NOTES ON MINORS AND PLUCKER COORDINATES

Peter Magyar

We list for reference several identities involving Plucker coordinates of subspaces. Cf. Fulton's Young Tableaux, §8.1, §9.1. Note that Weyman has given conceptual proofs of most of these results by decomposing Schur functors into irreducibles, Cauchy's identity, etc.

1 Minors

For a whole number n, denote $[n]:=\{1,2, \ldots, n\}$. For an $n \times l$ matrix $X=\left(x_{i j}\right) \in M_{n \times l}$, and subsets $I \subset[n]$ and $J \subset[l]$ of equal size, we have the submatrix $X_{I J}=\left(x_{i j}\right)_{i \in I, j \in J}$ and the minor $\Delta_{I}^{J}(M):=\operatorname{det}\left(M_{I J}\right)$.

Proposition 1.1 For any matrices X, Y which can be multiplied, we have:

$$
\Delta_{I}^{J}(X Y)=\sum_{K} \Delta_{I}^{K}(X) \Delta_{K}^{J}(Y)
$$

This generalizes the multiplicativity of the determinant.
Proposition 1.2 (Sylvester) Let $X=\left[x^{1}, \ldots, x^{n}\right], Y=\left[y^{1}, \ldots, y^{n}\right]$ be two $n \times n$ matrices of column vectors. Fix a set $\left\{j_{1}<\ldots<j_{k}\right\} \subset[n]$. Then we have:

$$
\operatorname{det} X \operatorname{det} Y=\sum_{i_{1}<\cdots<i_{k}} \operatorname{det}\left[x^{1}, \ldots, y^{j_{1}}, \ldots, y^{j_{k}}, \ldots, x^{n}\right] \operatorname{det}\left[y^{1}, \ldots, x^{i_{1}}, \ldots, x^{i_{k}}, \ldots, y^{n}\right]
$$

where $\left[x^{1}, \ldots, y^{j_{1}}, \ldots, y^{j_{k}}, \ldots, x^{n}\right]$ denotes the matrix X with columns $x^{i_{1}}, \ldots, x^{i_{k}}$ replaced by the columns $y^{j_{1}}, \ldots, y^{j_{k}}$ of Y, and vice versa for the other factor.

Proposition 1.3 (Laplace) Let X be an $l \times m$ matrix, $I \subset[l], J \subset[m]$; and fix a partition $I=I^{\prime} \sqcup I^{\prime \prime}$. Then we have:

$$
\Delta_{I}^{J}(X)=\sum_{J=J^{\prime} \sqcup J^{\prime \prime}}(-1)^{\operatorname{inv}\left(I^{\prime} \mid I^{\prime \prime}\right)+\operatorname{inv}\left(J^{\prime} \mid J^{\prime \prime}\right)} \Delta_{I^{\prime}}^{J^{\prime}}(X) \Delta_{I^{\prime \prime}}^{J^{\prime \prime}}(X),
$$

where the sum runs over all partitions J of appropriate size, and $\operatorname{inv}(A \mid B)=\#\{(a, b) \in$ $A \times B \mid a>b\}$. The same formula holds for a fixed partition of J, summed over all partitions of I.

This formula follows easily from Prop. 1.2, and it generalizes the usual expansion of a determinant by minors. Note that the symmetry of the formula with respect to switching I^{\prime} and $I^{\prime \prime}$ is guaranteed by the relation: $\operatorname{inv}(A \mid B)+\operatorname{inv}(B \mid A)=\# A \cdot \# B$.

2 Plucker embedding

All our spaces will lie inside an n-dimensional vector space E with standard basis e_{1}, \ldots, e_{n}. We will often think of an l-dimensional subspace $V \subset E$ as an $n \times l$ matrix $\left[v^{1}, \ldots, v^{l}\right]$ of
column vectors $v^{j}=\left(v_{1}^{j}, \ldots, v_{n}^{j}\right)^{T}$ which span V. This matrix is not unique, but we do have a well-defined Plucker embedding

$$
\begin{aligned}
\operatorname{Gr}(l, E) & \rightarrow \mathbf{P}\left(\wedge^{l} E\right) \\
V=\left[v^{1}, \ldots, v^{l}\right] & \mapsto v^{1} \wedge \cdots \wedge v^{l}
\end{aligned}
$$

The projective coordinate corresponding to the basis vector $e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}$ is:

$$
\Delta_{I}(V):=\Delta_{I}^{[l]}\left[v_{1}, \ldots, v_{l}\right],
$$

where $I=\left\{i_{1}, \ldots, i_{k}\right\}$. The Plucker coordinates are defined up to simultaneous multiplication by an arbitrary non-zero scalar.

