Z-linearly on characters
by w(eλ) = ew(λ). We may define the Demazure operator Λi : R → R by

Λi(f) :=
f − e−αisi(f)

1 − e−αi
,

which can be interpreted uniquely as an element of R. We may also characterize
Λi as the unique linear operator with Λ2

i = Λi and

Λi(eλ) = eλ + eλ−αi + eλ−2αi + · · · + esiλ.

for any λ ∈ X with 〈λ, α∨
i 〉 ≥ 0.

Theorem 5 The character of the B-module Vi,m is:

Λi1(e
λ1Λi2(e

λ2 · · ·Λir (eλr ) · · · )).

Our strategy of proof for the above theorems is as follows. Theorem 1 is
an elementary combinatorial fact, proved in §2.2. Also in §2.3 we prove that
the Demazure formula computes the formal character of the set of standard
tableaux, and we prove Theorem 2 in §2.4, all by the combinatorics of paths.
Next we prove Theorem 4 in two steps. First, in §3 we show that the set {pΠ}
is linearly independent in V ∗

i,m, so that

dim V ∗
i,m ≥ dim Span〈pΠ〉 = # standard tableaux.

Then in §4 we compare the combinatorial Demazure formula with the geometric
version to conclude

# standard tableaux ≥ dimV ∗
i,m,

which proves the Theorem. Also, Theorem 5 follows in the course of this proof,
as does Theorem 6 below.
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1.4 Bott-Samelson varieties

We now give a Borel-Weil-type result for producing our Demazure modules in-
side the projective coordinate rings of certain varieties. We will prove this, along
with the corresponding analog of Bott’s vanishing theorem. (These theorems
were originally proved in our case in [25] and [10].)

Recall our fixed word i = (i1, . . . , ir) from §1.1, and our Borel subgroup B
of G. For each i let Pi ⊃ B be the minimal parabolic subgroup with Weyl group
〈si〉, and define the Bott-Samelson variety as the quotient

Zi := (Pi1× · · · ×Pir ) / Br,

where Br acts on the right by:

(p1, . . . , pr) · (b1, . . . , br) := (p1b1, b
−1
1 p2b2, . . . , b−1

r−1prbr).

This is a smooth algebraic variety of dimension r. (If r = 0 and i is the empty
word, we let Zi be a point.)

For λ ∈ X , let eλ denote the multiplicative character of B associated to λ,
and let k∗

(λ1,... ,λr) be the one-dimensional representation of Br defined by

(b1, . . . , br)−1 · k := eλ1(b1)· · ·eλr (br)k.

Define a line bundle on Zi by

Li,m := (Pi1×· · ·×Pir )
Br

× k∗
(λ1,... ,λr)

so that we identify
(p̃, k) ∼ (p̃ · b̃, b̃−1 · k)

for p̃ ∈ Pi1 ×· · ·×Pir , b̃ ∈ Br, and k ∈ k. Unraveling the definitions, we may
concretely describe the space of regular global sections of this bundle as:

H0(Zi,Li,m) =

f : Pi1×· · ·×Pir → k

∣∣∣∣∣∣∣
∀ bj ∈ B, pj ∈ Pij

f((p1, . . . , pr) · (b1, . . . , br)) =
eλ1(b1)· · ·eλr(br)f(p1, . . . , pr)

 ,

where f denotes a polynomial function on the linear algebraic group Pi1×· · ·×Pir .
The Borel subgroup acts on Zi and Li,m by left multiplication: for b ∈ B,

b·(p1, . . . , pr) := (bp1, p2, . . . , pr) and b·(p1, . . . , pr, k) := (bp1, p2, . . . , pr, k) .

The space H0(Zi,Li,m) of regular global sections of Li,m over Zi is naturally a
B-module under translation.

Our analysis extends to certain varieties desingularized by Bott-Samelson va-
rieties, called configuration varieties in [22], [23]. For a given m = (m1, . . . , mr),
the line bundle Li,m is very ample (resp. semi-ample) exactly when all mj > 0
(resp. mj ≥ 0). In the latter case, define Zi,m as the image of the natural map
Zi → P∗H0(Zi,Li,m). This variety is singular in general, and can be of smaller
dimension than Zi. If we take i, m so that kλ′ ⊗ Vi,m

∼= Vλ(w) is a Demazure
module (see §1.1), then Zi,m

∼= B · wB ⊂ G/B, a Schubert variety.
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Theorem 6 The B-module of regular global sections is isomorphic to the dual
of a generalized Demazure module:

H0(Zi,Li,m) ∼= V ∗
i,m.

Also, Zi is projectively normal with respect to the bundle Li,m, and Hi(Zi,Li,m) =
0 for i ≥ 1. Furthermore, all the above statements hold for Zi,m in place of Zi.

We give the proof in §4.2.

1.5 The Symplectic group

In [13], we work out the above constructions at length in the case of the general
linear group G = GLn+1. (Our treatment there is more elementary, avoiding
the technicalities of the basis {vΠ}.) In this section, we give the example of the
symplectic group G = Sp2n, in the spirit of De Concini [2]. (The orthogonal
case is similar, but slightly more complicated.)

In general, the main obscurity in the above constructions is that most bases
{pπ} of V ∗

λ are difficult to write explicitly, so that writing the corresponding basis
{pΠ} of V ∗

i,m is equally difficult. However for G a classical group, it is easier
to construct bases of the fundamental representations V ∗

�i
, and to obtain from

these a standard monomial basis {pπ} of the quotient (V ∗
�i

)⊗m → V ∗
m�i

= V ∗
λi

.
(See [15], [16].) Thus we will obtain bases of V ∗

i,m via the composite restriction
map:

ρ : (V ∗
�i1

)⊗m1⊗· · ·⊗(V ∗
�ir

)⊗mr → V ∗
λ1
⊗· · ·⊗V ∗

λr
→ V ∗

i,m

This is the formulation announced in [12].
Now, for i ∈ [1, 2n], let us denote ī := 2n+1−i and |i| := min(i, ī). The

standard basis of k2n is {e1, . . . , e2n} = {e1, . . . , en, en̄, . . . , e1̄}. Let G =
Sp2n(k) be the linear isometries of the symplectic form 〈ei, ej̄〉 = −〈ej̄, ei〉 = δij ,
〈ei, ej〉 = 〈eī, ej̄〉 = 0 for i, j ∈ [1, n]. That is, G = {A ∈ GL2n | AEAt = E},
where E is the matrix with ij-coordinate 〈ei, ej〉 for i, j ∈ [1, 2n].

We may write the weight lattice as X =
⊕n

i=1 Zεi; with simple roots α1 =
ε1 − ε2, . . . , αn−1 = εn−1 − εn, αn = 2εn; fundamental weights �i = ε1 + ε2 +
· · · + εi; and simple coroots α∨

1 = ε∗1 − ε∗2, . . . , α∨
n−1 = ε∗n−1 − ε∗n, α∨

n = ε∗n.
An element of the Weyl group W may be indexed by a signed permutation: a
map w : [1, n] → [1, 2n] = {1, · · · , n, n̄, · · · , 1̄} such that |w| : i �→ |w(i)| is a
permutation of [1, n]. Such a w acts on X by w(εi) := εw(i), where we write
εī := −εi for i ∈ [1, n].

