FROM: Peter Magyar (pmagyar@lynx.neu.edu)To: Nigel Ray (nige@ma.man.ac.uk)DATE: 6 January 1997RE: Bounded flag varieties

Dear Nige,

I have a few comments about your remarkable bounded flag varieties. It turns out that they fit into the machinery of combinatorial algebraic geometry in at least three ways: 1) as Bott-Samelson varieties; 2) as Schubert varieties; and 3) as toric varieties.

Following the notations of your preprint (V. Buchstaber and N. Ray, *Double cobordism*, flag manifolds and quantum doubles, 1996), we let $Z_{n+1} = \mathbb{C}^{n+1}$, Z_i the subspace spanned by the first *i* coordinate vectors, and $F(Z_{n+1})$ the complete flag variety of Z_{n+1} . Then the bounded flag variety $B_n = B(Z_{n+1}) \subset F(Z_{n+1})$ is the *n*-dimensional complex subvariety

$$B_n = \{ 0 < U_1 < \dots < U_n < Z_{n+1} \mid \forall i, \ Z_{i-1} < U_i \}.$$

1. Given the sequence $\mathbf{i} = (n, n - 1, \dots, 2, 1)$, we associate the Bott-Samelson variety

$$Bott_i = P_n \times P_{n-1} \times \cdots \times P_2 \times P_1 / B^n$$

where $B \subset GL(n+1, \mathbb{C})$ is the subgroup of upper-triangular matrices,

$$P_k = \{ (x_{ij}) \mid x_{ij} = 0 \text{ unless } i \le j \text{ or } (i,j) = (k+1,k) \}$$

is a parabolic subgroup of almost upper-triangular matrices, and B^n acts freely on the right of the product of the P_k via

$$(p_n, p_{n-1}, \dots, p_1) \cdot (b_n, b_{n-1}, \dots, b_1) = (p_n b_n, b_n^{-1} p_{n-1} b_{n-1}, \dots, b_2^{-1} p_1 b_1).$$

Claim: The map

$$\tilde{\mu}: \quad \operatorname{Bott}_{\mathbf{i}} \quad \to \quad \operatorname{Gr}(n, Z_{n+1}) \times \operatorname{Gr}(n-1, Z_{n+1}) \times \cdots \times \operatorname{Gr}(1, Z_{n+1}) (p_n, p_{n-1}, \dots, p_1) \quad \mapsto \quad (p_n Z_n, p_n p_{n-1} Z_{n-1}, \dots, p_n \cdots p_1 Z_1)$$

is an isomorphism from $Bott_i$ onto B_n .

There are two natural coordinate systems on Bott_i given by

$$(x_n, \dots, x_1) \in \mathbf{C}^n \mapsto (p_n, \dots, p_1) = (I + x_n e_{(n+1,n)}, \dots, I + x_1 e_{(2,1)})$$
$$(y_n, \dots, y_1) \in \mathbf{C}^n \mapsto (p_n, \dots, p_1) = ((I + y_n e_{(n+1,n)})s_n, \dots, (I + y_1 e_{(2,1)})s_1),$$

where I is the identity matrix, $e_{(k+1,k)}$ is a subdiagonal coordinate matrix, and s_k is the permutation matrix of the transposition (k, k+1). (That is, s_k is the identity matrix except for a block of the form $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ on the diagonal.)

Your subvarieties $X_Q \subset \text{Bott}_i$ for $Q \subset [1, n]$ are given by the equations $x_q = 0$ for $q \notin Q$, and your $Y_Q \subset \text{Bott}_i$ by $y_q = 0$ for $q \notin Q$. It is then clear that the X_Q all intersect transversally, as do the Y_Q . Demazure proves that the collection of the X_Q form a linear basis of the integral cohomology ring H (Bott_i), and he computes the self-intersection formula for the $X_k \stackrel{\text{def}}{=} X_{\{k\}}$:

$$X_k \cdot X_k = -(X_k \cdot X_{k+1} + \dots + X_k \cdot X_n)$$

with $X_n \cdot X_n = 0$.

