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Abstract

We present a generalization of the classical Schur modules of GL(n) exhibiting
the same interplay among algebra, geometry, and combinatorics. A generalized
Young diagram D is an arbitrary finite subset of N×N. For each D, we define
the Schur module SD of GL(n). We introduce a projective variety FD and a
line bundle LD, and describe the Schur module in terms of sections of LD.

For diagrams with the “northeast” property,

(i1, j1), (i2, j2) ∈ D ⇒ (min(i1, i2), max(j1, j2)) ∈ D,

which includes the skew diagrams, we resolve the singularities of FD and show
analogs of Bott’s and Kempf’s vanishing theorems. Finally, we apply the Atiyah-
Bott Fixed Point Theorem to establish a Weyl-type character formula of the
form:

charSD (x) =
∑

t

xwt(t)∏
i,j(1 − xix

−1
j )dij(t)

,

where t runs over certain standard tableaux of D.
Our results are valid over fields of arbitrary characteristic.

Introduction

The two main branches of the representation theory of the general linear groups
G = GL(n, F ) began with the geometric Borel-Weil-Bott theory and the com-
binatorial analysis of Schur, Young, and Weyl. In the case when F is of char-
acteristic zero, the geometric theory realizes the irreducible representation of G
with highest weight λ as the sections of a line bundle Lλ over the flag variety
F = G/B. By contrast, the Schur-Weyl construction produces this represen-
tation inside the tensor powers of the standard representation V = Fn, by a
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process of symmetrization and anti-symmetrization defined by λ considered as
a Young diagram. (See [10] for an accessible reference.)

Combinatorists have examined other symmetrization operations on V ⊗k,
such as those associated to skew diagrams, and recently more general diagrams
D of squares in the plane ([1], [14], [18], [19], [24], [30], [31], [32], [33]). We call
the resulting G-representations the Schur modules SD ⊂ V ⊗k. (In character-
istic zero, SD is irreducible exactly when D is a Young diagram.) Kraskiewicz
and Pragacz [19] have shown that the characters of SD, for D running through
the inversion diagrams of the symmetric group on n letters, give an algebraic
description of the Schubert calculus for the cohomology of the flag variety F .
(More precisely, the Schubert polynomials are characters of flagged Schur mod-
ules. We deal with this case in [20].)

In this paper, we attempt to combine the combinatorial and the geometric
approaches. We give a geometric definition (valid for all characteristics) for the
G-module SD. That is, for any finite set D ⊂ N × N, we produce SD as the
space of sections of a line bundle over a projective variety FD, the configuration
variety of D. (This is proved only for diagrams with a “direction” property, but
a weaker statement is shown for general diagrams.) Our picture reduces to that
of Borel-Weil when D is a Young diagram. See also Bozek and Drechsler [7], [8],
where similar varieties are introduced. We prove a conjecture of V. Reiner and
M. Shimozono asserting the duality between the Schur modules of two diagrams
whose disjoint union is a rectangular diagram.

We can carry out a more detailed analysis for diagrams satisfying a direction
condition such as the northeast condition

(i1, j1), (i2, j2) ∈ D ⇒ (min(i1, i2), max(j1, j2)) ∈ D.

To accord with the literature, we will deal exclusively with northwest diagrams,
but since the modules and varieties with which we are concerned do not change
(up to isomorphism) if we switch one row of the diagram with another or one
column with another, everything we will say applies with trivial modifications to
skew, inversion, Rothe, and column-convex diagrams, and diagrams satisfying
any direction condition (NE, NW, SE, SW).

In this case, we find an explicit resolution of singularities of FD, and we
use Frobenius splitting arguments of Wilberd van der Kallen (based on work
of Mathieu, Polo, Ramanathan, et al.) to show the vanishing of certain higher
cohomology groups. In particular, the configuration varieties are projectively
normal and have rational singularities. This allows us to apply the Atiyah-Bott
Fixed Point Theorem to compute the character and dimension of the Schur
modules.

For more general diagrams, the above program breaks down because we lack
a suitable desingularization of FD. It can be carried through, however, for
diagrams with at most three rows, since in this case we can use the space of
triangles [11] as our desingularization. See [16].
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Those interested only in the algebraic and combinatorial side of our results
can find the definitions and statements in Sections 1, 2.3, 5.2, and 5.3. Our
discussion of geometry begins with Section 2.

A preliminary version of this paper was circulated under the title A Borel-
Weil construction for Schur modules.
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1 GL(n) modules

We introduce the Schur-Weyl construction for arbitrary diagrams over fields of
any characteristic.

1.1 Schur modules

A diagram is a finite subset of N×N. Its elements (i, j) ∈ D are called squares,
and we picture (i, j) in the ith row and jth column. We shall often think of
D as a sequence (C1, C2, . . . , Cr) of columns Cj ⊂ N. The Young diagram
corresponding to λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) is the set {(i, j) | 1 ≤ j ≤
n, 1 ≤ i ≤ λj}. For any diagram D, we let

Col(D) = {π ∈ ΣD | π(i, j) = (i′, j) ∃i′}

be the group permuting the squares of D within each column, and we define
Row(D) similarly for rows.

Let F be a field. We shall always write G = GL(n, F ), B = the subgroup of
upper triangular matrices, H = the subgroup of diagonal matrices, and V = Fn

the defining representation.
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Given a finite set T , we will also use the symbol T to denote the order |T |
when appropriate. Thus GL(T ) def= GL(|T |), etc. Let ΣT be the symmetric
group permuting the elements of T . For any left G-space X , ΣT acts on the
right, and G acts on the left, of the cartesian product XT by:

g(xt1 , xt2 , . . .)π = (gxπt1 , gxπt2 , . . .).

Now let F have characteristic zero. Define the idempotents αD, βD in the group
algebra F [ΣD] by

αD =
1

|Row D|
∑

π∈Row D

π, βD =
1

|Col D|
∑

π∈Col D

sgn(π)π,

where sgn(π) is the sign of the permutation. Define the Schur module

SD
def= V ⊗DαDβD ⊂ V ⊗D,

a representation of G. If D = λ is a classical Young diagram and the field F
has characteristic zero, SD = Sλ is the Schur-Weyl realization of the irreducible
GL(n)-module with highest weight λ.