We can realize the fundamental representations V ∗
�i

inside the coordinate
ring k[G] of polynomial functions on the affine variety G. (The group acts on
functions via left translation: (g ·f)(A) := f(g−1A) for f ∈ k[G], g, A ∈ G.)
That is, we have

V ∗
�i

∼= Span〈 pτ | τ ⊂ [1, 2n], #τ = i 〉,

where pτ = pτ (A) is the minor of the matrix A on the first i columns and on
the rows τ .
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To use the above model, it is most convenient to index the basis of the
fundamental-weight modules V�i not by LS-paths, but by certain lattice paths,
concatenations of coordinate steps

πi := πε(i), πī := π−ε(i)

for i ∈ [1, n]. A subset τ = {τ(1) < · · · < τ(i)} ⊂ [1, 2n] corresponds to the
lattice path π(τ) := πτ(1)∗· · · ∗ πτ(r). We write:

π[1, i] := π([1, i]) = π1 ∗ π2 ∗ · · · ∗ πi.

Any path obtained from π[1, i] by repeated application of the lowering operators
f1, . . . , fn is of the form π(τ) for some τ , and we say such paths π(τ) (or
subsets τ) are lattice-standard of shape �i. A basis for V ∗

�i
is given by {pτ |

τ lattice-standard}. This basis has the triangularity property of Theorem 3.
For more details, see [2].

Similarly, a path Π is lattice-standard for V ∗
i,m if it can be constructed by

the usual formula, with the πλi replaced by dominant lattice-paths:

Π = f l1
i1

(π[1, i1]∗m1 ∗f l2
i2

(π[1, i2]∗m2 ∗· · · f lr
ir

(π[1, ir]∗mr) · · · )),

where π[1, i]∗m := π[1, i]∗· · ·∗π[1, i] (m factors). Every such path is a concate-
nation of lattice-standard tableaux for fundamental weights:

Π = π(τ (11))∗π(τ (12))∗· · ·∗π(τ (1m1))∗π(τ (21))∗· · ·∗π(τ (rmr)),

where τ (jm) ⊂ [1, 2n], #τ (jm) = ij for 1 ≤ j ≤ r, 1 ≤ m ≤ mj . A basis of V ∗
i,m

is given by:

{ρ( pτ (11) ⊗ · · · ⊗ pτ (rmr) ) | (τ (11), · · · , τ (rmr)) is lattice-standard},

the restriction of standard tensor-monomials via the map ρ. Alternatively, we
can realize V ∗

i,m inside k[G], with a basis of monomials in the minors pτ :

V ∗
i,m

∼= Spank{pτ (11) · · · pτ (rmr) | (τ (11), · · · , τ (rmr)) is lattice-standard}.

Example. Let G = Sp4, i = (2, 1, 2), m = (1, 1, 1). For conciseness, we
denote the lattice-path πa ∗πb ∗πc ∗ · · · by the list abc · · · . The lattice-standard
tableaux for V ∗

�1
are {1, 2, 2̄, 1̄}, meaning {π1, π2, π2̄, π1̄}; with crystal graph:

1
f1→ 2

f2→ 2̄
f1→ 1̄. For V ∗

�2
, the lattice-standard tableaux are: {12, 12̄, 22̄, 21̄, 2̄1̄},

meaning {π1∗π2, π1∗π2̄, · · · }; with crystal graph: 12
f2→ 12̄

f1→ 22̄
f1→ 21̄

f2→ 2̄1̄.
For V ∗

i,m, we can construct the 17 lattice-standard tableaux of the form
Π = f•

2 (12 ∗ f•
1 (1 ∗ f•

2 12)) in steps, starting from the right end of the expression
for Π:

{12} f•
2→ {12, 12̄} 1∗→ {121, 112̄} f•

1→ {112, 112̄, 212, 212̄, 222̄, 221̄}
12∗→ {12112, 12112̄, 12212, 12212̄, 12222̄, 12221̄}
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f•
2→{ 12112, 12112̄, 12212, 12212̄, 12222̄, 12221̄,

12̄112, 12112̄, 12̄212, 12̄2̄12, 12̄2̄12̄, 12̄212̄,
12̄222̄, 12̄2̄22̄, 12̄221̄, 12̄2̄21̄, 12̄2̄2̄1̄ } .

A list like 12̄2̄21̄ represents the lattice-path Π = π1 ∗π2̄ ∗π2̄ ∗π2 ∗π1̄, which
can be divided into lattice-standard paths for fundamental weights as: Π =
π(12̄)∗π(2̄)∗π(21̄). To illustrate the action of the lowering operator f1, we write
under each tableau the value of 〈πj , α∨

1 〉 = −1, 0, or +1 for each coordinate step
πj , and we emphasize the step which is flipped by f1 (that is, the step where
the path rises for the last time from the minimum value of 〈π(t), α∨

1 〉 ):

1 2 1 1 2̄
+−+++

f1→ 1 2 2 1 2̄
+−−++

f1→ 1 2 2 2 2̄
+−−−+

f1→ 1 2 2 2 1̄
+−−−−

f1→ undefined

The 17 standard tableaux index a basis for V ∗
i,m, which we can realize inside

k[G], the coordinate ring of G ⊂ GL4. That is, k[G] is the polynomial ring
k[xij ]i,j∈[1,4], where X = (xij) a generic matrix, modulo the ideal generated by
the supra-diagonal coordinates of XEXt − E: that is, modulo the polynomials
−x41x12 − x31x22 + x21x32 + x11x42, −x41x13 − x31x23 + x21x33 + x11x43,

−x41x14−x31x24+x21x34+x11x44−1, −x42x13−x32x23+x22x33+x12x43−1,

−x42x14 − x32x24 + x22x34 + x12x44, −x43x14 − x33x24 + x23x34 + x13x44.

(This ideal has a small square-free Gröbner basis in the degree-lex order, so
it is reduced.) For example, the tableau 12̄2̄21̄ corresponds to the following
polynomial in k[G]:

p12̄2̄21̄ = p12̄p2̄p21̄ = (x11x32 − x31x12) · x31 · (x21x42 − x41x22).

(Recall 2̄ = 3, 1̄ = 4.)

2 Combinatorics of tableaux

In this section, we regard the word i = (i1, . . . , ir) as given, and for J ⊂ [1, r],
we abbreviate w(i(J)) as w(J). For example, sw(J) means s · w(i(J)).

