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Abstract

A highest-weight representation of an affine Lie algebra ĝ can be modelled
combinatorially in several ways, notably by the semi-infinite paths of the Ky-
oto school and by Littelmann’s finite paths. In this paper, we unify these two
models in the case of the basic representation of an untwisted affine algebra,
provided the underlying finite-dimensional algebra g possesses a minuscule rep-
resentation (i.e., g is of classical or E6, E7 type).

We apply our “skein model” to prove that the basic representation of ĝ, when
restricted to g, is a semi-infinite tensor product of fundamental representations,
and certain of its Demazure modules are finite tensor products.

1 Main Results

1.1 Product Theorems

Let g be a complex simple Lie algebra and ĝ the corresponding untwisted affine
Kac-Moody algebra. The basic representation V̂ (Λ0) is the simplest and most
important ĝ-module (see Sec. 2.1 for definitions, as well as [7, Ch. 14],[24,
Ch. 10]). One of its remarkable properties is the Tensor Product Phenomenon.
In many cases, the Demazure modules V̂z(Λ0) ⊂ V̂ (Λ0) are representations of
the finite-dimensional algebra g, and they factor into a tensor product of many
small g-modules. Hence the full V̂ (Λ0) could be constructed by extending the
g-structure on the semi-infinite tensor power V ⊗ V ⊗ · · · of a small g-module
V .

The Kyoto school of Jimbo, Kashiwara, et al. has established this phe-
nomenon in many cases via the theory of perfect crystals for level-zero rep-
resentations [8],[13],[14],[5],[11],[12], a development of their earlier theory of
semi-infinite paths [2]. Although the Kyoto path model is expected to hold in
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great generality, the proofs have been carried out mostly for the Lie algebras of
classical types A,B,C,D, due to the need for case-by-case definitions of perfect
crystals. (See [4] for an introduction.) Also, Pappas and Rapoport [23] have
given a geometric version of the phenomenon for type A: they construct a flat
deformation of Schubert varieties of the affine Grassmannian into a product of
finite Grassmannians.

In this paper, we extend the Tensor Product Phenomenon for V̂ (Λ0) to the
non-classical types E6 and E7 by a uniform method which applies whenever g

possesses a minuscule representation, or more precisely a minuscule coweight.
We shall rely on a key property of such coweights which may be taken as the
definition. Let X̂ be the extended Dynkin diagram associated to ĝ. A coweight
�∨ of g is minuscule if and only if it is a fundamental coweight �∨ = �∨

i and
there exists an automorphism σ of X̂ taking the node i to the distinguished
node 0. Such automorphisms exist in types A,B,C,D,E6, E7.

We let V (λ) denote the irreducible g-module with highest weight λ, and
V (λ)∗ its dual module. Our main representation-theoretic result is:

Theorem 1 Let λ∨ be an element of the coroot lattice of g which is a sum:

λ∨ = λ∨1 + · · · + λ∨m,

where λ∨1, · · · , λ∨m are minuscule fundamental coweights (not necessarily dis-
tinct), with corresponding fundamental weights λ1, · · · , λm. Let V̂λ∨(Λ0) ⊂
V̂ (Λ0) be the Demazure module corresponding to the anti-dominant translation
t−λ∨ in the affine Weyl group.

Then there is an isomorphism of g-modules:

V̂λ∨(Λ0) ∼= V (λ1)∗ ⊗ · · · ⊗ V (λm)∗ .

Now fix a minuscule coweight �∨ and its corresponding fundamental weight
�. Let N be the smallest positive integer such that N�∨ lies in the coroot
lattice of g. Then we have the following characterization of the basic irreducible
ĝ-module:

Theorem 2 The tensor power VN :=(V (�)∗)⊗N possesses non-zero g-invariant
vectors. Fix such a vector vN , and define the g-module V ⊗∞ as the direct limit
of the sequence:

VN ↪→ V ⊗2
N ↪→ V ⊗3

N ↪→ · · ·
where each inclusion is defined by: v �→ vN ⊗ v.

Then V̂ (Λ0) is isomorphic as a g-module to V ⊗∞.

It would be interesting to define the action of the full algebra ĝ on V ⊗∞, and
thus give a uniform “path construction” of the basic representation (cf. [2]):
that is, to define the raising and lowering operators E0, F0, as well as the en-
ergy operator d. Combinatorial definitions of the energy for g of classical type
produce generalizations of the Hall-Littlewood and Kostka-Foulkes polynomials
(bibliography in [22]), and Sanderson [25] has given a connection with Macdon-
ald polynomials.
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1.2 Crystal Theorems

Our basic tool to prove the above results is Littelmann’s combinatorial model
[18],[19],[17] for representations of Kac-Moody algebras, a vast generalization
of Young tableaux. Littelmann’s paths and path operators give a flexible con-
struction of the crystal graphs associated to quantum g-modules by Kashiwara
[10] and Lusztig [20] (see also [6],[4]). Roughly speaking, we prove Theorem 1
(in Sec. 2.5) by reducing it to an identity of paths: we construct a path crystal
for the affine Demazure module which is at the same time a path crystal for
the tensor product.

Theorem 2 follows as a corollary (Sec 2.6). To describe the crystal graph of
the semi-infinite tensor product, we pass to a semi-infinite limit of Littelmann
paths which we call skeins. We thus recover the Kyoto path model for classical
g, and our results are equally valid for E6, E7.