Note that we get an isomorphic Schur module if we change the diagram
by permuting the rows or the columns (i.e., for some permutation π : N → N,
changing D = {(i, j)} to D′ = {(π(i), j) | (i, j) ∈ D}, and similarly for columns).

1.2 Weyl modules

Let U = V ∗, the dual of the defining representation of G = GL(n, F ), where
F is an infinite field. Given a diagram D, define the alternating product with
respect to the columns∧D

U = {f : V D → F | f multilinear, and f(vπ) = sgn(π)f(v) ∀π ∈ Col(D)},

where multilinear means f(v1, . . . , vd) is F -linear in each of the d = |D| variables.
Consider the multidiagonal with respect to the rows

∆DV = ∆R1V × ∆R2V × · · · ⊂ V R1 × V R2 × · · · = V D,

where R1, R2, . . . are the rows of D, and ∆RV = {(v, v, . . . , v)} ⊂ V R, the total
diagonal in a row. Now define the Weyl module

WD
def=
∧D

U |∆DV ,

where |∆DV denotes restriction of functions from V D to ∆DV . Since ∆DV is
stable under the diagonal action of G, WD is naturally a G-module.
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Remark. For F a finite field, we make the following modification. Consider
U = U(F ) ↪→ U(F̄ ), where F̄ is the algebraic closure. That is, identify

U = {f : F̄n → F̄ | f is F̄ -linear, and f(Fn) ⊂ F}.

Then define
WD

def=
∧D

U |∆DV (F̄ ) .

This keeps the restriction map from killing nonzero tensors which happen to
vanish on the finite set ∆DV (F ).

With this definition, WD clearly has the base change property WD(L) =
WD(F ) ⊗F L for any extension of fields F ⊂ L.

Now consider WD(Z). This is a free Z-module, since it is a submodule of the
Z-valued functions on ∆DV . Suppose D satisfies a direction condition. Then
our vanishing results of Proposition 25 (a), along with the appropriate universal
coefficient theorems, can be used to show that for any field F ,

WD(F ) = WD(Z) ⊗Z F.

Proposition 1 If F has characteristic zero, then WD
∼= S∗

D as G-modules.

Proof. SD is the image of the composite mapping

V ⊗DαD ↪→ V ⊗D βD→ V ⊗DβD.

For U = V ∗, write

U⊗D = {f : V D → F | f multilinear},

Sym DU = {f : V D → F | f multilinear, and f(vπ) = f(v) ∀π ∈ Row(D)}.
Now, representations of F [ΣD] are completely reducible, so S∗

D is the image of

U⊗DβD ↪→ U⊗D αD→ U⊗DαD,

and U⊗DβD
∼= ∧D U , U⊗DαD

∼= Sym DU .
Now, let

Poly DU = {f : V l → F | f homog poly of multidegree (R1, . . . , Rl)},

where l is the number of rows of D. Then we have a G-equivariant map

rest ∆ : Sym DU → Poly DU

restricting functions from V D to the row-multidiagonal ∆DV ∼= V l. It is well
known that rest ∆ is an isomorphism: the symmetric part of a tensor algebra is
isomorphic to a polynomial algebra.
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Thus we have the commutative diagram∧D
U ↪→ U⊗D αD→ Sym DU

|| || ↓ rest ∆∧D
U ↪→ U⊗D αD→ Poly DU.

Now, the image in the top row is S∗
D, the image in the bottom row is WD,

and all the vertical maps are isomorphisms, so we have rest ∆ : S∗
D→̃WD an

isomorphism. •
If D = λ a Young diagram, then WD is isomorphic to Carter and Lusztig’s

dual Weyl module for G = GL(n, F ). This will follow from Proposition 5 in the
following section.

2 Configuration varieties

We define spaces which generalize the flag varieties of GL(n). They are associ-
ated to arbitrary diagrams, and reduce to (partial) flag varieties in the case of
Young diagrams.

N.B. Although our constructions remain valid over Z, for simplicity we will
assume for the remainder of this paper that F is an algebraically closed field.

2.1 Definitions and examples

Given a finite set C (a column), and V = Fn, consider V C ∼= Mn×C(F ), the
n × |C| matrices, with a right multiplication of GL(C). Let

St(C) = {X ∈ V C | rankX = |C|},

the Stiefel manifold, and

Gr(C) = St(C)/GL(C),

the Grassmannian.
Also, let

LC = St(C)
GL(C)× det−1 → Gr(C)

be the Plucker determinant bundle, whose sections are regular functions f :
St(C) → F with f(XA) = det(A)f(X) ∀A ∈ GL(C). In fact, such global
sections can be extended to polynomial functions f : V C → F .

For a diagram D with columns C1, C2, . . ., we let

St(D) = St(C1)×St(C2)×· · · , Gr(D) = Gr(C1)×Gr(C2)×· · · , LD = LC1�×LC2�×· · · .
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Recall that ∆DV = ∆R1V ×∆R2V × · · · ⊂ V D is the row multidiagonal (as
opposed to the column constructions above). Let

Fo
D

def= Im
[
∆DV ∩ St(D) → Gr(D)

]
,

and define the configuration variety of D by

FD = Fo
D ⊂ Gr(D),

the Zariski closure of Fo
D in Gr(D). We denote the restriction of LD from Gr(D)

to FD by the same symbol LD.
Some properties follow immediately from the definitions. For instance, FD is

an irreducible variety. Just as for Schur modules and Weyl modules, changing
the diagram by permuting the rows or the columns gives an isomorphic con-
figuration variety and line bundle. If we add a column C to D which already
appears in D, we get an isomorphic configuration variety, but the line bundle is
twisted to have higher degree. Since LD gives the Plucker embedding on Gr(D),
it is very ample on FD.

Examples. (0) If D = λ a Young diagram, FD is the variety of partial flags
in Cn containing spaces of dimensions equal to the sizes of the columns of λ.
See Proposition 5.