2.1 The main lemma

Lemma 7 Consider a long list of Weyl group cosets

(τ11, . . . , τrpr ) = (τ1, . . . , τN )

possessing a lifting

(J11 ⊃ · · · ⊃ Jrpr) = (J1 ⊃ · · · ⊃ JN ),

11



meaning that each subword i(J (j)
jp ) is reduced and τjp ≡ w(J (j)

jp ) mod Wλj . Sup-
pose that for some consecutive elements τjp = τK−1, τj′p′ = τK , τj′′p′′ = τK+1,
and for some simple reflection s we have either:

(a) sw(J (j)
K−1) < w(J (j)

K−1) and sτK ≥ τK ; or

(b) sw(J (j′′)
K+1 ) > w(J (j′′)

K+1 ) and sτK ≤ τK .

Then the long list of cosets

(τ1, . . . , τK−1, sτK , τK+1, . . . , τN )

also possesses a lifting (J̃1 ⊃ . . . ⊃ J̃N ), with (respectively):

(a′) sw(J̃ (j′)
K ) < w(J̃ (j′)

K ); or

(b′) sw(J̃ (j′)
K ) > w(J̃ (j′)

K ).

Proof. Cf. [19, Pf of Thm 10.1]. We will prove the lemma under assumption (a).
For (b), replace < by > and K−1 by K +1. First suppose sw(J (j′)

K ) < w(J (j′)
K ).

Then we must have sτK = τK , and we may take J̃k = Jk for all k.
On the other hand, suppose sw(J (j′)

K ) > w(J (j′)
K ). We have

sw(J (j)
K−1) < w(J (j)

K−1) ≥ w(J (j)
K ),

and by the Zigzag Lemma [5, Prop 5.9],

sw(J (j)
K ) ≤ w(J (j)

K−1).

Thus by the subword definition of Bruhat order, there is a reduced J ′
K ⊂ J

(j)
K−1

with
w(J ′

K) = sw(J (j)
K ).

Furthermore for all L > K there are reduced subwords J ′
L ⊂ J

(j)
K−1 with

w(J ′
L) = w(J (j)

L ),

and we may take the sets J ′
L to be decreasing as L increases. Now define J̃L = JL

for L < K and J̃L = (JL \ [1, j]) ∪ J ′
L for L ≥ K.

Now

w(J̃ (j′)
K ) = w(J ′

K)w(JK∩[j+1, j′]) = s · w(J (j)
K ) · w(JK∩[j+1, j′]),

and by our supposition the latter product is reduced (length of product = sum
of lengths). Hence J̃

(j′)
K is a reduced word, and w(J̃ (j′)

K ) = sw(J (j′)
K ) ≡ sτK .

Similarly the appropriate initial segment of J̃L for any other L is a reduced
lifting of τL. Therefore (J̃1 ⊃ · · · ⊃ J̃N ) is a lifting of (τ1, . . . , sτK , . . . , τN ) as
required. Property (a′) follows from the above along with our supposition. •
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2.2 Root operators

Lemma 8 Let i ∈ [1, n].
(a) If Π is a liftable tableau, and ei(Π) exists, then ei(Π) is liftable.
(b) If Π is a liftable tableau, and ei(Π), fi(Π) both exist, then fi(Π) is liftable.
(c) If Π is a liftable tableau with respect to i, and fi1(Π) exists, where i1 is the
first letter of i, then fi1(Π) is liftable.

Proof. It is clear by [18] that ei(Π), fi(Π) are always tableaux if they are defined,
so in each case we need only show liftability.
(a) Suppose

Π = (τ11, . . . , τrpr ) = (τ1, . . . , τN )

with lifting
(J11 ⊃ · · · ⊃ Jrpr) = (J1 ⊃ · · · ⊃ JN ).

It is easily seen (cf. [17, Prop 4.2]) that

ei(Π) =

{
(τ1, . . . , τK−1, sτK , . . . , sτL, τL+1, . . . τN ) or
(τ1, . . . , τK−1, τK , sτK , . . . , sτL, τL+1, . . . τN )

for some indices 1 ≤ K ≤ L ≤ N with

sτK ≤ τK , . . . , sτL ≤ τL and sτL+1 > τL+1.

We must show that this list of cosets has a lifting.
First, suppose L �= N , so that τL+1 = τj′′p′′ exists, and let τL = τj′p′ . Then

sw(Jj′′
L+1) > w(Jj′′

L+1) and sτL ≤ τL, so we can apply Lemma 7(b) to the lifting
(J1 ⊃ · · · ) at positions L, L+1. Using condition (b′) we can repeat this at
positions L−1, L, and so on leftward, thus producing a lifting of ei(Π).

On the other hand, suppose L = N . If sw(J (j′)
L ) > w(J (j′)

L ), then τN = sτN ,
and we may again repeatedly apply the Lemma starting at positions N−1, N .
If sw(J (j′)

N ) < w(J (j′)
N ), we cannot directly apply the Lemma, but instead take

J̃N ⊂ JN so that w(J̃ (j′)
N ) = sw(J (j′)

N ). Then (J1 ⊃ · · · ⊃ JN−1 ⊃ J̃N ) is a lifting
of (τ1, . . . , τN−1, sτN ), to which we can apply the Lemma starting at positions
N−1, N . In each case, we produce a lifting of ei(Π).

(b) We have

fi(Π) =

{
(τ1, . . . , τK−1, sτK , . . . , sτL, τL+1, . . . τN ) or
(τ1, . . . , τK−1, sτK , . . . , sτL, τL, τL+1, . . . τN )

for 1 ≤ K ≤ L ≤ N with

sτK−1 < τK−1 and sτK ≥ τK , . . . , sτL ≥ τL.

Since ei(Π) also exists, we must have K > 1, so that we may repeatedly apply
Lemma 7(a) analogously to the previous argument, starting at positions K−1,
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K and proceeding rightward to produce a lifting of fi(Π).

(c) Let JK = Jj′p′ . As before, if K > 1 or sw(J (j′)
1 ) < w(J (j′)

1 ), we use Lemma
7(a) immediately. Otherwise if K = 1 and sw(J (j′)

1 ) > w(J (j′)
1 ), take J̃1 =

J1∪{1} (reduced): this gives a lifting (J̃1 ⊃ J2 ⊃ · · · ⊃ JN ) of (sτ1, τ2, . . . , τN ),
to which we apply Lemma 7(a). •

Proof of Theorem 1. We use induction on r, the number of letters of the
word i = (i1, . . . , ir). For r = 0 and i the empty word, the only constructable
or liftable tableau is the trivial path π0. Now assume the Theorem for the word
(i2, . . . , ir).