To be more precise, we briefly sketch Littelmann’s theory. We define a g-
crystal 1 as a set B with a weight function wt : B → ⊕ri=1Z�i, and partially
defined crystal raising and lowering operators e1, . . . , er,f1, . . . , fr : B → B
satisfying:

wt(fi(b)) = wt(b)− αi and ei(b)= b′ ⇐⇒ fi(b′)= b .

Here �1, . . . ,�r are the fundamental weights and α1, . . . , αr are the simple
roots of g. A dominant element is a b ∈ B such that ei(b) is not defined for any
i. We say that a crystal B is a model for a g-module V if the formal character
of B is equal to the character of V , and the dominant elements of B correspond
to the highest-weight vectors of V . That is:

char(V ) =
∑

b∈B e
wt(b) and V ∼= ⊕

b dom V (wt(b)) ,

where the second sum is over the dominant elements of B. Clearly, a g-module
V is determined up to isomorphism by any model B.

We construct such g-crystals B consisting of polygonal paths in the vector
space of weights, h∗R := ⊕ri=1R�i. Specifically:

• The elements of B are certain continuous piecewise-linear mappings π :
[0, 1] → h∗R, up to reparametrization, with initial point π(0) = 0. We use
the notation π = (v1 � v2 � · · · � vk) to denote the polygonal path with
vector steps v1, . . . , vk ∈ h∗R: that is, the path starting at 0 and moving
linearly to the point v1, then to the point v1+v2, etc.

• The weight of a path is its endpoint: wt(π) := π(1) = v1+ · · ·+ vk .

• The crystal lowering operator fi is defined as follows (and there is a similar
definition of the raising operator ei). Let � denote the natural associative
operation of concatenation of paths, and let any linear map w : h∗R → h∗R
act pointwise on paths: w(π) := (w(v1) � · · · � w(vk)). We will divide a

1This definition is much weaker than Kashiwara’s [9], but adequate for our purposes.
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path π into three well-defined sub-paths, π = π1 � π2 � π3, and reflect the
middle piece by the simple reflection si:

fiπ := π1 � siπ2 � π3 .

The pieces π1, π2, π3 are determined according to the behavior of the i-
height function hi(t) = hπi (t) := 〈π(t), α∨i 〉. As the point π(t) moves along
the path from π(0) = 0 to π(1) = wt(π), this function may attain its
minimum value hi(t) = M several times. If, after the last minimum point,
hi(t) never rises to the value M+1, then fiπ is undefined. Otherwise, we
define π2 as the last sub-path of π on which M ≤ hi(t) ≤ M+1, and the
remaining initial and final pieces of π are π1 and π3.

A key advantage of this path model is that the definition of the crystal
operators, though complicated, is uniform for all paths. Hence a path crystal
is completely specified by giving its set of paths B.

Also, the dominant elements have a neat pictorial characterization, as the
paths π which never leave the fundamental Weyl chamber: that is, hπi (t) ≥ 0
for all t ∈ [0, 1] and all i = 1, . . . , r. For simplicity we restrict ourselves
to integral dominant paths, meaning that all the steps are integral weights:
π = (v1 � v2 � · · · ), where v1, . . . , vk ∈ ⊕ri=1Z�i. (For arbitrary dominant
paths, see [19].)

Littelmann’s Character Theorem [19] states that if π is any integral dom-
inant path with weight λ, then the set of paths B(π) generated from π by
f1, . . . , fr is a model for the irreducible g-module V (λ). (This B(π) is also
closed under e1, . . . , er.) Note that we can choose any integral path π which
stays within the Weyl chamber and ends at λ, and each such choice gives a
different (but isomorphic) path crystal modelling V (λ). One hopes that any
reasonable indexing set for a basis of V (λ) is in natural bijection with B(π)
for some choice of π. For example, classical Young tableaux for g = glnC

correspond to choosing the steps vj to be coordinate vectors in h∗R ∼= Rn.
Furthermore, we have Littelmann’s Product Theorem [19]: if π1, . . . , πm

are dominant integral paths of respective weight λ1, . . . , λm, then B(π1) � · · · �
B(πm), the set of all concatenations of paths, is a model for the tensor product
V (λ1)⊗ · · · ⊗ V (λm).

Everything we have said for g also holds for the affine algebra ĝ, provided
we replace the roots α1, . . . , αr of g by the roots α0, α1, . . . , αr of ĝ ; and the
weights �1, . . . ,�r of g by the weights Λ0,Λ1, . . . ,Λr of ĝ. We also replace the
vector space h∗R by ĥ∗R := ⊕ri=0RΛi ⊕ Rδ, where δ is the non-divisible positive
imaginary root of ĝ. (Indeed, the theory works uniformly for all symmetriz-
able Kac-Moody algebras.) We denote path crystals for g and ĝ by B and B̂
respectively.

The theory extends to Demazure modules. For example, to model the affine
Demazure module V̂z(Λ) ⊂ V̂ (Λ), where z is an affine Weyl group element, we
choose a reduced decomposition z = si1 · · · sim (where si are simple reflections)

4



and an integral dominant path π of weight Λ, then define the Demazure path
crystal:

B̂z(π) := {fk1i1 · · · fkm
im
π | k1, . . . , km ≥ 0} .

Because of the local nilpotence of the lowering operators, this is always a finite
set. We may consider B̂z as a “crystal Demazure operator” acting on sets of
paths.