2. The Bott-Samelson variety Bott_i naturally covers a Schubert variety X_w in the flag variety $F(Z_{n+1})$. The indexing permutation in the Weyl group $W = S_{n+1}$ is $w = s_n s_{n-1} \cdots s_1$ where s_k is the transposition (k, k+1). That is, w(1) = n+1, w(2) = 1, $w(3) = 2, \ldots, w(n+1) = n$, a cycle of length n+1. This particular w is known as a *Coxeter element* of W. (See Humphreys' *Coxeter Groups.*)

The natural map is

$$\mu: \quad \begin{array}{rcl} \operatorname{Bott}_{\mathbf{i}} & \to & X_w \\ (p_n, \cdots, p_1) & \mapsto & p_n \cdots p_1(Z_{\cdot}) \end{array}$$

where $Z_{\cdot} = (Z_1 < \cdots < Z_{n+1})$ is the standard flag. For a general **i**, this is a resolution of singularities of X_w , but here the Schubert variety is already a smooth manifold and μ is an *isomorphism*. Thus

$$B_n \cong \text{Bott}_{\mathbf{i}} \cong X_w$$

and your X_Q are the Schubert subvarieties of X_w . Hence, your cohomology calculations are indeed strongly analogous to the Schubert calculus: they compute intersections of Schubert subvarieties inside a smooth ambient Schubert variety, instead of inside the whole flag variety $F(Z_{n+1})$.

The Y_Q are intersections of X_w with the Schubert varieties of the opposite standard flag $(Z_{\{n\}} < Z_{[n-1,n]} < Z_{[n-2,n]} < \cdots)$. These also occur in the Schubert calculus. (See Fulton's new book Young Tableaux.)

3. It is easily seen that the complex torus of diagonal matrices in $SL(n+1, \mathbb{C})$ has an open dense orbit on B_n . Hence B_n is a toric variety. (See Fulton's Introduction to Toric Varieties.) In general, a toric variety is specified by a fan Δ , a collection of polyhedral cones in \mathbb{R}^n with vertex at the origin. The cones must cover \mathbb{R}^n and fit together along their faces like a simplicial complex. In fact, Δ is the cone over a simplicial decomposition of the (n-1)-sphere.

In our case, the fan $\Delta = \{\sigma_{\epsilon}\}$ consists of 2^n cones which are "skewed octants" in \mathbb{R}^n . They are indexed by the 2^n sequences $\epsilon = (\pm, \dots, \pm)$ of pluses and minuses, and

$$\sigma_{\epsilon} = \operatorname{Span}_{\mathbf{R}_{+}}(v_{1}^{\pm}, \cdots v_{n}^{\pm})$$

where v_1^+, \dots, v_n^+ are the coordinate vectors z_1, \dots, z_n , and

$$v_1^- = -z_1, v_2^- = z_1 - z_2, v_3^- = z_2 - z_3, \cdots, v_n^- = z_{n-1} - z_n.$$

Now the varieties $X_k = X_{\{k\}}$ are the toric divisors corresponding to the rays v_k^+ , and $Y_k = Y_{\{k\}}$ correspond to v_k^- . The general intersection theory for toric varieties once again recovers the Schubert calculus on B_n :

$$\mathbf{H}^{\cdot}(B_n) \cong \frac{\mathbb{Z}[X_1, \dots, X_n]}{X_k(X_k + \dots + X_n)} \cong \frac{\mathbb{Z}[Y_1, \dots, Y_n]}{Y_k(Y_k - Y_{k+1})}$$

as well as giving the change-of-basis formula $X_k = Y_k - Y_{k+1}$.

Remarks. 1. For a general reductive or Kac-Moody group G with Weyl group W, one again has a Coxeter element $w = s_n s_{n-1} \cdots s_1 \in W$, and all the above remains valid. The only difference is in the structure constants of $H^{\cdot}(B_n)$, which depend on the root system of G. Could this have some bearing on cobordism with G-structure, for G more general than SU? **2.** It is an interesting (and as far as I know open) question to compute the cohomology ring $H^{\cdot}(X)$ for an arbitrary smooth Schubert variety X, not just our $X = B_n$.

Yours, Peter

Peter Magyar Northeastern University Boston, MA 02115, USA