Constructable ⇒ liftable. Suppose Π = f l1
i1

(πλ1 ∗ f l2
i2

(πλ2 · · · )) is con-
structable. By induction Π′ = f l2

i2
(πλ2 · · · ) is liftable. Then πλ1 ∗ Π′ is clearly

also liftable, and so is Π = f l1
i1

(πλ1 ∗ Π′) by Lemma 8(c).
Liftable ⇒ constructable. Suppose Π = (π1, . . . , πr) has lifting (J11 ⊃

· · · ). Since w(J (1)
1p ) = si1 or id, the cosets modWλ1 in the LS-chain π1 must

be π1 = (si1 , . . . , si1 , id, . . . , id). Thus we may write etop
i1

(Π) = el1
i1

(Π) =
(πλ1 , π′

2, . . . , π′
r) for some l1, since if the initial segment were not πλ1 , we could

apply ei1 once more (§1.2). But Π′ = (π′
2, . . . , π′

r) is liftable by Lemma 8(a),
and is therefore constructable by induction. Hence Π = f l1

i1
(πλ1 ∗ Π′) is also

constructable. •

2.3 Demazure operators

We show that the number of liftable tableaux is given by the Demazure character
formula. This is the combinatorial version of Theorem 5. For a set T of tableaux,
define the formal character (or multi-variate generating function)

char(T ) :=
∑
Π∈T

ewt(Π).

For i ∈ [1, n], a tableau Π0 with ei(Π0) undefined is called an i-head. An
i-string is the set S of all tableaux generated under fi by some i-head Π0:
S = {Π0, fi(Π0), f2

i (Π0), . . . , f l
i (Π0)}, where l is maximal with f l

i (Π0) defined.
In fact l = 〈wt(Π0), α∨

i 〉 ≥ 0. (See [18].) Thus any i-string S with head Π0 has
character

char(S) = ewt(Π0) + ewt(Π0)−αi + . . . + esi wt(Π0).

Suppose a set of tableau T is a disjoint union of i-heads and i-strings. Let

f•
i T := {f l

i(Π) | Π ∈ T , l ≥ 0}.

Then it is clear that
char(f•

i T ) = Λi(charT ).

Lemma 9 Let T be the set of standard tableau of shape (λ2, . . . , λr). Then the
set of concatenations πλ1 ∗ T is a disjoint union of i1-heads and i1-strings.
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Proof. Let π1 = πλ1 , e = ei1 , f = fi1 . First we show: if π1 ∗ Π ∈ π ∗ T with
e(π1 ∗ Π) defined, then e(π1 ∗ Π), f(π1 ∗ Π) ∈ π1 ∗ T . By [18, §2.6] we have
e(π1 ∗ Π) = π1 ∗ (eΠ) or (eπ1) ∗ Π; but eπ1 is undefined, so the first alternative
must hold. Also eΠ ∈ T by Lemma 8(a), so e(π1 ∗ Π) ∈ π1 ∗ T .

Next we show: if π1 ∗ Π ∈ π1 ∗ T with e(π1 ∗ Π) and f(π1 ∗ Π) are both
defined, then f(π1 ∗Π) ∈ π1 ∗ T . First, recall that the operator e reflects a part
of π1 ∗ Π before the first minimum point of the function t �→ 〈(π1 ∗ Π)(t), α∨〉,
and the operator f reflects a part of π1 ∗Π after the last minimum point of the
function. Thus f acts on the path at a later point than e acts.

Now consider f(π1 ∗Π) = (fπ1) ∗Π or π1 ∗ (fΠ). We know that e(π1 ∗Π) =
π1 ∗ (eΠ), so that e acts after the first segment of π1 ∗Π; and f acts later than e.
Thus we must have the second alternative: f(π1 ∗Π) = π1 ∗ (fΠ). But fΠ ∈ T
by Lemma 8(b), so f(π1 ∗ Π) ∈ π1 ∗ T . •

Corollary 10 The formal character of the set of standard tableaux of shape
(λ1, . . . , λr) is

Λi1(e
λ1Λi2(e

λ2 · · ·Λir (eλr ) · · · )).

Proof. Let T be the set of standard tableaux for the (i2, . . . , ir). The set
of standard tableaux for (i1, . . . , ir) is T ′ = f•

i1(π
λ1 ∗ T ), so that charT ′ =

Λi1(eλ1charT ). The result now follows by induction. •

2.4 Combinatorial excellent filtration

The ordinary Demazure modules Vλ(w) and their duals play a central role in the
theory of B-modules. For example, consider the twisted dual Demazure module
k∗

µ⊗V ∗
ν (y) for dominant weights µ, ν ∈ X+. It was conjectured by A. Joseph and

proved by O. Mathieu [25] (in the general case, and by P. Polo in some special
cases) that this module has an excellent filtration, namely a filtration by B-
modules whose quotients are isomorphic to V ∗

λ (w) for various λ ∈ X+, w ∈ W .
This implies that k∗

µ⊗V ∗
ν (y) inherits the favorable homological properties of the

V ∗
λ (w). More generally, Mathieu proved that twists of our generalized Demazure

modules k∗
µ ⊗ V ∗

i,m have excellent filtration. For a survey, see [27].
In this section, we prove Theorem 2, which is a combinatorial analogue of

Mathieu’s result. We first formulate and prove a more precise result for the
special case of a twisted ordinary Demazure module k∗

µ ⊗V ∗
ν (y). (Note that we

do not distinguish between tableaux for this module and for its dual.)
Let C(λ, w) denote the crystal graph on the set {f•

i1
· · · f•

ir
πλ} of standard

tableaux for Vλ(w), where w = si1 · · · sir is any reduced decomposition. This set
of tableaux is known to be independent of the choice of reduced decomposition.
In fact, it is precisely the set of LS-paths π = (τ1 > · · · ; 0 < a1 · · · ) such that
w ≥ τ1 mod Wλ. See [7], [17].

Further, let C(µ, ν, y) be the crystal graph on the set {πµ ∗π}, where π
runs over standard tableaux for Vν(y). Recall that each edge in a crystal graph
is assigned a color i = 1, . . . , n. We will show that for dominant µ, ν, the
C(µ, ν, y) is isomorphic as an edge-colored graph to a disjoint union of various
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C(λ, w). There is one such component C(λ, w) for each path πµ ∗ π which
is dominant, i.e., which stays completely within the dominant Weyl chamber:
that is, 〈µ + π(t), α∨

i 〉 ≥ 0 for all t ∈ [0, 1] and all i. The λ corresponding to
a dominant path is its weight: λ = wt(πµ ∗π) = µ + wt(π). To compute the
corresponding w requires some definitions.

The second part of the following lemma is due to Deodhar [14, Lemma 11.1].

Lemma 11 (i) For u, w ∈ W , the set {u′w | u′ ≤ u} has unique maximal and
minimal elements.
(ii) Let W ′ ⊂ W be the parabolic subgroup generated by some subset of the
simple roots. For z ≤ y ∈ W , the set {u′z | u′ ∈ W ′, u′z ≤ y} has a unique
maximal element.

Proof. For a set A ⊂ W , we write w = maxA if w ∈ A and w ≥ y for all y ∈ A
(that is, w is the unique Bruhat-maximal element of A). Similarly for min A.
We will repeatedly use the Zigzag Lemma [5, §5.11]:

If x ≤ y, then sx ≤ max(y, sy) and min(x, sx) ≤ sy,

where s is any simple reflection, and similarly for xs and ys.