Now set n = 4. Identifying Gr(k, F 4) with Gr(k − 1,P3
F ), we may consider

the FD’s as varieties of configurations in P3. Consider the diagrams:

D1 =
�

� �

�

D2 =
�

� � �

�

D3 =
� �

�

� �

(1) FD1 is the variety of pairs (l, l′), where l, l′ are intersecting lines in P3. It
is singular at the locus where the two lines coincide.
(2) FD2 is the variety of triples (l, p, l′) of two lines and a point which lies on
both of them. The variety is smooth: indeed, it is a fiber bundle over the partial
flag variety of a line containing a point. There is an obvious map FD2 → FD1 ,
which is birational, and is in fact a small resolution of singularities. (C.f. Propo-
sition 14.)
(3) FD3 is the variety of planes with two marked points (which may coincide).
Fo

D3
is the locus where the marked points are distinct, an open, dense G-orbit.

The variety is smooth as in the previous example.

D4 =
� �

� �

� �

D5 =

�

�

�

� � �

D6 =

�

�

�

�

(4) FD4 is the variety of triples of coplanar lines.
(5) FD5 is the variety of triples of lines with a common point. This is the
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projective dual of the previous variety, since the diagrams are complementary
within a 4 × 3 rectangle. (See Theorem 6.) The variety of triples of lines
which intersect pairwise cannot be described by a single diagram, but consists
of FD4 ∪ FD5 . (See Section 3.4.)
(6) FD6

∼= (P3)4 contains the GL(n)-invariant subvariety where all four points
in P3 are colinear. Since the cross-ratio is an invariant of four points on a line,
this subvariety contains infinitely many GL(n) orbits.

D7 =

� � �

� � �

�

�

D8 =

� � �

� � � �

�

�

(7) FD7
∼= G

B× Xλ, the G-orbit version of the Schubert variety Xλ ⊂ Gr(2, F 4)
associated to the partition λ = (1, 2). This is the smallest example of a singular
Schubert variety.
(8) FD8 is a smooth variety which maps birationally to FD7 by forgetting the
point associated to the last column. In fact, this is essentially the same reso-
lution as (1) and (2) above. Such resolutions of singularities can be given for
arbitrary Schubert varieties of G = GL(n), and generalize Zelevinsky’s resolu-
tions in [34]. C.f. Section 3. •
Theorem 2

WD
∼= Im

[
rest ∆ : H0(Gr(D),LD) → H0(FD,LD)

]
,

where rest ∆ is the restriction map.

Proof. Note that for GL(D) = GL(C1) × GL(C2) × · · ·,
H0(Gr(D),LD) = {f : V D → F | f(XA) = det(A) f(X) ∀A ∈ GL(D)},

and recall∧D
U = {f : V D → F | f multilinear, and f(vπ) = sgn(π) f(v) ∀π ∈ Col(D)}.

But in fact these sets are equal, because a multilinear, anti-symmetric function
g : V C → F always satisfies g(XA) = det(A) g(X)∀A ∈ GL(C). Now WD and
H0(FD,LD) are gotten by restricting functions in these identical sets to ∆DV ,
so we are done. •

2.2 Diagrams with at most n rows

We say D has ≤ n rows if (i, j) ∈ D ⇒ 1 ≤ i ≤ n.

Proposition 3 If D has ≤ n rows, then FD has an open dense GL(n)-orbit
Fgen

D .
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Proof. Let D have columns C1, C2, . . .. Consider a sequence of vectors X =
(v1, . . . , vn) ∈ V n. For C = {i1, i2, . . .} ⊂ {1, . . . , n}, define X(C) def= SpanF (vi1 , vi2 , . . .) ∈
Gr(C) (for X sufficiently general). Consider an element g ∈ GL(n) as a sequence
of column vectors g = (v1, . . . , vn). Then

g(C) = g · SpanF (ei1 , ei2 , . . .) = g · I(C),

where ei denotes the i-th coordinate vector and I the identity matrix.
Now define the map

Ψ : V n → ∆DV ⊂ V D

(v1, . . . , vn) �→ (vi)(i,j)∈D,

where (uij)(i,j)∈D denotes an element of V D. Then the composite

V n Ψ→ ∆DV → Fo
D

is an onto map taking g �→ (g(C1), g(C2), . . .) = g · (I(C1), I(C2), . . .). Since
GL(n) is dense in V n, its image is dense in Fo

D, and hence the composite image

Fgen
D

def= G · (I(C1), I(C2), . . .) is a dense G-orbit in FD. •

Corollary 4

dim FD = #
⋃

C∈D

{ (i, j) | 1 ≤ i, j ≤ n, i �∈ C, j ∈ C } ,

where the union is over all the columns C of D.

Proof. The dimension of the dense GL(n)-orbit is n2 minus the dimension
of the stabilizer of the point (I(C1), I(C2), . . .) above. The stabilizer of each
component is the parabolic corresponding to the matrix positions (i, j) such
that i ∈ C or j �∈ C. Now take complements in the set of positions. •

Proposition 5 If D is the Young diagram associated to a dominant weight λ
of GL(n), then:
(a) FD

∼= G/P , a quotient of the flag variety F = G/B.

(b) The Borel-Weil line bundle Lλ
def= G

B× (λ−1) → F is the pullback of LD

under the projection F → FD.
(c) rest ∆ : H0(Gr(D),LD) → H0(FD,LD) is surjective, and WD

∼= H0(FD,LD).