Littelmann proves [18] that the formal character of B̂z(π) is equal to the
character of V̂z(Λ), and π is the unique dominant path. Now suppose z = t−λ∨ ,
an anti-dominant translation in the affine Weyl group Ŵ , so that V̂λ∨(Λ) :=
V̂z(Λ) is a g-submodule of V̂ (Λ); and consider B̂λ∨(π) := B̂z(π) as a g-crystal
by forgetting the action of f0, e0 and projecting modulo RΛ0⊕Rδ to h∗R. Then
Littelmann’s Restriction Theorem [19] implies that the g-crystal B̂λ∨(π) is a
model for the g-module V̂λ∨(Λ).

Now we are ready to state our main combinatorial results. For λ a dominant
weight, define its dual weight λ∗ by the dual g-module: V (λ∗) = V (λ)∗. Also,
we let B(λ) be the crystal generated by the straight-line path (λ).

Theorem 3 Let λ∨ be as in Theorem 1, and let B(λ) denote the g path crystal
generated by the straight-line path (λ). Then the set of concatenated paths
Λ0 �B(λ∗1) � · · · �B(λ∗m) is a path crystal for the Demazure module V̂λ∨(Λ0). In
fact, there is a unique ĝ-dominant path π with weight Λ0 such that:

B̂λ∨(π) = Λ0 � B(λ∗1) � · · · � B(λ∗m) mod Rδ .

This is to be understood as an equality of sets of paths in ĥ∗R mod Rδ, and
hence an isomorphism of ĝ-crystals.2

Theorem 1 follows immediately from this. Indeed, siΛ0 = Λ0 for i = 1, . . . , r,
so fi(Λ0 � π

′) = Λ0 � fi(π′) for any path π′. Thus the right-hand side of the
equation in the Theorem is isomorphic as a g-crystal to B(λ∗1) � · · · � B(λ∗m),
which models V (λ1)∗ ⊗ · · · ⊗ V (λr)∗. See [3] for methods of enumerating the
dominant paths in this crystal (and hence computing the isotypic components
of the corresponding representation).

Next we give the following crystal version of Theorem 2:

Theorem 4 Let �∨, N be as in Theorem 2. Define the N -fold concatenation
BN = B(�∗) � · · · � B(�∗). Then Λ0 � BN contains a unique ĝ-dominant path
Λ0 � π̂.

Define B̂∞ as the direct limit of the sequence:

Λ0 � BN ↪→ Λ0 � BN � BN ↪→ Λ0 � BN � BN � BN ↪→ · · ·
where the inclusions are given by Λ0�π �→ Λ0�π̂�π. Then B̂∞ has a natural
ĝ-crystal structure (defined in the following section) which is isomorphic to the
ĝ-crystal of V̂ (Λ0).

2The projection modulo Rδ does not affect the action of the ĝ-crystal operators f0, . . . , fr, since
〈δ, α∨

i 〉 = 0 for all i. That is, the projection gives an isomorphism of ĝ-crystals.
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This Theorem is equivalent to the Kyoto path model.

1.3 The Skein model

We proceed to define the crystals of semi-infinite paths promised in Theorem
4. Let us introduce a notation for a path π which emphasizes the vector steps
going toward the endpoint Λ = wt(π) rather than away from the starting point
0. Define:

π = (� vk � · · · � v1�Λ) := (v′� vk � · · · � v1) ,
the path with endpoint Λ, last step v1, etc, and first step v′ := Λ−(vk+ · · ·+v1),
a makeweight to assure that the steps add up to Λ.

A skein is an infinite list:

π = (· · · � v2 � v1�Λ) ,

where Λ ∈ ⊕ri=0ZΛi and v1, v2, . . . ∈ h∗R are level-zero vectors (no Λ0 compo-
nent), subject to conditions (i) and (ii) below. For i = 0, . . . , r and k > 0,
define:

hi[k] := 〈Λ−(v1+ · · ·+vk), α∨i 〉 .
We require:
(i) For each i and all k � 0, we have hi[k] ≥ 0.
(ii) For each i, there are infinitely many k such that hi[k] = 0.

We think of the skein π as a “projective limit” as k →∞ of the finite paths

π[k] := (� vk � · · · � v1�Λ) .

Thus, π stays always at the level 	 = 〈Λ, c〉, only a finite number of steps of π
lie outside the fundamental chamber Ĉ (condition i), and π touches each wall of
Ĉ infinitely many times (condition ii). We may visualize the skein as jumping
from the origin up to level 	, winding horizontally around the fundamental
chamber infinitely many times, and ending at Λ.

Lemma 5 For a skein π and i = 0, . . . , r, one of the following is true:

(i) fi(π[k]) is undefined for all k�0;
(ii) there is a unique skein π′ such that π′[k] = fi(π[k]) for all k�0.

In the second case, we define fiπ := π′.

Proof. We say that a path π is i-neutral if hπi (t) ≥ 0 for all t and hπi (1) = 0.
For a fixed i, divide π into a concatenation: π = (· · · � π2 � π1 � π0�Λ), where
each πj is an i-neutral finite path except for π0, which is an arbitrary finite
path. Now it is clear that if fi(π0) is undefined, then (i) holds. Otherwise (ii)
holds and

fiπ = (· · · � π2 � π1 � fi(π0)�Λ−αi ) . �
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We can immediately carry over the definitions of the path model to skeins,
including that of (Demazure) path crystals. For example, we say that π is an
integral dominant skein if π[k] is integral dominant for k�0, and hence for all k.
There exist integral dominant skeins of level 	 = 1 only when g has a minuscule
coweight. We cannot concatenate two skeins, but we can concatenate a skein
π1 and a path π0: that is, π1 � π0 := (π1�π0 � wt(π1)+ wt(π0) ) .