(i) Induction on �(u). The case �(u) = 0 is trivial. Take su > u, and assume
u′w ≤ u1w for all u′ ≤ u. We claim u′′w ≤ max(u1w, su1w) for all u′′ ≤ su, so
that max(u1w, su1w) is the unique maximum of {u′′w | u′′ ≤ su}.

From the subword definition of Bruhat order, any u′′ ≤ su has either: u′′ ≤
u, so that u′′w ≤ u1w; or su′′ ≤ u, so that su′′w ≤ u1w, and u′′w = s(su′′w) ≤
max(u1w, su1w) by the Zigzag Lemma. This proves the claim.

The proof that {u′w | u′ ≤ u} has a unique minimum is almost the same:
Again take su > u. If u0w ≤ u′w for all u′ ≤ u, then min(u0w, su0w) ≤ u′′w
for u′′ ≤ su.

(ii) We follow Deodhar [14, Lemma 11.1], correcting several misprints. We
denote (W ′z)≤y := {u′z | u′ ∈ W ′, u′z ≤ y}. Also let Wmin ⊂ W be the set
of minimal coset representatives of W ′\W , and write y = wy0 with w ∈ W ′

and y0 ∈ Wmin. Suppose, without loss of generality, that z = z0 ∈ Wmin (since
(W ′uz)≤y = (W ′z)≤y for any u ∈ W ′). Now we proceed by induction on �(y0).
For �(y0) = 0, we have y0 = z0 = e, and max(W ′z)≤y0w = w. Next suppose
�(y0) > 0, and choose a simple root s with y0 < y0s. Note that y0s ∈ Wmin, since
otherwise there is a simple root s′ ∈ W ′ with �(s′y0s) = �(y0)− 2 = �(s′y0)− 3.
Note also that wy0s < wy0, since: �(wy0s) = �(w)+�(y0s) = �(w)+�(y0)−1 =
�(wy0) − 1.

Case (a): z0s < z0. The facts noted above for y0 also hold for z0. We have
z0s = min(z0s, z0) ≤ y0s, and by induction we may let w′z0s = max(W ′z0s)≤wy0s.
Then we claim w′z0 = max(W ′z0)≤wy0 . First, w′z0s ≤ wy0s, so w′z0 ≤
max(wy0s, wy0) = wy0. Now suppose uz0 ≤ wy0 for u ∈ W ′. Then uz0s =
min(uz0s, uz0) ≤ wy0s and by definition of w′, we have uz0s ≤ w′z0s. Thus
u ≤ w′ and uz0 ≤ w′z0.

Case (b): z0s > z0 and z0s ∈ Wmin. We have z0 = min(z0, z0s) ≤
y0s, so by induction we may let w′z0 = max(W ′z0)≤wy0s. We claim w′z0 =
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max(W ′z0)≤wy0 . First, w′z0 ≤ wy0 just as before. Also note that, as before,
for any u ∈ W ′ we have uz0s > uz0. Now suppose uz0 ≤ wy0 for u ∈ W ′. Then
uz0 = min(uz0s, uz0) ≤ wy0s and by definition of w′, we have uz0 ≤ w′z0.

Case (c): z0s > z0 and z0s �∈ Wmin. First note: there exists a sim-
ple root s′ ∈ W ′ with s′z0s < z0s, so �(s′z0s) = �(z0); but sz0 ≥ z0, so
sz0s

′ ≥ min(z0, z0s
′) = z0. Hence sz0s

′ = z0. Now, as in case (b), we may
let w′ = max(W ′z0)≤wy0s. Define w′′ := max(w′, w′s′). Then we claim w′′ =
max(W ′z0)≤wy0 . First, w′′z0 = max(w′z0, w

′z0s) ≤ max(wy0, wy0s) = wy0.
Now suppose uz0 ≤ wy0 for u ∈ W ′. If us′ < u, then uz0 > us′z0 = uz0s and
us′z0 = min(uz0, uz0s) ≤ wy0s, so by the definition of w′, we have us′z0 ≤
w′z0. Hence u ≤ w′′, and uz0 ≤ w′′z0. On the other hand, if us′ > u,
then uz0 = min(uz0, uz0s) ≤ wy0s, so by the definition of w′, we have again
uz0 ≤ w′z0 ≤ w′′z0. •

Now, given µ, ν, y as above, and a path π : [0, 1] → XR, let W (t) :=
StabW (µ + π(t)) denote the stabilizer of the point µ + π(t) ∈ XR. This is
the parabolic subgoup of W generated by the simple reflections si such that
µ+π(t) lies on the corresponding wall of the dominant Weyl chamber. Let
[0, 1] = I1 � · · · � Iq be the decomposition of [0, 1] into the minimal number of
disjoint intervals such that W (t) is constant for all t in each interval Ij . We
enumerate the intervals so that for j < j′, the t in Ij are smaller than those in
Ij′ .

For an LS-path π = (τ1 > · · · ; 0<a1 < · · · ) with πµ ∗ π dominant, we let λ =
µ + wt(π), and we define w(π) (modulo Wλ) inductively as follows. Intuitively,
we start with w = id; then we travel along the path πµ∗π from its endpoint λ to
µ, and every time we hit a wall, we multiply w by the corresponding reflection
if this makes w longer. However, at the end of our trip, if µ itself is on a wall,
we only multiply by the corresponding reflection s if s times the initial direction
of π is smaller than y. Formally, we define:

wq := max(W (Iq)), wq−1 := max(W (Iq−1)·wq), . . . , w2 := max(W (I2)·w3),

w1 := max{uw2 | u ≤ u1}; w(π) := w1 .

Here u1 := max{u ∈ W (I1) | uτ1 ≤ y mod Wν}. We explain why u1 is well-
defined. The path πµ ∗ π has a segment in direction τ1(ν) from µ into the
fundamental chamber. Thus if si ∈ W (I1) = Wµ, we have 〈τ(ν), α∨

i 〉 ≥ 0, and
siτ1 ≥ τ1 mod Wν . That is, we may take τ1 to be minimal in the coset W (I1)τ1,
so that we may use the Lemma to define u1τ1 = max{u′τ1 | u′ ∈ W (I1), u′τ1 ≤
y}. (Note: In the Kac-Moody setting, in which W may be infinite, we can show
that W (Ij) is always finite, and the above definition of w(π) is still valid.)

The following result is a refinement of the Littlewood-Richardson rule of [17].

Proposition 12 The crystal graph of kµ ⊗ Vν(y) has as its connected compo-
nents the crystal graphs of ordinary Demazure modules Vλ(w). Specifically, it
is the disjoint union:

C(µ, ν, y) =
∐
π

C(µ+wt(π), w(π)),
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running over all standard tableaux π for Vν(y) such that πµ∗π is dominant.