Proof. (a) Let µ = (µ1 ≥ µ2 ≥ · · ·) = λt, the transposed diagram, and let
P = {(xij) ∈ GL(n) | xij = 0 if ∃k, i > µk ≥ j > µk+1}, a parabolic subgroup
of G. Then G/P is the space of partial flags V = Fn ⊃ V1 ⊃ V2 ⊃ · · · consisting
of subspaces Vj with dim(Vj) = µj . Clearly G/P ∼= FD.
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(b) Let Ψ : G → ∆DV ∩ St(D) be the map in the proof of the previous propo-
sition. Then the map

G
P× Fλ−1 → LD = (St(D)

GL(D)× det−1
D ) |FD

(g, α) �→ (Ψ(g), α)

is a G-equivariant bundle isomorphism. Then (b) follows by standard argu-
ments.
(c) The surjectivity is a special case of Proposition 25 in Section 4. (See also
[13].) The other statement then follows by Prop 2. •

2.3 Complementary diagrams

Theorem 6 Suppose the rectangular diagram Rect = {1, . . . , n} × {1, . . . , r} is
the disjoint union of two diagrams D, D∗. Let WD, WD∗ be the corresponding
Weyl modules for G = GL(n, F ). Then:
(a) there is an F -linear bijection τ : WD → WD∗ such that τ(gw) = detr(g′) g′ τ(w),
where g′ is the inverse transpose in GL(n) of the matrix g;
(b) the characters obey the relation charWD∗(h) = detr(h) charWD(h−1), for
diagonal matrices h ∈ G ;
(c) if F has characteristic zero, then as G-modules

WD∗ ∼= det−r ⊗ W ∗
D and SD∗ ∼= detr ⊗ S∗

D.

Proof. (a) Given C ⊂ {1, . . . , n} (a column set), we considered above the
Plucker line bundle

St(C)
GL(C)× det−1 → Gr(D).

We may equally well write this as

GL(n)
PC× det−1

C → Gr(D),

where PC
def= {(xij) ∈ GL(n) | xij = 0 if i �∈ C, j ∈ C} is a maximal parabolic

subgroup of GL(n) (not necessarily containing B), and detC : PC → F is the
multiplicative character detC(xij)n×n

def= detC×C(xij)i,j∈C .
Hence, if C1, C2, . . . , Cr are the columns of D, we may write

Gr(D) ∼= Gr/PD,

and the bundle
LD

∼= Gr
PD× det−1

D ,

where PD
def= PC1 × · · · × PCr and detD(X1, . . . , Xr)

def= detC1(X1) × · · · ×
detCr (Xr). Under this identification,

FD
∼= closure Im [ ∆G ↪→ Gr → Gr(D) ]
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(c.f. Proposition 3).
Now let τ : Gr → Gr, τ(g1, . . . , gr) = (g′1, . . . , g

′
r), where g′ = tg−1, the

inverse transpose of a matrix g ∈ G. Then τ(PD) = PD∗ , and τ induces a map

τ : Gr(D) → Gr(D∗),

as well as a map of line bundles

τ : LD → LD∗

‖ ‖
Gr

PD× det−1
D Gr

PD∗× det−1
D∗

(g1, . . . , gr, α) �→ (g′1, . . . , g′r, det(g′1, . . . , g′r)α).

This map is not G-equivariant. Rather, if we have a section of LD, f : Gr → F
(with f(gp) = detD(p)f(g) for p ∈ PD), then for g0 ∈ G, we have τ(g0f) =
g′0 det(g′0)

rτ(f) (a section of LD∗).
Since WD is the restriction of such functions f to ∆G ⊂ Gr, and τ(∆G) ⊂

∆G, we have an induced map

τ : WD → WD∗

(an isomorphism of F vector spaces), satisfying τ(g0w) = g′0 det(g′0)rτ(w) for
g0 ∈ G, w ∈ WD. This is the map required in (a), and now (b), (c) follow
trivially. •

3 Resolution of singularities

We define the class of northwest direction diagrams, which includes (up to per-
mutation of rows and of columns) the skew, inversion, Rothe, and column-convex
diagrams. We construct an explicit resolution of singularities of the associated
configuration varieties by means of “blowup diagrams”. We also find defining
equations for these varieties. One should note that the resolutions constructed
are not necessarily geometric blowups, and can sometimes be small resolutions,
as in Example 8 above.

3.1 Northwest and lexicographic diagrams

We shall, as usual, think of a diagram D either as a subset of N × N, or as
a list (C1, C2, . . . , Cr) of columns Cj ⊂ N. In this section we examine only
configuration varieties, as opposed to line bundles on them, so we shall assume
that the columns are without multiplicity: Cj �= Cj′ for j �= j′.

A diagram D is northwest if it possesses the following property:

(i1, j1), (i2, j2) ∈ D ⇒ (min(i1, i2), min(j1, j2)) ∈ D.
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Given two subsets C = {i1 < i2 < . . . < il}, C′ = {i′1 < i′2 < . . . < i′l′} ⊂ N,

we say C is lexicographically less than C′ (C
lex
< C′) if

l < l ′ and i1 = i′1, . . . , il = i′l,

or ∃m : i1 = i′1, . . . , im−1 = i′m−1, im < i′m.

In the first case, we say C is an initial subset of C′ (C
init⊂ C′).

A diagram D = (C1, C2, . . .) is lexicographic if C1

lex
< C2

lex
< · · ·. Note that

any diagram can be made lexicographic by rearranging the order of columns.

Examples. Of the diagrams considered in the example of the previous section,
D1, D2, D3, D6, D7, and D8 are northwest. However, D4 and D5 are not
northwest, nor can they be made so by permuting the rows or the columns.

Lemma 7 If D is northwest, then the lexicographic rearrangement of D is also
northwest.

Proof. (a) I claim that if j < j′, then either Cj

lex
< Cj′ , or Cj

init⊃ Cj′ . Let
Cj = {i1 < i2 < . . .}, Cj′ = {i′1 < i′2 < . . .}. We have assumed Cj �= Cj′ . Thus

Cj

lex
< Cj′ or Cj

lex
> Cj′ . In the second case, Cj

init⊃ Cj′ or there is an r such that
i1 = i′1, . . . ir−1 = i′r−1, ir < i′r. By the northwest property, this last case would
mean i′r ∈ Cj , with ir−1 = i′r−1 < i′r < ir. But this contradicts the definition of
Cj . Thus the only possibilities are those of the claim.