Proposition 6 For an integral dominant skein π of weight Λ, the crystal B̂(π)
is a model for V̂ (Λ), and B̂z(π) is a model for the Demazure module V̂z(Λ).

Proof. Given an integral dominant skein π and a Weyl group element z ∈ W̃ , we
can divide π = π1�π0 in such a way that the cryatal Demazure operator B̂z acts
on π by reflecting intervals in π0 rather than π1. This gives an isomorphism
between the Demazure crystals generated by the dominant path wt(π1) � π0

and by the skein π:

B̂z(wt(π1) � π0)
∼→ B̂z(π1 � π0) = B̂z(π)

wt(π1) � π′ �→ π1 � π
′ .

This proves the assertion about Demazure modules.
Now, given z1<z2< · · · , an infinite chain of Weyl group elements increasing

in the Bruhat order, we have the morphisms of ĝ-crystals:

B̂z1(Λ) ∼← B̂z1(wt(π1) � π0)
∼→ B̂z1(π)

∩ ∩
B̂z2(Λ) ∼← B̂z2(wt(π′1) � π′0)

∼→ B̂z2(π)
∩ ∩
...

...
B̂(Λ) B̂(π)

Here B̂z(Λ) denotes the crystal generated by the straight-line path (Λ). Since
the ĝ-crystals at the bottom are the unions of their Demazure crystals, they
are isomorphic: B̂(Λ) ∼= B̂(π). �

In the situation of Theorem 4, π̂ is a finite path in h∗R with wt(π̂) = 0 such that
(Λ � π̂) is ĝ-dominant and touches all the walls of the Weyl chamber Ĉ. Thus
π̂∞ := (· · · � π̂ � π̂ �Λ0) is a dominant integral skein. We may view the direct
limit B̂∞ as a set of skeins by identifying each finite path of weight Λ,

Λ0 � πk � · · · � π1 ∈ Λ0 � BN � · · · � BN ,

with the skein (· · · � π̂ � π̂ � πk � · · · � π1�Λ). Indeed, π̂∞ is the unique dominant
skein in this set, and we will prove Theorem 4 in Sec. 2.6 by showing that B̂∞
is identical with the skein crystal B(π̂∞).
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1.4 Example: E6

Referring to Bourbaki [1], we write the extended Dynkin diagram X̂ = Ê6:

◦ 0|• 2|•—•—•—•—•
1 3 4 5 6

The simple roots are defined inside R6 with standard basis ε1, . . . , ε6. (Our ε6
is 1√

3
(−ε6−ε7+ε8) in Bourbaki’s notation.) They are:

α1 = 1
2(ε1+ε2+ε3+ε4 + ε5)+

√
3

2 ε6, α2 = ε1+ε2,
α3 = ε2−ε1, α4 = ε3−ε2, α5 = ε4−ε3, α6 = ε5−ε4 .

Since E6 is simply laced, the coroots and coweights may be identified with the
roots and weights, with the natural pairing given by the standard dot product
on R6.

We focus on the minuscule coweight �∨
1 corresponding to the diagram auto-

morphism σ with σ(1) = 0 and σ(0) = 6. In this case, the corresponding funda-
mental representation V (�1) is also minuscule, meaning that all of its weights
are extremal weights λ ∈ W (E6)·�1. The roots α2, · · · , α6 generate the root
sub-systemD5 ⊂ E6, and the reflection subgroupW (D5) = StabW (E6)(�1) acts
by permuting ε1, . . . , ε5 (the subgroup W (A4) = S5) and by changing an even
number of signs ±ε1, . . . ,±ε5. We have dimV (�1) = |W (E6)/W (D5)| = 27.
The weights are:

�1=2
√

3
3 ε6,

S5·12(−ε1+ε2+ε3+ε4+ε5) +
√

3
6 ε6,

S5·12(−ε1−ε2−ε3+ε4+ε5) +
√

3
6 ε6,

−1
2(ε1+ε2+ε3+ε4+ε5) +

√
3

6 ε6,

±S5·ε1 −
√

3
3 ε6 .

The lowest weight is −�6 = −ε5−
√

3
3 ε6, so that V (�1)∗ = V (�6) and�∗

1 = �6.
The simplest path crystal for V (�∗

1) is the set of 27 straight-line paths from
0 to the negatives of the above extremal weights:

B(�∗
1) = { (v) | v ∈ −W (E6)·�1 }

We have 3�∨
1 ∈ ⊕6

i=1Rα∨i the coroot lattice, so that N = 3 in Theorem 2,
and this N is always the order of the automorphism σ. The path crystal
B3 := B(�∗

1)�B(�∗
1)�B(�∗

1), the set of all 3-step walks with steps chosen from
the 27 weights of V (�∗

1), is a model for V (�∗
1)

⊗3. In this case there is a unique
g-dominant path of weight 0 (not merely a unique ĝ-dominant path),

π̂ := (�6) � (�1−�6) � (−�1) ,
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which corresponds to the one-dimensional space of g-invariant vectors in V (�∗
1)

⊗3.
Now Theorem 3 states that the affine Demazure module V̂3m�∨

1
(Λ0) is mod-

elled by the ĝ-path crystal:

B3m = {(Λ0 � v1 � · · · � v3m) | vj ∈ −W (E6)·�1} ,

the set of all 3m-step walks in R6+Λ0 starting at Λ0, with steps chosen from the
27 weights of V (�∗

1). This path crystal is generated from its unique ĝ-dominant
path Λ0�π̂� · · · �π̂.