Proof. (a) First the containment ⊃. Fix a path π = (τ1 > · · · > τq; 0 < a1 <
· · · < aq = 1) with with y ≥ τ1 mod Wλ, and πµ ∗ π dominant. We must show
that for some (and hence for any) reduced word w(π) = si1 · · · sir , the path
f l1

i1
· · · f lr

ir
(πµ ∗ π), if defined, is of the form πµ ∗ θ with θ = (σ1 > · · · ; 0 < b1 <

· · · ) and y ≥ σ1 mod Wλ. We may choose our reduced word compatible with
the partial products wk in the definition of w(π). That is, for any p, we have
wk ≥ sip · · · sir ≥ wk+1 for some k.

Claim: f
lp
ip
· · · f lr

ir
(πµ ∗ π) = πµ ∗ θp for some θp with θp(t) = π(t) for t ∈

I1 � · · · � Ik. This follows by descending induction on p. Indeed, assume the
claim for a given p (with p > 1), and suppose wk > sip · · · sir ≥ wk+1. Then
on t ∈ I1 � · · · � Ik, the function t �→ 〈µ + θp(t), α∨

ip−1
〉 = 〈µ + π(t), α∨

ip−1
〉 is

non-negative, and it attains its minimum value 0 at the right endpoint of Ik.
Hence by definition, the operator f

lp−1
ip−1

does not change the path πµ ∗ θp within
the interval t ∈ I1 � · · · � Ik, and the claim holds for p − 1.

Finally, y ≥ σ follows immediately from the claim and the definition of u1.
(b) Now the opposite containment ⊂. Consider any path πµ ∗ θ (not neces-
sarily dominant), and consider the unique dominant path πµ ∗ π such that
f l1

i1
· · · f lr

ir
(πµ ∗ π) = πµ∗θ for some reduced word si1 · · · sir =: w and lj > 0. We

must show that w(π) ≥ w.
If πµ ∗ θ is itself dominant, there is nothing to prove. Otherwise, let Ik+1,

k ≥ 1, be the interval where µ+θ(t) first exits the fundamental chamber. We will
use decreasing induction on k to show the stronger statement wk ≥ si1 · · · sir .

By the definition of the lowering operators, we have µ + θ(t) = µ + π(t) for
t ≤ the first point of exit of πµ ∗ θ from the fundamental chamber. Thus, for
t ∈ Ik, µ + θ(t) lies on all the walls which are crossed in interval Ik+1. Thus
there exists a product ema

ja
· · · em1

j1
of ej with sj ∈ W (Ik), such that πµ ∗ θ′ :=

ema

ja
· · · em1

j1
(πµ ∗ θ) lies inside the dominant chamber for t ∈ I1 � · · · � Ik+1. By

induction, πµ ∗ θ′ = f
lp
ip
· · · f lr

ir
(πµ ∗ π), where wk+1 ≥ sip · · · sir . We thus have

πµ ∗ θ = fm1
j1

· · · fma

ja
f

lp
ip
· · · f lr

ir
(πµ ∗π), where wk ≥ sj1 · · · sjasip · · · sir , provided

only that k > 1. If k = 1, we may assume that u1 ≥ sj1 · · · sja , and the conclu-
sion again follows. •

Examples. We write (τ1a1τ2a2 · · · ) for an LS-chain (τ1 > · · · ; 0<a1 < · · · ) of
Vν , so a chain (τ1; 0<1) with extremal weight τ1(ν) is written simply (τ1).
(i) G = SL3, µ = 2�2, ν = �1 + �2, y = s1s2. There are four components
of C(µ, ν, y): π = (s1s2), C(�2, id); π = (s1s2

1
2 s2), C(2�1, id); π = (s1),

C(�1 +2�2, id); π = (id), C(�1 +3�2, s2). Note that for π = (s1) we have
W (I1) = 〈s2〉, but s2τ1 �≤ y, so w(π) = id.
(ii) G = SL3, µ = 2�1, ν = 2�1 + 3�2, y = s1s2. The path π=(s1s2

2
5 s1

2
3 e)

corresponds to C(2�1+�2, s1s2). Note that θ = f2f1f2(πµ ∗ π) ∈ C(µ, ν, y),
but this is no contradiction, since θ = f1f

2
2 (πµ ∗ π).

Proof of Theorem 2. This follows immediately by the definition of constructable-
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standard tableaux and repeated application of the previous Proposition.

2.5 Raghavan-Sankaran operators

We define certain raising operators on liftable tableaux, different from the root
operators above, which we will need in our proof of Theorem 4. (Cf. [26], [20,
§4].)

Given a tableau Π and a simple reflection s, define ŝ(Π) as follows. Let
Π = (τ1, . . . , τN ). If for some 1 ≤ K ≤ N we have

τ1 ≥ sτ1, . . . , τK ≥ sτK , τK+1 < sτK+1,

take ŝ(Π) to have the same rational numbers in its LS-chains as Π has, but
change the cosets to

ŝ(Π) = (sτ1, . . . , sτK , τK+1, . . . , τN ).

(In case sτK = τK+1 and these cosets form part of the same LS-chain, for
consistency of notation we must combine these two into a single segment: that
is, omit τK+1 and its corresponding rational number.)

Proposition 13 If Π is a liftable tableau, then ŝ(Π) is also a liftable tableau.

Proof. First we show that ŝ(Π) is a tableau. Suppose the coset τK in the
definition of ŝ(Π) occurs in the jth LS-chain πj of Π: that is, τK = τjp. Then
ŝ(Π) = (ŝ(π1), . . . , ŝ(πj), πj+1, . . . , πr). We thus need to show that if π = (τ1 >
· · · > τq; 0 < a1 < · · · ) is an LS-chain, then ŝ(π) = (sτ1 > · · · > sτL > τL+1 >
· · · > τq; 0 < a1 · · · ) is also an LS-chain.

If L = q, then ŝ(π) = etop(π), where e is the raising root operator corre-
sponding to s. If L < q, let π′ = (τ1 > · · · > τL+1; 0 < a1 < · · · < aL < 1),
which is an LS-chain by [17, Lemma 3.1]. Then once again ŝ(π′) = etop(π′), so
that ŝ(π′) is an LS-chain, and this easily implies that ŝ(π) is also an LS-chain.
Therefore ŝ(Π) is a tableau.

Now to see that ŝ(Π) is liftable, we use Lemma 7(b) repeatedly, starting
with the positions L, L+1 (or N −1, N if L = N) and proceeding leftward.
(Cf. the proof of Lemma 8(a).) •

3 Linear independence

3.1 LS-path basis

In order to show the independence of the set {pΠ} of standard monomials in
V ∗
i,m, we first establish independence for a set {vΠ} in Vi,m which we call the

LS-path basis.
First we recall the analogous basis {vπ} of Vλ referred to in Theorem 3. Let

ŝi be the operators of §2.5. Note that wt ŝi(π) = wtπ − lαi for l ∈ Z+. For an
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LS-chain π of shape λ, define integers l1(π), l2(π), . . . by

l1(π) =
wtπ − wt ŝi1(π)

αi1

, l2(π) =
wt ŝi1(π) − wt ŝi2 ŝi1(π)

αi2

, · · · .

