From: Peter Magyar (pmagyar@lynx.neu.edu)
To: Nigel Ray (nige@ma.man.ac.uk)
Date: 6 January 1997
RE: Bounded flag varieties
Dear Nige,
I have a few comments about your remarkable bounded flag varieties. It turns out that they fit into the machinery of combinatorial algebraic geometry in at least three ways: 1) as Bott-Samelson varieties; 2) as Schubert varieties; and 3) as toric varieties.

Following the notations of your preprint (V. Buchstaber and N. Ray, Double cobordism, flag manifolds and quantum doubles, 1996), we let $Z_{n+1}=\mathbf{C}^{n+1}, Z_{i}$ the subspace spanned by the first i coordinate vectors, and $F\left(Z_{n+1}\right)$ the complete flag variety of Z_{n+1}. Then the bounded flag variety $B_{n}=B\left(Z_{n+1}\right) \subset F\left(Z_{n+1}\right)$ is the n-dimensional complex subvariety

$$
B_{n}=\left\{0<U_{1}<\cdots<U_{n}<Z_{n+1} \mid \forall i, Z_{i-1}<U_{i}\right\} .
$$

1. Given the sequence $\mathbf{i}=(n, n-1, \ldots, 2,1)$, we associate the Bott-Samelson variety

$$
\operatorname{Bott}_{\mathbf{i}}=P_{n} \times P_{n-1} \times \cdots \times P_{2} \times P_{1} / B^{n},
$$

where $B \subset G L(n+1, \mathbf{C})$ is the subgroup of upper-triangular matrices,

$$
P_{k}=\left\{\left(x_{i j}\right) \mid x_{i j}=0 \text { unless } i \leq j \text { or }(i, j)=(k+1, k)\right\}
$$

is a parabolic subgroup of almost upper-triangular matrices, and B^{n} acts freely on the right of the product of the P_{k} via

$$
\left(p_{n}, p_{n-1}, \ldots, p_{1}\right) \cdot\left(b_{n}, b_{n-1}, \ldots, b_{1}\right)=\left(p_{n} b_{n}, b_{n}^{-1} p_{n-1} b_{n-1}, \ldots, b_{2}^{-1} p_{1} b_{1}\right)
$$

Claim: The map

$$
\tilde{\mu}: \begin{array}{cl}
\operatorname{Bott}_{\mathbf{i}} & \rightarrow \operatorname{Gr}\left(n, Z_{n+1}\right) \times \operatorname{Gr}\left(n-1, Z_{n+1}\right) \times \cdots \times \operatorname{Gr}\left(1, Z_{n+1}\right) \\
\left(p_{n}, p_{n-1}, \ldots, p_{1}\right) & \mapsto\left(p_{n} Z_{n}, p_{n} p_{n-1} Z_{n-1}, \ldots, p_{n} \cdots p_{1} Z_{1}\right)
\end{array}
$$

is an isomorphism from Bott $_{\mathbf{i}}$ onto B_{n}.
There are two natural coordinate systems on Bott $\mathrm{i}_{\mathbf{i}}$ given by

$$
\begin{gathered}
\left(x_{n}, \ldots, x_{1}\right) \in \mathbf{C}^{n} \mapsto\left(p_{n}, \ldots, p_{1}\right)=\left(I+x_{n} e_{(n+1, n)}, \ldots, I+x_{1} e_{(2,1)}\right) \\
\left(y_{n}, \ldots, y_{1}\right) \in \mathbf{C}^{n} \mapsto\left(p_{n}, \ldots, p_{1}\right)=\left(\left(I+y_{n} e_{(n+1, n)}\right) s_{n}, \ldots,\left(I+y_{1} e_{(2,1)}\right) s_{1}\right),
\end{gathered}
$$

where I is the identity matrix, $e_{(k+1, k)}$ is a subdiagonal coordinate matrix, and s_{k} is the permutation matrix of the transposition $(k, k+1)$. (That is, s_{k} is the identity matrix except for a block of the form ($\left.\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ on the diagonal.)

Your subvarieties $X_{Q} \subset$ Bott $_{\mathbf{i}}$ for $Q \subset[1, n]$ are given by the equations $x_{q}=0$ for $q \notin Q$, and your $Y_{Q} \subset$ Bott $_{\mathbf{i}}$ by $y_{q}=0$ for $q \notin Q$. It is then clear that the X_{Q} all intersect transversally, as do the Y_{Q}. Demazure proves that the collection of the X_{Q} form a linear basis of the integral cohomology ring $\mathrm{H}^{\cdot}\left(\right.$ Bott $\left._{\mathbf{i}}\right)$, and he computes the self-intersection formula for the $X_{k} \stackrel{\text { def }}{=} X_{\{k\}}$:

$$
X_{k} \cdot X_{k}=-\left(X_{k} \cdot X_{k+1}+\cdots+X_{k} \cdot X_{n}\right)
$$

with $X_{n} \cdot X_{n}=0$.
2. The Bott-Samelson variety Bott $_{i}$ naturally covers a Schubert variety X_{w} in the flag variety $F\left(Z_{n+1}\right)$. The indexing permutation in the Weyl group $W=S_{n+1}$ is $w=s_{n} s_{n-1} \cdots s_{1}$ where s_{k} is the transposition $(k, k+1)$. That is, $w(1)=n+1, w(2)=1, w(3)=2, \ldots, w(n+1)=n$, a cycle of length $n+1$. This particular w is known as a Coxeter element of W. (See Humphreys' Coxeter Groups.)