Taking the direct limit as m→∞ produces the skein crystal B̂∞ = B̂(π̂∞)
for the basic ĝ-module V̂ (Λ0): the set of all semi-infinite walks of the form

π = Λ0 �

infinite︷ ︸︸ ︷
π̂ � · · · � π̂ � v1 � · · · � v3m

= (· · · � π̂ � π̂ � v1 � · · · � v3m�Λ) ,

withm > 0 and vj ∈ −W (E6)·�1. Here the endpoint Λ is wt(π) := Λ0+v1+ · · ·+v3m.
The crystal operators fi act near the end of the skein, unwinding the coils π̂
one at a time, right-to-left.

2 Demazure Crystals

2.1 Notations

We will work with a complex simple Lie algebra g of rank r, a Cartan subalgebra
h ⊂ g, the set of roots ∆ ⊂ h∗, and the set of coroots ∆∨ ⊂ h. We write the
highest root of ∆ as θ = a1α1 + · · ·+ arαr, and its coroot as θ∨ = a∨1α∨1 + · · ·+
a∨rα∨r . Warning: If g is not simply laced, θ∨ is not the highest root of the dual
root system ∆∨.

The Weyl group W of g is generated by reflections s1, . . . , sr defined by
si(λ) = λ − 〈λ, α∨i 〉αi for λ ∈ h∗R := ⊕ri=1R�i. We have the fundamental Weyl
chamber C = {λ ∈ h∗R | 〈λ, α∨i 〉≥0, i=1, . . . , r}. The Weyl group also acts
naturally on hR. If we choose a W -invariant bilinear form ( · | · ) on hR, we have
the isomorphism ν : hR → h∗R defined by 〈ν(h), h′〉 = (h|h′) for h, h′ ∈ hR. We
normalize so that ν(θ∨) = θ and ν(�∨

i ) = ai
a∨i
�i.

Now let ĝ = g ⊗ C[t, t−1] ⊕ Cc ⊕ Cd be the untwisted affine Lie algebra
of g, where c is a central element and d = t ddt is a derivation. (Cf. Kac [7,
Ch. 6 and 7].) Then ĝ has Cartan subalgebra ĥ = h ⊕ Cc ⊕ Cd, with dual
ĥ∗ = h∗ ⊕ CΛ0 ⊕ Cδ, where 〈Λ0, h〉 = 〈δ, h〉 = 0 and 〈Λ0, c〉 = 〈δ, d〉 = 1.

The simple roots of ĝ are α1, . . . , αr and α0 = δ−θ; the simple coroots are
α∨1, . . . , α

∨
r and α∨0 = c−θ∨. The fundamental weights are Λ0 and Λi = �i+a∨iΛ0

for i = 1, . . . , r. The affine Weyl group Ŵ is generated by the reflections
s0, s1, . . . , sr acting on ĥ∗R. The fundamental Weyl chamber of ĝ is the cone
Ĉ = {Λ ∈ ĥ∗R | 〈Λ, α∨i 〉 ≥ 0, i=0, . . . , r} with extremal rays Λ0, . . . ,Λr.
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For Λ ∈ ⊕ri=0NΛi, we have the irreducible highest-weight ĝ-module V̂ (Λ).
We will also consider the Demazure module V̂z(Λ) := U(n̂+)·vzΛ, where n̂+ is
the algebra spanned by the positive weight-spaces of ĝ, z ∈ Ŵ is a Weyl group
element, and vzΛ is a non-zero vector of extremal weight zΛ in V̂ (Λ).

For a weight Λ = λ + 	Λ0 +mδ, we will ignore the energy m = 〈Λ, d〉 and
work modulo Rδ, even when we do not indicate this explicitly. Since 〈δ, α∨i 〉 = 0
for i = 0, . . . , r, the energy has no effect on the path operators fi, ei.

Consider the lattice M = ν(⊕ri=1Zα
∨
i ) in h∗R. For any µ ∈ M , there is an

element tµ ∈ Ŵ which acts on the weights of level 	 as translation by 	µ: that
is,

tµ(λ+	Λ0) = λ+	µ+	Λ0 (mod Rδ).

Furthermore, the affine Weyl group is a semi-direct product of the finite Weyl
group with the lattice of translations: Ŵ = W � tM .

Consider the anti-dominant translation z = t−λ corresponding to a domi-
nant weight λ = ν(λ∨) ∈ C ∩M . We denote the resulting Demazure module
as V̂λ∨(Λ0) := V̂z(Λ0). Then the n̂+-module V̂λ∨(Λ0) is also a g-submodule of
V̂ (Λ0):

g·V̂λ∨(Λ0) ⊂ V̂λ∨(Λ0) ,

and these are the only z ∈ Ŵ for which V̂z(Λ0) is a g-module.

2.2 Minuscule weights and coweights

We collect needed facts concerning minuscule weights in root systems. The
statements below are well-known and easily verified from tables [1],[7], although
direct proofs are also not difficult (cf. [21]).

We say a non-zero coweight �∨ ∈ hR is minuscule for ∆ if 〈α,�∨〉 = 0 or
1 for all positive roots α ∈ ∆+. Equivalently, �∨ = �∨

i for some i = 1, . . . , r
with ai = 〈θ,�∨

i 〉 = 1. This implies that a∨i = 1 as well, so that ν(�∨
i ) = �i.

The classification of the minuscule �∨
i is most concisely described by listing the

pairs (X, X\{i}), where X is the Dynkin diagram of g. We have �∨
i minuscule

when:
(X, X\{i}) ∼= (Ar, Ar−k×Ak−1), k=1, . . . , r

(Br, Br−1), (Cr, Ar−1),
(Dr,Dr−1), (Dr, Ar),
(E6,D5), (E7, E6) .