That is, wtπ − wt ŝi1(π) = l1(π)αi1 , etc. Note that this depends on our fixed
word i = (i1, . . . , ir). For (l1, . . . , lr) = (l1(π), . . . , lr(π)), define

vi
π = F l1

i1
· · ·F lr

ir
·vλ ∈ Vλ,

where Fi ∈ g are negative root vectors. Now, let wmax(i) be the unique Bruhat-
maximal element in the set {w(J) | J ⊂ [1, r]}; that is, wmax(i) is the Weyl
group element generated by a longest reduced subword of i. (See [13, Lemma
1].) Our definition of {vπ} is a slight generalization of [20, Definition 3], since i
need not be reduced. Recall [20, Theorem 2]:

Proposition 14 Let w = wmax(i). The set {vi
π}, where π runs over all LS-

chains π = (τ1 > τ2 > · · · ; 0 < a1 < · · · ) with w > τ1, forms a basis of
Vλ(w).

We shall need one technical property of the vπ.

Lemma 15 Let π′ = ŝi(π), l = (wt π − wtπ′)/αi, and θ′ < π′ in the lexico-
graphic order on LS-chains (§1.3). Suppose either of the following holds:
(i) k ≤ l; or (ii) the Raghavan-Sankaran operator coincides with ordinary re-
flection: π′ = ŝi(π) = si(π). Then

F k
i (vθ′) =


vπ, if θ′ = π′ and k = l,∑

θ<π

∝vθ, otherwise,

where θ runs over LS-chains less than π.

Proof. The first case of the conclusion, F k
i (vθ′) = vπ, follows directly from the

definition of vπ. The second case of the conclusion follows easily from either
hypothesis together with [20, Lemma 3(ii)]. •

Now we extend the above construction to generalized Demazure modules.
For a tableau Π of shape (λ1, . . . , λr), we have ŝi1(Π) = πλ1∗Π′ for some tableau
Π′ of shape (λ2, . . . , λr); and ŝi2(Π′) = πλ2 ∗ Π′′, etc. Then define integers

L1(Π) =
wtΠ − wt ŝi1(Π)

αi1

, L2(π) =
wtΠ′ − wt ŝi2(Π′)

αi2

, etc.

(Recall that wtΠ denotes the endpoint of Π considered as a path, i.e., the sum
of the weights of the LS-chains in Π.)

Now for (L1, . . . , Lr) = (L1(Π), . . . , Lr(Π)), let

vΠ = FL1
i1

(vλ1 ⊗ FL2
i2

(vλ2 ⊗ · · ·F lr
ir

(vλr ) · · · )).

The {vΠ} coincide with the {vπ} in the case where Vi,m is an ordinary Demazure
module Vλ(w).
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3.2 Independence of {pπ}
Let wj = wmax(ij , . . . , ir), the longest Weyl group element which can be gener-
ated from a tail subword of i. Then clearly Vi,m ⊂ Vλ1(w1) ⊗· · ·⊗ Vλr (wr). We
will write v

(j)
π = v

(ij ,... ,ir)
π . By Proposition 14, the vectors

{v(1)
π1

⊗· · ·⊗ v(r)
πr

},

where each πj = (τ1 > · · · ) varies over all LS-chains with wj > τ1, form a basis
of Vλ1 (w1) ⊗· · ·⊗ Vλr (wr).

Proposition 16 For a standard tableau Π = (π1, . . . , πr), let us write vΠ ∈
Vi,m in terms of the above basis of Vλ1 (w1) ⊗· · ·⊗ Vλr (wr). Then we have the
triangular relation:

vΠ = v(1)
π1

⊗· · ·⊗ v(r)
πr

+
∑
Θ<Π

∝ v
(1)
θ1

⊗· · ·⊗ v
(r)
θr

,

where Θ = (θ1, . . . , θr) runs over all tableaux less than Π in lexicographic order.

Proof. (Cf. [20, Proof of Lemma 3].) We use induction on r, the number of
letters in i. For r = 1, there is nothing to prove. Now suppose r ≥ 2, and we
know the Proposition for the word (i2, . . . , ir). Let s = si1 and take Π′ = ŝ(Π),
where

Π = (π1, . . . , πr), Π′ = (ŝ(π1), . . . , ŝ(πj), πj+1, . . . , πr),

and
πλ1 = ŝ(π1) = s(π1), ŝ(π2) = s(π2), . . . , ŝ(πj−1) = s(πj−1).

By induction, we may assume

vΠ′ = vλ1 ⊗ vŝ(π2) ⊗· · ·⊗ vŝ(πk) ⊗· · ·⊗ vπr +
∑

Θ<Π′
∝ vλ1 ⊗ vθ2 ⊗· · ·⊗ vθr ,

where Θ = (πλ1 , θ2, . . . , θr). Then

vΠ = F l1
i1

(vΠ′ ),

where l1 = h1 + · · · + hk for

h1 =
wt π1 − wt s(π1)

αi1

, . . . , hk−1 =
wtπk−1 − wt s(πk−1)

αi1

, hk =
wtπk − wt ŝ(πk)

αi1

.

The terms of vΠ are obtained by distributing the l1 operations F l1
i1

arbitrarily
among the r factors of each term in vΠ′ .

We find the maximal term in vΠ by repeatedly applying Lemma 15. By
hypothesis (ii) of the Lemma, the maximal first factor of a term in vΠ is
Fh1

i1
(vs(π1)) = vπ1 ; the maximal second factor is vπ2 ; and so on through the

(k − 1)th factor. Now, assuming the previous maximal factors have been
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achieved, we apply hypothesis (i) of the Lemma to find that the maximal kth
factor is Fhk

i1
(vŝ(πk)) = vpik

. But then all l1 operations Fi1 have been used, and
the subsequent terms are unchanged from vΠ′ . •

Recall that the set {pΠ} inside V ∗
i,m consists of monomials in any basis {pπ}

of the V ∗
λ which is triangular with respect to {vπ}.

Corollary 17
(i) The set {vΠ}, where Π runs over the standard tableaux of shape (λ1, . . . , λr),
is linearly independent in Vi,m.
(ii) The set {pΠ}, where Π runs over the standard tableaux of shape (λ1, . . . , λr),
restricts to a linearly independent set in V ∗

i,m.

Proof. Part (i) follows immediately from the triangularity of the set {vΠ} with
respect to the basis {v(1)

π1 ⊗· · ·⊗v
(r)
πr }. Part (ii) follows similarly, using in addition

the triangularity of {pπ} with respect to {vπ}. •

4 Spanning

The independence of the set {pΠ} in V ∗
i,m, along with the Demazure formula

for standard tableaux (§2.3), gives a lower bound for the dimension of V ∗
i,m. In

this section, we use geometry to find an upper bound for this dimension which
coincides with the lower bound, showing that {pΠ} is a basis.