Proposition 2.1 Let $V \subset E$ a subspace and $A \cdot V$ its translation by a matrix $A \in G L(E)$. Then $\Delta_{I}(A \cdot V)=\sum_{J \subset[n]} \Delta_{I}^{J}(A) \Delta_{J}(V)$.

This follows immediately from Prop. 1.1.
Let us also define the Plucker coordinate of an ordered list $\left(i_{1}, \ldots, i_{l}\right)$ by the relations:

$$
\Delta_{\left(i_{1}, \ldots, i_{j}, i_{j+1}, \ldots, i_{l}\right)}=-\Delta_{\left(i_{1}, \ldots, i_{j+1}, i_{j}, \ldots, i_{l}\right)}
$$

and

$$
\Delta_{\left(i_{1}, \ldots i_{l}\right)}=\Delta_{\left\{i_{1}, \ldots i_{l}\right\}} \quad \text { if } \quad i_{1}<\cdots<i_{l}
$$

In particular, $\Delta_{\left(i_{1}, \ldots, i_{l}\right)}=0$ if any subscript appears twice.
Proposition 2.2 The image of the Plucker embedding $\operatorname{Gr}(l, E) \rightarrow \mathbf{P}\left(\wedge^{l} E\right)$ is a projective variety whose vanishing ideal is generated by the following polynomials in the Plucker coordinates. For any $k \leq l$, and any $\left(p_{1}, \ldots, p_{l}\right),\left(q_{1}, \ldots, q_{l}\right)$, lists of distinct elements in [n], we have the quadratic polynomial (Plucker relation):

$$
\Delta_{\left(p_{1}, \ldots, p_{l}\right)} \Delta_{\left(q_{1}, \ldots, q_{m}\right)}-\sum_{i_{1}<\cdots<i_{k}} \Delta_{\left(p_{1}, \ldots, q_{1}, \ldots, q_{k}, \ldots, p_{l}\right)} \Delta_{\left(p_{i_{1}}, \ldots, p_{i_{k}}, q_{k+1}, \ldots, q_{l}\right)},
$$

where $\left(p_{1}, \ldots, q_{1}, \ldots, q_{k}, \ldots, p_{l}\right)$ denotes the list $\left(p_{1}, \ldots, p_{l}\right)$ with the entries $p_{i_{1}}, \ldots, p_{i_{k}}$ replaced by q_{1}, \ldots, q_{k}, and vice versa for the other factor.

Proposition 2.3 Let $V, W \subset E$ be subspaces with $\operatorname{dim} V=l<\operatorname{dim} W=m$. Then $V \subset W$ if and only if all the following polynomials vanish. For any $k \leq l$, and any $\left(p_{1}, \ldots, p_{l}\right),\left(q_{1}, \ldots, q_{m}\right)$, lists of distinct elements in $[n]$, we have the polynomial:

$$
\Delta_{\left(p_{1}, \ldots, p_{l}\right)} \Delta_{\left(q_{1}, \ldots, q_{l}\right)}-\sum_{i_{1}<\cdots<i_{k}} \Delta_{\left(p_{1}, \ldots, q_{1}, \ldots, q_{k}, \ldots, p_{l}\right)} \Delta_{\left(p_{i_{1}}, \ldots, p_{i_{k}}, q_{k+1}, \ldots, q_{m}\right)}
$$

where we use the same notation as before.

3 Orthogonals and intersections

If $r \leq n$, and X is a generic matrix in $M_{r \times n}$, then $U=\operatorname{Ker} X$, the kernel of the map $u \mapsto X \cdot u$, is a subspace of dimension $n-r$ in n-space. If we think of the row vectors
v_{1}, \ldots, v_{r} of X as elements of E^{*}, spanning a space $V=\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right) \subset E^{*}$, then $U=V^{\perp}=\{u \in E \mid\langle v, u\rangle=0 \quad \forall v \in V\}$.