There are no minuscule �∨
i for X = E8, F4, or G2.

Now define the extended Weyl group W̃ as a group of linear mappings on
ĥ∗R: namely, W̃ := W � tL, where L = ν(⊕ri=1Z�

∨
i ). Let

Σ := {σ ∈ W̃ | σ(Ĉ) = Ĉ} ,

the symmetries in W̃ of the fundamental chamber of ĥ∗R. The set Σ is a system
of coset representatives for W̃/ Ŵ , so that W̃ = Σ � Ŵ . We can extend the
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Bruhat length function to W̃ as: l(σw) = l(wσ) := l(w) for σ ∈ Σ, w ∈ Ŵ .
Each element σ ∈ Σ defines an automorphism of the Dynkin diagram of ĝ which
we also write as σ. For j = 0, . . . , r, we have:

σ(Λj) = Λσ(j) and σ(αj) = ασ(j) .

There is a natural correspondence between non-trivial elements of Σ and
minuscule coweights. Each σ ∈ Σ can be written uniquely as:

σ = σ̄ t−ν(�∨
i ) = σ̄ t−�i ,

for σ̄ ∈ W and �∨
i a minuscule coweight. In fact, σ̄ = w0wi, where w0 is the

longest element of W and wi is the longest element of the parabolic subgroup
Wi := StabW (�i). We have σ̄(αj) = ασ(j) for j �= i, and σ̄(αi) = −θ.

We have σ(Λi) = σ̄t−�i(�i+Λ0) = Λ0, so that

σ(i) = 0 .

Also, σ̄(�i) = w0wi(�i) = w0(�i) = −�∗
i , and �σ(0) = �∗

i .
The number N appearing in Theorems 2 and 4 is the order of σ in the group

Σ, and is also the order of �∨ in the finite group ⊕ri=1Z�
∨
i / ⊕ri=1 Zα∨i .

The definition of a minuscule weight� for ∆∨ is dual to the above: 〈�,α∨〉 =
0 or 1 for all positive coroots α∨ ∈ ∆∨

+; or equivalently � = �i and 〈�, θ∗〉 = 1,
where θ∗ is highest in the root system ∆∨. The fundamental representation
V (�) corresponding to a minuscule � has a basis consisting of extremal weight
vectors vw(�) for w ∈ W . Note, however, that � need not be minuscule even
when the corresponding coweight �∨ is minuscule.3 In fact, we have:

Lemma 7 Let �∨
i be a minuscule coweight for ∆, and �i the corresponding

weight.

(i) If ∆ is simply laced (i.e., all root vectors have the same length), then �i is
minuscule for ∆∨.

(ii) If ∆ is not simply laced, then �i is minuscule for ∆∨
s, the simply-laced root

system of short vectors in ∆∨. Furthermore, α∨i ∈ ∆∨
s.

Proof. Part (i) follows from ν(�∨
i ) = (ai/a∨i )�i = �i. Part (ii) is immediately

verified for the relevant types Br and Cr. �

Consider the parabolic Bruhat order on the W -orbit W ·�i. That is, the
partial order generated by the relations: τ1 < τ2 if τ1 = τ2−dα for some positive
root α and some d > 0. The following result says that if �∨

i is minuscule, then
this “strong” order is identical to the “weak” order:

3For example in type Br with ∆ = {±εi, ±εi±εj | 1≤i<j≤r}, we have �r = 1
2 (ε1+ · · ·+εr) as

the only minuscule weight, and �∨
1 = ε∗1 as the only minuscule coweight.

11



Lemma 8 (Stembridge [26]) Suppose the coweight �∨
i is minuscule. Then

the Bruhat order on W ·�i has covering relations:

τ1 � τ2 whenever τ1 = τ2 − dαj
for some simple root αj of W and some d > 0.

Proof. This follows from Stembridge’s formulation by noting that W ·�i
∼=

W/Wi
∼= W ·�∨

i . �

2.3 Lakshmibai-Seshadri Paths

We examine in detail the path crystals of V (�i) where�∨
i is minuscule. For any

dominant weight λ, the most canonical choice of dominant path is the straight-
line path from 0 to λ, denoted π = (λ). The corresponding path crystal B(λ)
can be described non-recursively by the Lakshmibai-Seshadri (LS) chains [18].
These are saturated chains in the parabolic Bruhat order on W ·λ, weighted
with certain rational numbers:

(τ1 � · · ·� τm; 0<a1≤ · · · ≤am−1<1)

with τj∈W ·λ, aj∈Q, and m≥1. We require that if τj+1 = τj − djα for α∈∆+,
dj∈N, then aj = nj/dj for some nj∈N. An LS chain corresponds to the LS
path defined as:

π = (a1τ1 � (a2−a1)τ2 � (a3−a2)τ3 � · · · � (1−am−1)τm) .

Notice that if aj+1 = aj then we may omit the step 0τj ; in this case there may
be more than one LS chain producing the same LS path. Nevertheless, B(λ) is
the set of all distinct LS paths [18].

Proposition 9 Let �∨
i ,�

∨
l be two minuscule coweights (possibly identical),

and let σ̄l be the linear mapping of h∗R corresponding to �∨
l . For each π ∈ B(�i),

we have σ̄lπ ∈ B(�i). That is, the linear mapping σ̄l permutes the paths in
B(�i).