(b) It follows immediately from (a) that if C1

lex
< C2

lex
< · · · lex

< Cs−1

lex
> Cs, then

there is a t < s with Ct−1

lex
< Cs, Cs

init⊂ Ct, Cs

init⊂ Ct+1, . . . , Cs

init⊂ Cs−1.
(c) From (b), we see that to rearrange the columns lexicographically requires
only the following operation: we start with C1, C2, . . ., and when we encounter
the first column Cs which violates lexicographic order, we move it as far left

as possible, passing over those columns Ci with Cs

init⊂ Ci. This operation does
not destroy the northwest property, as we can easily check on boxes from each
pair of columns in the new diagram. By repeating this operation, we get the
lexicographic rearrangement, which is thus northwest.

3.2 Blowup diagrams

The combinatorial lemmas of this section will be used to establish geometric
properties of configuration varieties.

Given a northwest diagram D and two of its columns C, C′ ⊂ N, the in-
tersection blowup diagram D̂C,C′ is the diagram with the same columns as D
except that the new column C ∩ C′ is inserted in the proper lexicographic po-
sition (provided C ∩ C′ �= C, C′).



Configuration Varieties and Schur Modules 13

Lemma 8 Suppose D is lexicographic and northwest, and C
lex
< C′ are two of

its columns. Then: (a) C ∩ C′ init⊂ C′, and (b) if C ⊂ C′, then C
init⊂ C′.

Proof. (a) If i ∈ Cj ∩ Cj′ and i > i′ ∈ Cj′ , then i′ ∈ Cj by the northwest
property. Similarly for (b). •
Lemma 9 If D is lexicographic and northwest, then D̂C,C′ is also lexicographic
and northwest.

Proof. If C = Cj , C
′ = Cj′ with j < j′, and we insert the column C ∩C′ init⊂ C′

immediately before C′, then we easily check that the resulting diagram is again
northwest. Hence D̂C,C′, which is the lexicographic rearrangement of this, is
also northwest by a previous lemma. •

Consider the columns C1, C2, . . . ⊂ N of a northwest diagram D, and take

the smallest collection {Ĉ1

lex
< Ĉ2

lex
< · · ·} of subsets of N which contains the Ci

and is closed under taking intersections. Then we define a new diagram

D̂ = (Ĉ1, Ĉ2, . . .)

which we call the maximal intersection blowup diagram of D. Blowing up again
does not enlarge the diagram: D̂̂ = D̂. Applying the above lemma repeatedly
shows that if D is lexicographic and northwest, then so is D̂.

Examples. For one of the (non-northwest) diagrams considered previously, we
have:

D4 =
� �

� �

� �

D̂4 =
� � �

� � �

� � �

For the diagrams D7 and D8 in the previous examples, D8 = D̂7. •

Consider the columns C ⊂ N of a diagram D as a partially ordered set under
⊂, ordinary inclusion. Given two distinct columns C, C′, we say C′ minimally
covers C (or simply C′ covers C) if C ⊂ C′ and there is no column of D strictly
included between C and C′.

Lemma 10 Let D be a lexicographic northwest diagram, and CL be the last
column of D. Then:
(a) there is a column Cl �= CL such that

(
⋃

C �=CL

C) ∩ CL = Cl ∩ CL;

(b) if D̂ = D, then CL covers at most one other column Cl and is covered by at
most one other column Cu.
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Proof. (a) Now, by Lemma 8, C ∩CL

init⊂ CL for any column C. Hence the sets
C ∩ CL for C �= CL are linearly ordered under inclusion, and there is a largest
one Cl ∩ CL. Thus

(
⋃

C �=CL

C) ∩ CL =
⋃

C �=CL

(C ∩ CL) = Cl ∩ CL.

(b) By Lemma 8, the columns with C ⊂ CL satisfy C
init⊂ CL and are linearly

ordered, so there is at most one maximal Cu.

Now suppose Cu, C′
u

lex
< CL are columns of D both covering CL. Then again

by Lemma 8, we have Cu∩C′
u

lex≤ Cu or
lex≤ C′

u, so that Cu∩C′
u �= CL. But Cu∩C′

u

is between CL and Cu, and between CL and C′
u. Hence Cu = Cu ∩ C′

u = C′
u. •

3.3 Blowup varieties

Let D = (C1, C2, . . .) be a lexicographic northwest diagram, and D̂ = (Ĉ1, Ĉ2, . . .)
be its maximal intersection blowup. Recall that D̂ is obtained by adding certain
columns to D, so there is a natural projection map

pr : Gr(D̂) → Gr(D)
(V

Ĉ
)
Ĉ∈D̂

�→ (VC)C∈D,

obtained by forgetting some of the linear subspaces V
Ĉ
∈ Gr(Ĉ).

Proposition 11 If D has ≤ n rows, then

pr : Gr(D̂) → Gr(D)

induces a birational map of algebraic varieties

pr : F
D̂
→ FD.

Proof. Consider the dense open sets Fgen

D̂
⊂ F

D̂
and Fgen

D ⊂ FD of Proposition
3, consisting of subspaces in general position. If we consider an element g ∈
GL(n) as a sequence of column vectors g = (v1, . . . , vn), and C = {i1, i2, . . .} ⊂
{1, . . . , n}, recall that we define g(C) = SpanF (vi1 , vi2 , . . .) ∈ Gr(C). By defini-
tion, any element of Fgen

D̂
can be written as (g(Ĉ1), g(Ĉ2), . . .) ∈ Gr(D) for some

g ∈ GL(n).
Now, any column of D̂ can be written as an intersection of columns of D:

Ĉ = Cj1 ∩Cj2 ∩· · ·. Then we have g(Ĉ) = g(Cj1)∩g(Cj2 )∩· · ·, so the projection
map

pr : Fgen

D̂
→ Fgen

D

(g(Ĉ))
Ĉ∈D̂

�→ (g(C))C∈D
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can be inverted:

pr−1 : Fgen
D → Fgen

D̂

(g(C))C∈D �→ (g(Ĉ) = g(Cj1) ∩ g(Cj2) ∩ · · ·)
Ĉ∈D̂

.

Hence the map is birational on the configuration varieties as claimed. •

3.4 Intersection varieties

Now, given a diagram D, define the intersection variety ID of D by:

ID = {(VC)C∈D ∈ Gr(D) | ∀C, C′, . . . ∈ D, dim(VC∩VC′∩· · ·) ≥ |C∩C′∩· · · |}.

