NOTES ON MINORS AND PLUCKER COORDINATES

Peter Magyar

We list for reference several identities involving Plucker coordinates of subspaces. Cf. Fulton's *Young Tableaux*, §8.1, §9.1. Note that Weyman has given conceptual proofs of most of these results by decomposing Schur functors into irreducibles, Cauchy's identity, etc.

1 Minors

For a whole number n, denote $[n] := \{1, 2, ..., n\}$. For an $n \times l$ matrix $X = (x_{ij}) \in M_{n \times l}$, and subsets $I \subset [n]$ and $J \subset [l]$ of equal size, we have the submatrix $X_{IJ} = (x_{ij})_{i \in I, j \in J}$ and the minor $\Delta_I^J(M) := \det(M_{IJ})$.

Proposition 1.1 For any matrices X, Y which can be multiplied, we have:

$$\Delta_I^J(XY) = \sum_K \Delta_I^K(X) \Delta_K^J(Y).$$

This generalizes the multiplicativity of the determinant.

Proposition 1.2 (Sylvester) Let $X = [x^1, \ldots, x^n]$, $Y = [y^1, \ldots, y^n]$ be two $n \times n$ matrices of column vectors. Fix a set $\{j_1 < \ldots < j_k\} \subset [n]$. Then we have:

$$\det X \det Y = \sum_{i_1 < \dots < i_k} \det[x^1, \dots, y^{j_1}, \dots, y^{j_k}, \dots, x^n] \det[y^1, \dots, x^{i_1}, \dots, x^{i_k}, \dots, y^n]$$

where $[x^1, \ldots, y^{j_1}, \ldots, y^{j_k}, \ldots, x^n]$ denotes the matrix X with columns x^{i_1}, \ldots, x^{i_k} replaced by the columns y^{j_1}, \ldots, y^{j_k} of Y, and vice versa for the other factor.

Proposition 1.3 (Laplace) Let X be an $l \times m$ matrix, $I \subset [l], J \subset [m]$; and fix a partition $I = I' \sqcup I''$. Then we have:

$$\Delta_{I}^{J}(X) = \sum_{J=J'\sqcup J''} (-1)^{\mathrm{inv}(I'|I'') + \mathrm{inv}(J'|J'')} \Delta_{I'}^{J'}(X) \Delta_{I''}^{J''}(X),$$

where the sum runs over all partitions J of appropriate size, and $inv(A|B) = #\{(a,b) \in A \times B \mid a > b\}$. The same formula holds for a fixed partition of J, summed over all partitions of I.

This formula follows easily from Prop. 1.2, and it generalizes the usual expansion of a determinant by minors. Note that the symmetry of the formula with respect to switching I' and I'' is guaranteed by the relation: $inv(A|B) + inv(B|A) = #A \cdot #B$.

2 Plucker embedding

All our spaces will lie inside an *n*-dimensional vector space E with standard basis e_1, \ldots, e_n . We will often think of an *l*-dimensional subspace $V \subset E$ as an $n \times l$ matrix $[v^1, \ldots, v^l]$ of column vectors $v^j = (v_1^j, \ldots, v_n^j)^T$ which span V. This matrix is not unique, but we do have a well-defined Plucker embedding

$$Gr(l, E) \rightarrow \mathbf{P}(\wedge^{l} E)$$
$$V = [v^{1}, \dots, v^{l}] \mapsto v^{1} \wedge \dots \wedge v^{l}.$$

The projective coordinate corresponding to the basis vector $e_{i_1} \wedge \cdots \wedge e_{i_k}$ is:

$$\Delta_I(V) := \Delta_I^{[l]}[v_1, \dots, v_l],$$

where $I = \{i_1, \ldots, i_k\}$. The Plucker coordinates are defined up to simultaneous multiplication by an arbitrary non-zero scalar.

Proposition 2.1 Let $V \subset E$ a subspace and $A \cdot V$ its translation by a matrix $A \in GL(E)$. Then $\Delta_I(A \cdot V) = \sum_{J \subset [n]} \Delta_I^J(A) \Delta_J(V)$.

This follows immediately from Prop. 1.1.

Let us also define the Plucker coordinate of an ordered list (i_1, \ldots, i_l) by the relations:

$$\Delta_{(i_1,\dots,i_j,i_{j+1},\dots,i_l)} = -\Delta_{(i_1,\dots,i_{j+1},i_j,\dots,i_l)}$$

and

$$\Delta_{(i_1,\dots i_l)} = \Delta_{\{i_1,\dots i_l\}} \quad \text{if} \quad i_1 < \dots < i_l \,.$$

In particular, $\Delta_{(i_1,\ldots,i_l)} = 0$ if any subscript appears twice.