Proof. Consider an LS chain (τ1� · · ·�τm; 0<a1≤ · · · ≤am−1<1) corresponding
to a path π ∈ B(�i). If g is simply laced, then �i is minuscule by Lemma 5(i),
and the denominator of aj is:

dj = 〈τj , α∨〉 = 〈w�i, α
∨〉 = 〈�i, wα

∨〉 = 0 or 1 .

Since 0<aj=
nj

dj
<1, this means that m = 1 and π = (τ1) = (w�i) for w ∈W , a

straight-line path of extremal weight. Since σ̄l is an automorphism of the root
system ∆, it permutes the elements of a W -orbit, and hence σ̄lπ is another
straight-line LS path.

12



If g is not simply laced, the paths of B(�i) are more complicated. By
Lemma 6, we may assume that τj+1 = τj − djαk(j), where k(j) ∈ {1, . . . , r}
and αk(j) is a simple root. The turned path is:

σ̄lπ = (a1σ̄lτ1 � (a2−a1)σ̄lτ2 � · · · ) .
Suppose k(j) = l for some j. By Lemma 5(ii), α∨l is a short root of ∆∨, and so
is wα∨l , so we have:

dj = 〈τj, α∨l 〉 = 〈w�∨
i , α

∨
l 〉 = 〈�i, wα

∨
l 〉 = 0 or 1

by the same Lemma. This again means that m = 1 and σ̄lπ is a straight-line
LS path.

Finally, suppose k(j)�=l for all j = 1, . . . ,m. Then:

σ̄lτj+1 = σ̄lτj − dj σ̄lαk(j) = σ̄lτj − djαp ,
where p := σl(k(j)) ∈ {1, . . . , r}. Hence σ̄lτj � spσ̄lτj = σ̄lτj+1, and σ̄lπ is an
LS path. �

Although we do not need it here, we note that for any minuscule �∨
i , the

LS-paths of B(�i) have at most two linear pieces (cf. [15]).

2.4 Twisted Demazure operators

For a Weyl group element with reduced decomposition z = si1 · · · sim ∈ Ŵ
and any path π (not necessarily dominant), we define the crystal Demazure
operator:

B̂z(π) := {fk1i1 · · · fkm
im
πλ | k1, . . . , km ≥ 0} .

We can extend B̂z to an operator taking any set of paths Π to a larger set
of paths: B̂z(Π) :=

⋃
π∈Π B̂z(π). We have B̂y(B̂z(Π)) = B̂yz(Π) whenever

l(yz) = l(y)+ l(z). Similarly, we let B(Π) be the set of all paths generated from
Π by f1, . . . , fr, e1, . . . , er.

It will be convenient to define a Demazure module V̂z(Λ) for any z ∈ W̃ =
Σ � Ŵ . Now, σ ∈ Σ induces an automorphism of ĝ, so for a module V̂ we
have the twisted module σV̂ defined by the action g�v := σ−1(g)v for g ∈ ĝ,
v ∈ V̂ . That is, σV̂ (Λ) ∼= V̂ (σΛ), and in particular σV̂ (Λi) ∼= V̂ (Λσ(i)). Now,
for z = σy with y ∈ Ŵ define: V̂z(Λ) := σ(V̂y(Λ)) ⊂ σV̂ (Λ) , a twist of an
ordinary Demazure module. Thus, V̂σy(Λ) ∼= V̂σyσ−1(σΛ) and

V̂yσ(Λ) ∼= V̂y(σΛ) .

Furthermore, V̂λ∨(Λ0) := V̂z(Λ0) for z = t−ν(λ∨) is a g-module for any dominant
integral coweight λ∨ ∈ ⊕ri=1N�

∨
i .

The combinatorial counterpart of this construction is:

B̂σy(π) := σB̂y(π)

for σ ∈ Σ and y ∈ Ŵ . All of our statements regarding V̂z(Λ) and B̂z for z∈ Ŵ
remain valid for z∈W̃ .
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2.5 Proof of Theorems 1 and 3

Let λ∨ be a dominant integral coweight (not necessarily in the coroot lattice)
which can be written:

λ∨ = λ∨1 + · · ·+ λ∨m ,

where λ∨j ∈ {�1, . . . ,�r} are minuscule fundamental coweights (not necessar-
ily distinct) with corresponding weights λj and dual weights λ∗j = −w0(λj).
Then we claim (extending Theorem 1 to the coweight lattice) that there is an
isomorphism of g-modules:

V̂λ∨(Λ0) ∼= V (λ∗1)⊗ · · · ⊗ V (λ∗m) .

This follows immediately from Littelmann’s Character and Restriction Theo-
rems combined with the following extension of Theorem 3.

We will choose a certain ĝ-dominant path πm of weight Λ0 and show that:

B̂λ∨(πm) = Λ0 � B(λ∗1) � · · · � B(λ∗m) .

Let σj ∈ Σ correspond to λ∨j for j = 1, . . . ,m. We define πm inductively as the
last of a sequence of paths π0, π1, . . . , πm:

π0 := Λ0, πj := σ−1
j (πj−1 � λ

∗
j ) .

We may picture πm as jumping up to level Λ0, winding horizontally around
the fundamental alcove A = (h∗R+Λ0) ∩ Ĉ, and ending at Λ0. Indeed, note
that wt(π0) = Λ0. For j > 0, write Λ(j) := λj + Λ0, so that σjΛ(j) = Λ0 and
σjλj = −λ∗j . Then by induction:

wt(πj) = σ−1
j (wt(πj−1) + λ∗j )

= σ−1
j Λ0 + σ−1

j λ∗

= Λ(j) − λj = Λ0 ,

so that each πj has weight Λ0. Furthermore, since Λ0+λ∗j ∈ Ĉ and σj is a
automorphism of Ĉ, it is clear that each πj is indeed a ĝ-dominant path.