Clearly ID is a projective subvariety of Gr(D), and FD ⊂ ID.
If D̂ = D (up to rearrangement of column order), then the intersection

conditions reduce to inclusions:

ID = {(VC)C∈D ∈ Gr(D) | C ⊂ C′ ⇒ VC ⊂ VC′}.

Example. For the diagram D4 of Section 2.1, and n = 4, ID4 has two irre-
ducible components, FD4 and FD5 . That is, as before, if we have three lines
in P3 with non-empty pairwise intersections, then either they are coplanar, or
they all intersect in a point. •

Lemma 12 Let D be a northwest diagram, and ID its intersection variety.
Then any configuration (VC)C∈D ∈ ID satisfies

dim(VC + VC′ + · · ·) ≤ |C ∪ C′ ∪ · · · |

for any columns C, C′, . . . of D.

Proof. Without loss of generality, assume D is lexicographic. We use induction
on the number of columns in D. Now any list C, C′, . . . of columns of D also
constitutes a lexicographic northwest diagram, so to carry through the induction
we need only prove the statement for all the columns C1, C2, . . . , CL of D. Now,
by Lemma 10, there is a column Cl �= CL such that (∪C �=CLC)∩CL = Cl ∩CL.
Then we have

dim( (
∑

C �=CL

VC) ∩ VCL ) ≥ dim(
∑

C �=CL

(VC ∩ VCL) )

≥ dim(VCl
∩ VCL)

≥ |Cl ∩ CL| since (VC) ∈ ID

= | (
⋃

C �=CL

C ) ∩ CL |.



Configuration Varieties and Schur Modules 16

Thus we may write

dim(
∑
C∈D

VC) = dim(
∑

C �=CL

VC ) + dim(VCL) − dim( (
∑

C �=CL

VC ) ∩ VCL )

≤ |
⋃

C �=CL

C | + |CL| − | (
⋃

C �=CL

C ) ∩ CL| by induction

= |
⋃

C∈D

C | •

Lemma 13 If D is a northwest diagram with ≤ n rows and D̂ = D (up to
rearrangement of column order), then FD is an irreducible component of ID.

Proof. Recall that FD is always irreducible. Thus it suffices to show that Fgen
D

is an open subset of ID.
Consider the set Igen

D of configurations (VC)C∈D satisfying, for every list
C, C′, . . . of columns in D,

dim(VC + VC′ + · · ·) = |C ∪ C′ ∪ · · · |
and

dim(VC ∩ VC′ ∩ · · ·) = |C ∩ C′ ∩ · · · |.
This is an open subset of ID by the previous lemma.

I claim that Fgen
D = Igen

D . To see this equality, let (VC)C∈D ∈ ID satisfy the
above rank conditions, and we will find a basis g = (v1, . . . , vn) of V = Fn such
that VC = g(C) for all C. (C.f. the proof of Proposition 3.)

As before, we consider the columns as a poset under ordinary inclusion. We
begin by choosing mutually independent bases for those VC where C is a minimal
element of the poset. This is possible because dim Span(VC | C minimal) =∑

C minml |C|.
Now we consider the VC where C covers a minimal column. We start with the

basis vectors already chosen, and add enough vectors, all mutually independent,
to span each space. Again, the dimension conditions ensure there will be no
conflict in choosing independent vectors, since the VC can have no intersections
with each other except those due to the intersections of columns. The condition
D̂ = D ensures that all these intersections are (previously considered) columns.

We continue in this way for the higher layers of the poset. We will not run
out of independent basis vectors because all the columns of D are contained in
{1, . . . , n}. •

3.5 Smoothness and defining equations

Proposition 14 Let D be a northwest diagram with ≤ n rows and D̂ = D
(up to rearrangement of column order). Then FD = ID, and FD is a smooth
variety.
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Proof. (a) Let CL be the last column of D, and let D′ be D without the last
column. By lemma 10, CL is covered by at most one other column Cu, and
covers at most one other column Cl. If these columns do not exist, take Cl = ∅,
Cu = {1, . . . , n}.
(b) Now I claim that there is a fiber bundle

Gr(Cl, CL, Cu) → Z
↓

Gr(D′)

where Gr(Cl, CL, Cu) denotes the Grassmannian of |CL|-dimensional linear spaces
which contain a fixed |Cl|-dimensional space and are contained in a fixed |Cu|-
dimensional space; and

Z = {( (VC′)C′ , VL) ∈ Gr(D′) × Gr(CL) | VCl
⊂ VL ⊂ VCu}.

This is clear. See also [7].
(c) Note that ID = (ID′ × Gr(CL)) ∩ Z. This is because of the uniqueness of
Cl and Cu. Thus the above fiber bundle restricts to

Gr(Cl, CL, Cu) → ID

↓
ID′ ,

which is thus also a fiber bundle.
(d) Now apply the above construction repeatedly, dropping columns of D from
the end. Finally we obtain ID as an iterated fiber bundle whose fibers at each
step are smooth and connected (in fact they are Grassmannians). In particular,
ID is smooth and connected.
(e) Since ID is a smooth, connected, projective algebraic variety, it must be
irreducible. But by a previous lemma, FD is an irreducible component of ID.
Therefore FD = ID, a smooth variety. •

Proposition 15 Let D be a northwest diagram with ≤ n rows. Then FD = ID,
and the birational projection map F

D̂
→ FD has connected fibers.

Proof. (a) I claim the following: if Ĉ is a column of D̂ such that for all C ∈ D̂

with C
�=⊂ Ĉ we have C ∈ D, then the projection map I

D∪Ĉ
→ ID is onto, with

connected fibers.
Suppose (VC)C∈D is a configuration in ID. Let

Vu =
⋂

C∈D

C⊃Ĉ

VC and Vl =
∑
C∈D

C⊂Ĉ

VC .
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Then dim(Vu) ≥ |Ĉ| since (VC) ∈ ID, and dim(Vl) ≤ |Ĉ| by Lemma 12. Clearly
Vl ⊂ Vu. Now choose an arbitrary V

Ĉ
between Vl and Vu with dim(V

Ĉ
) = |Ĉ|.