Proposition 3.1 The Plucker coordinates of $U=\operatorname{Ker} X=V^{\perp}$ are given by:

$$
\Delta_{I}(U)=(-1)^{\ell(I)} \Delta_{[n]}^{\bar{I}}(X)=(-1)^{\ell(I)} \Delta^{\bar{I}}(V),
$$

where $I \sqcup \bar{I}=[n]$, and for $I=\left\{i_{1}<\cdots<i_{n-r}\right\}$, we define $\ell(I):=\operatorname{inv}(I \mid \bar{I})=\sum_{j=1}^{n-r}\left(i_{j}-j\right)$.
Proposition 3.2 Let $V, W \subset E$ be subspaces with $\operatorname{dim} V=l, \operatorname{dim} W=m, \operatorname{dim} V \cap W=$ $k=l+m-n \geq 0$. Then the Plucker coordinates of the intersection are given by:

$$
\Delta_{K}(V \cap W)=\sum_{\substack{L, M \\ K \sqcup L \sqcup M=[n]}}(-1)^{\operatorname{inv}(L \mid M)} \Delta_{K \cup L}(V) \Delta_{K \cup M}(W),
$$

where the sum is over all partitions of $[n] \backslash K$ into disjoint subsets L, M with $\#(K \cup L)=l$, $\#(K \cup M)=m$.
Proof. Consider matrices $V=\left[v_{1}, \ldots, v_{l}\right], W=\left[w_{1}, \ldots, w_{m}\right]$, and $[V, W]=\left[v_{1}, \ldots, v_{l}, w_{1}, \ldots w_{m}\right] \in$ $M_{n \times(l+m)}$. Let

$$
Y=\binom{Y_{V}}{Y_{W}}=\operatorname{Ker}[V, W] \in M_{(l+m) \times k}
$$

Then $V \cap W=V \cdot Y_{V} \in M_{k \times n}$. Thus, using Props. 1.1, 1.3, and 3.1, we have:

$$
\begin{aligned}
\Delta_{K}(V \cap W)= & \Delta_{K}^{[k]}\left(V \cdot Y_{V}\right) \\
= & \sum_{J \subset[l]} \Delta_{K}^{J}(V) \Delta_{J}^{[k]}\left(Y_{V}\right) \\
= & \sum_{J \subset[l]}(-1)^{\ell(J)} \Delta_{K}^{J}(V) \Delta_{[n]}^{\bar{J}[l+1, l+m]}([V, W]) \\
= & \sum_{J \subset[l]}(-1)^{\ell(J)} \Delta_{K}^{J}(V) \\
& \sum_{K^{\prime} \sqcup K^{\prime \prime}=[n]}(-1)^{\operatorname{inv}\left(K^{\prime} \mid K^{\prime \prime}\right)+\operatorname{inv}(\bar{J} \mid[l+1, l+m])} \\
& \Delta_{K^{\prime}}^{J}([V, W]) \Delta_{K^{\prime \prime}}^{[l+l, l+m]}([V, W]) \\
= & \sum_{J \subset[l]}(-1)^{\ell(J)+\ell\left(K^{\prime}\right)} \Delta_{K}^{J}(V) \Delta_{K^{\prime}}^{J}(V) \Delta_{K^{\prime \prime}}^{[m]}(W) \\
= & \left.\sum_{K^{\prime} \sqcup K^{\prime \prime}=[n]}(-1)^{\ell\left(K^{\prime}\right)+\operatorname{inv}\left(K \mid K^{\prime}\right)} \Delta_{K \cup K^{\prime}}^{[l]}\right)(V) \Delta_{K^{\prime \prime}}^{[m]}(W) \\
= & (-1)^{k(n-m)} \sum_{K^{\prime} \sqcup K^{\prime \prime}=[n]}^{k(-\infty}(-1)^{\operatorname{inv}(L \mid M)} \Delta_{K \cup L}(V) \Delta_{K \cup M}(W) .
\end{aligned}
$$

We may remove the sign factor on the left, since it is independent of K. QED