We will now prove Theorem 3 by showing that the Demazure operator B̂λ∨
“unwinds” πm starting from its endpoint. To compute:

B̂λ∨(πm) = B̂λ∨1 · · · B̂λ∨m(πm) ,

it suffices to prove:

Lemma 10 For j = m, m−1, . . . , 1, we have:

B̂λ∨j
(
πj � B(λ∗j+1) � · · · � B(λ∗m)

)
= πj−1 � B(λ∗j) � B(λ∗j+1) � · · · � B(λ∗m) .
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Proof. For j = m, we compute:

B̂λ∨m(πm) = B̂wmw0σm

(
σ−1
m (πm−1 � λ

∗
m)

)
= B̂wmw0 (πm−1 � λ

∗
m)

(I)
= B̂w0w∗

m
(πm−1 � λ

∗
m)

(II)
= πm−1 � B̂w0w∗

m
(λ∗m)

(III)
= πm−1 � B̂w0(λ

∗
m)

= πm−1 � B(λ∗m)

The equalities are justified as follows: (I) Here w∗
m := w0wmw0, the longest

element in StabW (λ∗m) = StabW (−w0 λm). (II) If a path π is i-neutral, meaning
〈π(t), α∨i 〉≥0 and 〈wtπ, α∨i 〉=0, then it is clear from the definition of fi that
fi(π � π′) = π � fi(π′) for any path π′, and the two sides are both defined or
both undefined. Now note that the πj are i-neutral for i=1, . . . , r. (III) Follows
from B̂w0w∗

m
(λ∗) = B̂w0w∗

m
B̂w∗

m
(λ∗) = B̂w0(λ

∗).

For j < m, letting Bj+1 := B(λ∗j+1) � · · · � B(λ∗m), we have:

B̂λ∨j (πj � Bj+1) = B̂w0w∗
j σj

(
σ−1
j (πj−1 � λ

∗
j ) � Bj+1

)
(I)
= B̂w0w∗

j

(
πj−1 � λ

∗
j � σjBj+1

)
(IV)
= B̂w0w∗

j

(
πj−1 � λ

∗
j � Bj+1

)
(II)
= πj−1 � B̂w0w∗

j

(
λ∗j � Bj+1

)
(V)
= πj−1 � B

(
λ∗j � Bj+1

)
(VI)
= πj−1 � B(λ∗j) � Bj+1

Here (I) and (II) are as above. (IV) Follows from Proposition 7. (V) Follows
from the Combinatorial Excellent Filtration Theorem [16, Prop. 12], which
implies that λ∗j �Bj+1 is isomorphic to a union of Demazure crystals By(µ) with
y ≥ w∗

j . (VI) Both sides are stable under the fi, ei for i = 1, . . . , r, and they
contain the same g-dominant paths, hence they are identical.

This concludes the proof of the Lemma, and hence of Theorem 3. �

2.6 Proof of Theorems 2 and 4

Fix a minuscule coweight �∨ with corresponding weight �, dual weight �∗, and
automorphism σ ∈ Σ of order N . The N -fold concatenation B(�∗)� · · ·�B(�∗)
contains the path π̂ := πN = (σ−N (�∗) � · · · � σ−2(�∗) � σ−1(�∗)), which is
g-dominant with weight 0. Thus V (�∗)⊗N possesses a corresponding invariant
vector vN .
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Since −N�∨ ∈ ⊕ri=1Zαi and the translation t−N�∨ lies in Ŵ , the twisted
Demazure module VmN�∨(Λ0) is an ordinary Demazure submodule of V̂ (Λ0).
In fact, the basic ĝ-module, considered as a g-module, is a direct limit of these
Demazure modules:

V̂ (Λ0) = lim−→ VN�∨ ↪→ V2N�∨ ↪→ V3N�∨ ↪→ · · · .

By Theorem 1, the g-module on the right hand side is isomorphic to:

lim−→ V (�∗)⊗N
φ1
↪→ V (�∗)⊗2N φ2

↪→ V (�∗)⊗3N φ3
↪→ · · ·

for some injective g-module morphisms φ1, φ2, φ3, . . . .
Now, if φ,ψ : V1 ↪→ V2 are any two injective g-module morphisms, and ξ1

an automorphism of V1, then complete reducibility implies that there exists an
automorphism ξ2 of V2 which completes the commutative diagram:

V1
φ
↪→ V2

ξ1 ↓� ξ2↓�
V1

ψ
↪→ V2

Thus, the inclusions ψm : V (�∗)⊗Nm ↪→ V (�∗)⊗N(m+1), v �→ vN⊗v appearing
in Theorem 2 define the same g-module as the above maps φm, and we conclude
that V (Λ0) is isomorphic as a g-module to the infinite tensor product as claimed.

Now consider the situation of Theorem 4. Recall the skein π̂∞ := (· · · � π̂ �
π̂�Λ0), and consider the commutative diagram:

B̂N�∨(Λ0 � π̂) ∼→ B̂�∨(π̂∞)
↓ ∩

B̂2N�∨(Λ0 � π̂ � π̂) ∼→ B̂2N�∨(π̂∞)
↓ ∩
...

...
B̂∞ B̂(π̂∞)

where the vertical maps on the left are those of the direct limit. As in the
proof of Proposition 6, the direct limit crystals on the bottom are isomorphic,
so Theorem 4 now follows by applying the conclusion of Proposition 6.
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