Then for any list of columns C, C′, . . . ∈ D, we have either:
(i) Ĉ ∩ C ∩ C′ · · · = Ĉ, and

V
Ĉ∩C∩C′··· = V

Ĉ
= V

Ĉ
∩ Vu ⊂ V

Ĉ
∩ VC ∩ VC′ ∩ · · · ;

or (ii) Ĉ ∩ C ∩ C′ · · · �=⊂ Ĉ, so that Ĉ ∩ C ∩ C′ · · · ∈ D by hypothesis, and

V
Ĉ∩C∩C′··· ⊂ Vl ∩ VC ∩ VC′ · · · ⊂ V

Ĉ
∩ VC ∩ VC′ ∩ · · · .

In either case (VC)
C∈D∪Ĉ

∈ I
D∪Ĉ

. Thus I
D∪Ĉ

→ ID is onto, and the fibers
are the Grassmannians Gr(Vl, |C|, Vu).
(b) We now see that I

D̂
→ ID is onto (with connected fibers) by repeated

application of (a), starting with Ĉ minimal in the poset of columns of D̂ and
proceeding upward.
(c) By the previous proposition, the projection map takes I

D̂
= F

D̂
→ FD. But

I
D̂

→ ID is onto, so FD = ID, and we are done. •
The above proposition shows that for northwest diagrams, FD is defined by

the rank conditions of ID. In general, we state the

Conjecture 16 For an arbitrary diagram D, FD is the set of configurations
satisfying

dim(VC + VC′ + · · ·) ≤ | C ∪ C′ ∪ · · · |
dim(VC ∩ VC′ ∩ · · ·) ≥ | C ∩ C′ ∩ · · · |

for every list C, C′, . . . of columns of D. Equivalently, the variety defined by
these relations is irreducible of the same dimension as FD.

4 Cohomology of line bundles

Using the technique of Frobenius splitting, we obtain some surjectivity and
vanishing theorems for line bundles on configuration varieties: most importantly,
that a (dual) Schur module is the entire space of sections of a line bundle over
a configuration variety (cf. Theorem 2). We also show that for any northwest
diagram D, FD is normal, and projectively normal with respect to LD (so that
global sections of LD on FD extend to Gr(D)); and FD has rational singularities.

The material of section 4.1 was shown to me by Wilberd van der Kallen.
Also, the statement and proof of Proposition 28 are due to van der Kallen and
S.P. Inamdar.
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4.1 Frobenius splittings of flag varieties

The technique of Frobenius splitting, introduced by V.B. Mehta, S. Ramanan,
and A. Ramanathan [23], [27], [28], [29], is a method for proving certain sur-
jectivity and vanishing results.

Given two algebraic varieties Y ⊂ X defined over an algebraically closed
field F of characteristic p > 0, with Y a closed subvariety of X , we say that the
pair Y ⊂ X is compatibly Frobenius split if:
(i) the pth power map F : OX → F∗OX has a splitting, i.e. an OX -module
morphism φ : F∗OX → OX such that φF is the identity; and
(ii) we have φ(F∗I) = I, where I is the ideal sheaf of Y .

Mehta and Ramanathan prove the following

Theorem 17 Let X be a projective variety, Y a closed subvariety, and L an
ample line bundle on X. If Y ⊂ X is compatibly split, then Hi(Y, L) = 0 for
all i > 0, and the restriction map H0(X, L) → H0(Y, L) is surjective.

Furthermore, if Y and X are defined and projective over Z (and hence over
any field), and they are compatibly split over any field of positive characteristic,
then the above vanishing and surjectivity statements also hold for all fields of
characteristic zero. •

Our aim is to show that, for D a northwest diagram, FD ⊂ Gr(D) is
compatibly split. The above theorem and Theorem 2 will then imply that
S∗

D
∼= H0(FD,LD) =

∑
i(−1)iHi(FD,LD), the Euler characteristic of LD.

We will also need the following result of Mehta and V. Srinivas [22]:

Proposition 18 Let Y be a projective variety which is Frobenius split, and
suppose there exists a smooth irreducible projective variety Z which is mapped
onto Y by an algebraic map with connected fibers. Then Y is normal.

Furthermore, if Y is defined over Z, and is normal over any field of positive
characteristic, then Y is also normal over all fields of characteristic zero. •
Proposition 19 Let f : Z → X be a separable morphism with connected fibers,
where X and Z are projective varieties and X smooth. If Y ⊂ Z is compatibly
split, then so is f(Y ) ⊂ X. •

We will show our varieties are split by using the above proposition to push
forward a known splitting due to Ramanathan [29] and O. Mathieu [21].

For an integer l, define

Xl = G
B× G

B× · · · B× G︸ ︷︷ ︸
l factors

/B,

and note that we have an isomorphism

Xl → (G/B)l

(g, g′, g′′, . . .) �→ (g, gg′, gg′g′′, . . .).
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Given l permutations w, w′, . . ., define also the twisted multiple Schubert variety

Yw,w′... = BwB
B× Bw′B

B× · · · ⊂ Xl

Proposition 20 (Ramanathan-Mathieu) Let G be a reductive algebraic group
over a field of positive characteristic with Weyl group W and Borel subgroup B,
and let w0, w1, . . . wr ∈ W . Then Yw0,w1,... ⊂ Xr+1 is compatibly split. •

Now, for Weyl group elements u0, u1, . . . , ur, define a variety Fu0; u1,...,ur ⊂
(G/B)r by

Fu0; u1,...,ur = Bu0B · (u1B, . . . , urB).

Note that if we take u0 to be the longest element of W , then

Fu0; u1,...,ur = G · (u1B, . . . , urB).

Proposition 21 (van der Kallen) Let u0 and w1, . . . , wr be Weyl group ele-
ments, and define u1 = w1, u2 = w1w2, . . . ur = w1 · · ·wr. Suppose w1, . . . wr

satisfy �(w1w2 · · ·wr) = �(w1) + �(w2) + · · · + �(wr), or equivalently �(uj) =
�(uj−1)+�(u−1

j−1uj) for all j. Then the pair Fu0; u1,...,ur ⊂ (G/B)r is compatibly
split.