The natural map is

$$
\begin{array}{cccc}
\mu: & \text { Bott }_{\mathbf{i}} & \rightarrow & X_{w} \\
\left(p_{n}, \cdots, p_{1}\right) & \mapsto & p_{n} \cdots p_{1}(Z .)
\end{array}
$$

where $Z .=\left(Z_{1}<\cdots<Z_{n+1}\right)$ is the standard flag. For a general \mathbf{i}, this is a resolution of singularities of X_{w}, but here the Schubert variety is already a smooth manifold and μ is an isomorphism. Thus

$$
B_{n} \cong \operatorname{Bott}_{\mathbf{i}} \cong X_{w}
$$

and your X_{Q} are the Schubert subvarieties of X_{w}. Hence, your cohomology calculations are indeed strongly analogous to the Schubert calculus: they compute intersections of Schubert subvarieties inside a smooth ambient Schubert variety, instead of inside the whole flag variety $F\left(Z_{n+1}\right)$.

The Y_{Q} are intersections of X_{w} with the Schubert varieties of the opposite standard flag $\left(Z_{\{n\}}<Z_{[n-1, n]}<Z_{[n-2, n]}<\cdots\right)$. These also occur in the Schubert calculus. (See Fulton's new book Young Tableaux.)
3. It is easily seen that the complex torus of diagonal matrices in $S L(n+1, \mathbf{C})$ has an open dense orbit on B_{n}. Hence B_{n} is a toric variety. (See Fulton's Introduction to Toric Varieties.) In general, a toric variety is specified by a fan Δ, a collection of polyhedral cones in \mathbf{R}^{n} with vertex at the origin. The cones must cover \mathbf{R}^{n} and fit together along their faces like a simplicial complex. In fact, Δ is the cone over a simplicial decomposition of the ($n-1$)-sphere.

In our case, the fan $\Delta=\left\{\sigma_{\epsilon}\right\}$ consists of 2^{n} cones which are "skewed octants" in \mathbf{R}^{n}. They are indexed by the 2^{n} sequences $\epsilon=(\pm, \cdots, \pm)$ of pluses and minuses, and

$$
\sigma_{\epsilon}=\operatorname{Span}_{\mathbf{R}_{+}}\left(v_{1}^{ \pm}, \cdots v_{n}^{ \pm}\right)
$$

where $v_{1}^{+}, \cdots, v_{n}^{+}$are the coordinate vectors z_{1}, \cdots, z_{n}, and

$$
v_{1}^{-}=-z_{1}, v_{2}^{-}=z_{1}-z_{2}, v_{3}^{-}=z_{2}-z_{3}, \cdots, v_{n}^{-}=z_{n-1}-z_{n}
$$

Now the varieties $X_{k}=X_{\{k\}}$ are the toric divisors corresponding to the rays v_{k}^{+}, and $Y_{k}=$ $Y_{\{k\}}$ correspond to v_{k}^{-}. The general intersection theory for toric varieties once again recovers the Schubert calculus on B_{n} :

$$
\mathrm{H}^{\cdot}\left(B_{n}\right) \cong \frac{\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]}{X_{k}\left(X_{k}+\cdots+X_{n}\right)} \cong \frac{\mathbb{Z}\left[Y_{1}, \ldots, Y_{n}\right]}{Y_{k}\left(Y_{k}-Y_{k+1}\right)}
$$

as well as giving the change-of-basis formula $X_{k}=Y_{k}-Y_{k+1}$.
Remarks. 1. For a general reductive or Kac-Moody group G with Weyl group W, one again has a Coxeter element $w=s_{n} s_{n-1} \cdots s_{1} \in W$, and all the above remains valid. The only difference is in the structure constants of $\mathrm{H}^{\cdot}\left(B_{n}\right)$, which depend on the root system of G. Could this have some bearing on cobordism with G-structure, for G more general than $S U$?
2. It is an interesting (and as far as I know open) question to compute the cohomology ring $H^{\cdot}(X)$ for an arbitrary smooth Schubert variety X, not just our $X=B_{n}$.

Yours, Peter
Peter Magyar
Northeastern University
Boston, MA 02115, USA