4.1 The Demazure module as a space of sections

We relate the generalized Demazure module Vi,m and the Bott-Samelson variety
Zi via a succession of three mappings (see [23]). First, let Ui denote the one-
dimensional unipotent subgroup of G whose Lie algebra is kFi. We have an
embedding

φ1 : Ui1 × · · · × Uir → (Pi1 × · · · × Pir )/Br = Zi

whose image defines a Zariski-dense open cell in Zi.
Second, let P̂i ⊃ B be the maximal parabolic subgroup whose Weyl group is

generated by all the simple reflections except si. Let Gr(i) = Gr(i, G) := G/P̂i

be the G-Grassmannian, and define the multiple G-Grassmannian

Gr(i) := Gr(i1) × · · · × Gr(ir),

on which G acts diagonally (simultaneously on each factor). The Bott-Samelson
variety embeds B-equivariantly into this space:

φ2 : Zi ↪→ Gr(i)
(p1, . . . , pr) �→ (p1P̂i1 , p1p2P̂i2 , . . . , p1p2· · ·prP̂ir ).

(The configuration variety Zi,m can be realized as the projection of Zi ⊂ Gr(i)
to those factors of Gr(i) for which mj > 0.)
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Third, for a weight λ = m�i, define a line bundle on Gr(i) as Lλ := G
!Pi× k∗

λ,
so that L�i is the minimal ample line bundle on Gr(i). We thus obtain a line
bundle Li,m := Lλ1 ⊗ · · · ⊗ Lλr on Gr(i), which is very ample (resp. semi-
ample) precisely when all mj > 0 (resp. all mj ≥ 0). The restriction of Li,m to
Zi ⊂ Gr(i) is easily seen to be isomorphic to the line bundle Li,m on Zi defined
in §1.4. Recall that we may identify H0(Gr(i),Lλ) ∼= V ∗

λ , so that Gr(i) →
P(H0(Gr(i),Lλ)∗) ∼= P(Vλ), gP̂i �→ g ·vλ. Thus we have the natural map

φ3 : Gr(i) → P(Vλ1 ⊗· · ·⊗ Vλr )
(g1P̂i1 , . . . , grP̂ir ) �→ g1·vλ1 ⊗ . . . ⊗ gr·vλr .

Now, composing φ3 ◦ φ2, we have a map

Zi → P(Vλ1 ⊗· · ·⊗ Vλr ),

whose image is by definition Zi,m. If we compose all three mappings φ3 ◦φ2 ◦φ1,
we see that:

P(Vλ1 ⊗· · ·⊗ Vλr ) ⊃ Spank〈Zi,m〉
= Spank〈Ui1(vλ1⊗Ui2(vλ2⊗· · ·Uirvλr · · · )) 〉
= P(ui1(vλ1⊗ ui2(vλ2⊗· · ·uir vλr · · · )) )
= P(Vi,m)

That is, we have the map φ = φ3◦φ2 : Zi → P(Vi,m) whose image spans P(Vi,m).
Dually, we have the injective linear map φ∗, which factors as:

V ∗
i,m↪→H0(Zi,m,Li,m) ↪→ H0(Zi,Li,m).

4.2 Geometric Demazure formula

We now use Demazure’s character computations with P1-fibrations [3] to finish
our proof of Theorems 4, 5, and 6, on the model of [20, §8].

Our proof proceeds by induction on r, the number of letters in i. For r = 0,
all statements are trivial. Now let r ≥ 1, i = i1, and i′ = (i2, . . . , ir), m′ =
(m2, . . . , mr).

From the definitions, we easily see that H0(Zi,Li,m) = H0(Pi/B, E), where

E = Pi

B
× (k∗

λ1
⊗H0(Zi′ ,Li′,m′)) = Pi

B
× (k∗

λ1
⊗V ∗

i′,m′),

a vector bundle over Pi/B. (The last equality is by induction.) Now restrict the
Pi-action on this vector bundle to an action of Gi

∼= SL2, the group whose Lie
algebra is generated by Ei, Fi. Take Bi = B ∩ Gi, so that Pi/B ∼= Gi/Bi

∼= P1.
The inclusion vλ1 ⊗Vi′,m′ ⊂ Vi,m dualizes to a short exact sequence of Bi-

modules 0 → Ker → V ∗
i,m → k∗

λ1
⊗V ∗

i′,m′ → 0, which leads to a long exact
sequence in cohomology of bundles over P1:

· · · → Hi(P1, Gi

Bi×Ker) → Hi(P1, Gi

Bi×Vi,m) → Hi(P1, E) → · · ·
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Since Vi,m is a Gi-module, it induces a trivial vector bundle, and H1(P1, Gi

Bi×
Vi,m) = 0. Since trivially H2(P1, Gi

Bi×Ker) = 0, we thus get:

Hi(P1, E) = 0 for i > 0.

From the Leray spectral sequence of the fibration Zi → Pi/B, and induction, it
follows that Hi(Zi,Li,m) = 0 for i > 0.

Now, the character ring of Gi is Ri
∼= k[x], a polynomial ring in one variable,

with the quotient map R → Ri, eλ �→ x〈λ,α∨
i 〉. From elementary computations

with SL2-bundles we have Demazure’s formula [3] for the Gi-character chari of
the cohomology of E , in terms of the fiber of E above eBi ∈ Gi/Bi:

chari H0(P1, E) − chari H1(P1, E) = Λi chari(E|eBi),

where Λi : Ri → Ri is the map induced from Λi : R → R. But the negative H1

term vanishes, and by specializing the polynomials to x = 1 we find

dimH0(Zi,Li,m) = dimH0(P1, E)
= Λi chari(k∗

λ1
⊗ Vi′,m′)|x=1

= Λi1(eλ1Λi2(eλ2 · · · ))|eλ=1,

where the last equality is by induction. However, we also know:

dimH0(Zi,Li,m) ≥ dim H0(Zi,m,Li,m) by §4.2
≥ dim V ∗

i,m by §4.2
≥ dim Span〈pΠ | Π a standard tableau〉
= #{standard tableaux} by Cor 17
= Λi1(eλ1Λi2(eλ2 · · · ))|eλ=1 by Cor 10

Comparing expressions, we conclude that all the above inequalities are in fact
equalities, meaning

H0(Zi,Li,m) ∼= H0(Zi,m,Li,m) ∼= V ∗
i,m = Span〈pΠ〉,

and the Demazure character formula holds for all four of these spaces. This
implies the projective normality of Zi and Zi,m with respect to Li,m by [4, Ch
II, Ex 5.14].

Finally, the vanishing of the higher cohomology of Li,m over Zi,m follows
from a standard argument involving the map φ : Zi → Zi,m (see, e.g. [20, §8],
[22, Prop 28]). Using H0(Zi,m,Li,m) = H0(Zi,Li,m), and the normality of Zi,m,
we apply Kempf’s Lemma [9] to deduce Hi(Zi,m,Li,m) = Hi(Zi,Li,m) for all
i > 0. But we have already shown that the right hand side vanishes.

This completes the proof of Theorems 4, 5, and 6
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