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Re: Bounded flag varieties

Dear Nige,
I have a few comments about your remarkable bounded flag varieties. It turns out that

they fit into the machinery of combinatorial algebraic geometry in at least three ways: 1) as
Bott-Samelson varieties; 2) as Schubert varieties; and 3) as toric varieties.

Following the notations of your preprint (V. Buchstaber and N. Ray, Double cobordism,
flag manifolds and quantum doubles, 1996), we let Zn+1 = Cn+1, Zi the subspace spanned
by the first i coordinate vectors, and F (Zn+1) the complete flag variety of Zn+1. Then the
bounded flag variety Bn = B(Zn+1) ⊂ F (Zn+1) is the n-dimensional complex subvariety

Bn = {0 < U1 < · · · < Un < Zn+1 | ∀ i, Zi−1 < Ui}.

1. Given the sequence i = (n, n− 1, . . . , 2, 1), we associate the Bott-Samelson variety

Botti = Pn × Pn−1 × · · · × P2 × P1 / Bn,

where B ⊂ GL(n + 1,C) is the subgroup of upper-triangular matrices,

Pk = { (xij) | xij = 0 unless i ≤ j or (i, j) = (k + 1, k) }

is a parabolic subgroup of almost upper-triangular matrices, and Bn acts freely on the right
of the product of the Pk via

(pn, pn−1, . . . , p1) · (bn, bn−1, . . . , b1) = (pnbn, b−1
n pn−1bn−1, . . . , b

−1
2 p1b1).

Claim: The map

µ̃ : Botti → Gr(n, Zn+1)×Gr(n−1, Zn+1)× · · · ×Gr(1, Zn+1)
(pn, pn−1, . . . , p1) 7→ (pnZn, pnpn−1Zn−1, . . . , pn· · ·p1Z1)

is an isomorphism from Botti onto Bn.

There are two natural coordinate systems on Botti given by

(xn, . . . , x1) ∈ Cn 7→ (pn, . . . , p1) = (I + xne(n+1,n), . . . , I + x1e(2,1))

(yn, . . . , y1) ∈ Cn 7→ (pn, . . . , p1) = ( (I + yne(n+1,n))sn, . . . , (I + y1e(2,1))s1 ),

where I is the identity matrix, e(k+1,k) is a subdiagonal coordinate matrix, and sk is the
permutation matrix of the transposition (k, k + 1). (That is, sk is the identity matrix except
for a block of the form

(
0 1
1 0

)
on the diagonal.)

Your subvarieties XQ ⊂ Botti for Q ⊂ [1, n] are given by the equations xq = 0 for
q 6∈ Q, and your YQ ⊂ Botti by yq = 0 for q 6∈ Q. It is then clear that the XQ all intersect
transversally, as do the YQ. Demazure proves that the collection of the XQ form a linear basis
of the integral cohomology ring H·(Botti), and he computes the self-intersection formula for
the Xk

def= X{k}:
Xk ·Xk = −(Xk ·Xk+1 + · · ·+ Xk ·Xn)

with Xn ·Xn = 0.



2. The Bott-Samelson variety Botti naturally covers a Schubert variety Xw in the flag variety
F (Zn+1). The indexing permutation in the Weyl group W = Sn+1 is w = snsn−1 · · · s1 where
sk is the transposition (k, k+1). That is, w(1) = n+1, w(2) = 1, w(3) = 2, . . ., w(n+1) = n, a
cycle of length n+1. This particular w is known as a Coxeter element of W . (See Humphreys’
Coxeter Groups.)

The natural map is
µ : Botti → Xw

(pn, · · · , p1) 7→ pn· · ·p1(Z·)

where Z· = (Z1 < · · · < Zn+1) is the standard flag. For a general i, this is a resolution of
singularities of Xw, but here the Schubert variety is already a smooth manifold and µ is an
isomorphism. Thus

Bn
∼= Botti ∼= Xw

and your XQ are the Schubert subvarieties of Xw. Hence, your cohomology calculations are
indeed strongly analogous to the Schubert calculus: they compute intersections of Schubert
subvarieties inside a smooth ambient Schubert variety, instead of inside the whole flag variety
F (Zn+1).

The YQ are intersections of Xw with the Schubert varieties of the opposite standard flag
(Z{n} < Z[n−1,n] < Z[n−2,n] < · · ·). These also occur in the Schubert calculus. (See Fulton’s
new book Young Tableaux.)

3. It is easily seen that the complex torus of diagonal matrices in SL(n+1,C) has an
open dense orbit on Bn. Hence Bn is a toric variety. (See Fulton’s Introduction to Toric
Varieties.) In general, a toric variety is specified by a fan ∆, a collection of polyhedral
cones in Rn with vertex at the origin. The cones must cover Rn and fit together along their
faces like a simplicial complex. In fact, ∆ is the cone over a simplicial decomposition of the
(n− 1)-sphere.

In our case, the fan ∆ = {σε} consists of 2n cones which are “skewed octants” in Rn.
They are indexed by the 2n sequences ε = (±, · · · ,±) of pluses and minuses, and

σε = SpanR+
(v±1 , · · · v±n )

where v+
1 , · · · , v+

n are the coordinate vectors z1, · · · , zn, and

v−1 = −z1, v−2 = z1 − z2, v−3 = z2 − z3, · · · , v−n = zn−1 − zn.

Now the varieties Xk = X{k} are the toric divisors corresponding to the rays v+
k , and Yk =

Y{k} correspond to v−k . The general intersection theory for toric varieties once again recovers
the Schubert calculus on Bn:

H·(Bn) ∼=
ZZ[X1, . . . , Xn]

Xk(Xk + · · ·+ Xn)
∼=

ZZ[Y1, . . . , Yn]
Yk(Yk − Yk+1)

as well as giving the change-of-basis formula Xk = Yk − Yk+1.

Remarks. 1. For a general reductive or Kac-Moody group G with Weyl group W , one again
has a Coxeter element w = snsn−1 · · · s1 ∈ W , and all the above remains valid. The only
difference is in the structure constants of H·(Bn), which depend on the root system of G.
Could this have some bearing on cobordism with G-structure, for G more general than SU?
2. It is an interesting (and as far as I know open) question to compute the cohomology ring
H ·(X) for an arbitrary smooth Schubert variety X, not just our X = Bn.

Yours, Peter

Peter Magyar
Northeastern University
Boston, MA 02115, USA