Proposition 2.2 The image of the Plucker embedding $\operatorname{Gr}(l, E) \to \mathbf{P}(\wedge^l E)$ is a projective variety whose vanishing ideal is generated by the following polynomials in the Plucker coordinates. For any $k \leq l$, and any (p_1, \ldots, p_l) , (q_1, \ldots, q_l) , lists of distinct elements in [n], we have the quadratic polynomial (Plucker relation):

$$\Delta_{(p_1,\dots,p_l)}\Delta_{(q_1,\dots,q_m)} - \sum_{i_1 < \dots < i_k} \Delta_{(p_1,\dots,q_1,\dots,q_k,\dots,p_l)}\Delta_{(p_{i_1},\dots,p_{i_k},q_{k+1},\dots,q_l)},$$

where $(p_1, \ldots, q_1, \ldots, q_k, \ldots, p_l)$ denotes the list (p_1, \ldots, p_l) with the entries p_{i_1}, \ldots, p_{i_k} replaced by q_1, \ldots, q_k , and vice versa for the other factor.

Proposition 2.3 Let $V, W \subset E$ be subspaces with dim $V = l < \dim W = m$. Then $V \subset W$ if and only if all the following polynomials vanish. For any $k \leq l$, and any (p_1, \ldots, p_l) , (q_1, \ldots, q_m) , lists of distinct elements in [n], we have the polynomial:

$$\Delta_{(p_1,\dots,p_l)}\Delta_{(q_1,\dots,q_l)} - \sum_{i_1 < \dots < i_k} \Delta_{(p_1,\dots,q_1,\dots,q_k,\dots,p_l)}\Delta_{(p_{i_1},\dots,p_{i_k},q_{k+1},\dots,q_m)},$$

where we use the same notation as before.

3 Orthogonals and intersections

If $r \leq n$, and X is a generic matrix in $M_{r \times n}$, then U = Ker X, the kernel of the map $u \mapsto X \cdot u$, is a subspace of dimension n-r in n-space. If we think of the row vectors

 v_1, \ldots, v_r of X as elements of E^* , spanning a space $V = \text{Span}(v_1, \ldots, v_r) \subset E^*$, then $U = V^{\perp} = \{u \in E \mid \langle v, u \rangle = 0 \; \forall v \in V\}.$

Proposition 3.1 The Plucker coordinates of $U = \text{Ker } X = V^{\perp}$ are given by:

$$\Delta_I(U) = (-1)^{\ell(I)} \Delta_{[n]}^{\bar{I}}(X) = (-1)^{\ell(I)} \Delta^{\bar{I}}(V),$$

where $I \sqcup \overline{I} = [n]$, and for $I = \{i_1 < \dots < i_{n-r}\}$, we define $\ell(I) := \operatorname{inv}(I|\overline{I}) = \sum_{j=1}^{n-r} (i_j - j)$.

Proposition 3.2 Let $V, W \subset E$ be subspaces with dim V = l, dim W = m, dim $V \cap W = k = l + m - n \ge 0$. Then the Plucker coordinates of the intersection are given by:

$$\Delta_K(V \cap W) = \sum_{\substack{L,M\\K \sqcup L \sqcup M = [n]}} (-1)^{\operatorname{inv}(L|M)} \Delta_{K \cup L}(V) \Delta_{K \cup M}(W),$$

where the sum is over all partitions of $[n] \setminus K$ into disjoint subsets L, M with $\#(K \cup L) = l$, $\#(K \cup M) = m$.

Proof. Consider matrices $V = [v_1, ..., v_l], W = [w_1, ..., w_m]$, and $[V, W] = [v_1, ..., v_l, w_1, ..., w_m] \in M_{n \times (l+m)}$. Let

$$Y = \begin{pmatrix} Y_V \\ Y_W \end{pmatrix} = \operatorname{Ker}[V, W] \in M_{(l+m) \times k}$$

Then $V \cap W = V \cdot Y_V \in M_{k \times n}$. Thus, using Props. 1.1, 1.3, and 3.1, we have:

$$\begin{split} \Delta_{K}(V \cap W) &= \Delta_{K}^{[k]}(V \cdot Y_{V}) \\ &= \sum_{J \subset [l]} \Delta_{K}^{J}(V) \Delta_{J}^{[k]}(Y_{V}) \\ &= \sum_{J \subset [l]} (-1)^{\ell(J)} \Delta_{K}^{J}(V) \Delta_{[n]}^{\overline{J} \sqcup [l+1,l+m]}([V,W]) \\ &= \sum_{J \subset [l]} (-1)^{\ell(J)} \Delta_{K}^{J}(V) \\ &\sum_{J \subset [l]} (-1)^{inv(K'|K'')+inv(\overline{J}][l+1,l+m])} \\ &\Delta_{K''}^{\overline{J}}([V,W]) \Delta_{K'''}^{[l+1,l+m]}([V,W]) \\ &= \sum_{J \subset [l]} (-1)^{\ell(J)+\ell(K')} \Delta_{K}^{J}(V) \Delta_{K''}^{\overline{J}}(V) \Delta_{K''}^{[m]}(W) \\ &= \sum_{\substack{K \cap K'=0\\ K' \sqcup K''=[n]}} (-1)^{\ell(K')+inv(K|K')} \Delta_{K\cup K'}^{[l]}(V) \Delta_{K\cup M}^{[m]}(W) \\ &= (-1)^{k(n-m)} \sum_{K \sqcup L \sqcup M=[n]} (-1)^{inv(L|M)} \Delta_{K\cup L}(V) \Delta_{K\cup M}(W) \end{split}$$

We may remove the sign factor on the left, since it is independent of K. QED