Proof. Define

f : Xr+1 → (G/B)r

(g0, g1, . . . , gr) �→ (g0g1, g0g1g2, . . . , g0g1 . . . gr).

We will examine the image under this map of

Y
def= Yu0,w1,...wr = BuoB

B× Bw1B
B× · · · B× BwrB ⊂ Xr+1.

It is well known that, under the given hypotheses, we have (Bw1B) · · · (BwrB) =
Bw1 · · ·wrB, and that the multiplication map

Bw1B
B× · · · B× BwrB → Bw1 · · ·wrB

is bijective. Thus any element (g, b1w1b
′
1, . . . , brwrb

′
rB) (for bi, b

′
i ∈ B) can be

written as (g, bw1, w2, . . . , wrB) = (gb, w1, w2, . . . , wrB) for some b ∈ B, and

f(Bu0B
B× Bw1B

B× · · · B× BwnB) = f(Bu0B
B× w1

B× . . .
B× wrB)

= Bu0B · (u1B, . . . , urB).

Hence f(Y ) = Fu0; u1,...,ur , since our varieties are projective.
Now, f is a separable map with connected fibers between smooth projective

varieties, so the compatible splitting of the previous proposition pushes forward
by Proposition 19. •

We will need the following lemmas to show that our configuration varieties
have rational singularities.
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Lemma 22 (Kempf [17]) Suppose f : Z → X is a separable morphism with
generically connected fibers between projective algebraic varieties Z and X, with
X normal. Let L be an ample line bundle on X, and suppose that Hi(Z, f∗L⊗n) =
0 for all i > 0 and all n >> 0.

Then Rif∗OZ = 0 for all i > 0. •
Resuming the notation of Prop 20, let w0, w1, . . . wr be arbitrary Weyl group

elements, and let λ0, . . . λr be arbitrary weights of G. Let Xr+1 be as before,
and define the line bundle Lλ0,...λr on Xr+1 and on Yw0,...,wr ⊂ Xr+1 as the
quotient of Gr+1 × F by the Br+1-action

(b0, b1, . . . , br)·(g0, g1, . . . , gr, a) def= (g0b0, b
−1
0 g1b1, . . . , b

−1
r−1grbr, λ1(b0) · · ·λr(br)a).

Note that under the identification Xr+1
∼= (G/B)r+1, Lλ0,...,λr is isomorphic to

the Borel-Weil line bundle Gr+1
Br+1

× (λ−1
0 , . . . λ−1

r ).

Lemma 23 (van der Kallen) Assume λ0, . . . λr are dominant weights (possibly
on the wall of the Weyl chamber). Then Hi(Yw0,...,wr , Lλ0,...,λr) = 0 for all
i > 0.

Proof. Note that Lλ0,...,λr is effective, but not necessarily ample, so we cannot
deduce the conclusion directly from Theorem 17.

Recall the following facts from B-module theory [26], [15]:
(a) An excellent filtration of a B-module is one whose quotients are isomorphic
to Demazure modules H0(BwB,Lλ), for Weyl group elements w and dominant
weights λ.

(b) If M has an excellent filtration, and E(M) def= BwB
B× M is the correspond-

ing vector bundle on the Schubert variety BwB ⊂ G/B, then Hi(BwB, E(M)) =
0 for all i > 0, and H0(BwB, E(M)) has an excellent filtration.
(c) Polo’s Theorem: If M has an excellent filtration, then so does (λ−1) ⊗ M
for any dominant weight λ.

Now consider the fiber bundle

Yw1,...,wr → Yw0,w1,...,wr

↓
Bw0B

which leads to the spectral sequence

Hi( Bw0B, E( (λ−1
0 )⊗Hj(Yw1,...,wr ,Lλ1,...,λr ) ) ) ⇒ Hi+j(Yw0,w1,...,wr ,Lλ0,λ1,...,λr ).

By induction, assume that Hj(Yw1,...,wr ,Lλ1,...,λr ) = 0 for j > 0, and that
H0(Yw1,...,wr ,Lλ1,...,λr ) has an excellent filtration. Then applying (b) and (c),
we find

Hi(Yw0,w1,...,wr ,Lλ0,λ1,...,λr ) = Hi( Bw0B, E( (λ−1
0 )⊗H0(Yw1,...,wr ,Lλ1,...,λr) ) ) = 0

for i > 0, and that H0(Yw0,w1,...,wr ,Lλ0,λ1,...,λr) has an excellent filtration. •
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Corollary 24 (of the proof) With the above notation, H0(Yw0,...,wr ,Lλ0,...,λr )
has an excellent filtration as a B-module. •

4.2 Frobenius splitting of Grassmannians

We would now like to push forward the Frobenius splittings found above for
flag varieties to get splittings of configuration varieties. For this we need a
combinatorial prerequisite.

Given a diagram D = (C1, C2, . . . , Cr) with ≤ n rows, consider a sequence
of permutations (Weyl group elements) u1, u2, . . . ∈ Σn such that, for all j:
(α) �(uj) = �(uj−1) + �(u−1

j−1uj), and
(β) uj( {1, 2, . . . , |Cj | }) = Cj .
The first condition says that the sequence is increasing in the weak order on the
Weyl group. In the next section, we will give an algorithm which produces such
a sequence for any northwest diagram, so that the following theorem will apply:

Proposition 25 If D a diagram which admits a sequence of permutations u1, u2, . . .
satisfying (α) and (β) above, then the pair FD ⊂ Gr(D) is compatibly split for
any field F of positive characteristic.

Hence over an algebraically closed field F of arbitrary characteristic,
(a) the cohomology groups Hi(FD,LD) = 0 for i > 0;
(b) the restriction map rest ∆ : H0(Gr(D),LD) → H0(FD,LD) is surjective;
(c) FD is a normal variety.

Proof. By (β), the maximal parabolic subgroups PC = {(xij) ∈ GL(n) | xij =
0 if i �∈ C, j ∈ C} satisfy uiBu−1

i ⊂ PCi . Write

Gr(D) = Gr(C1) × · · · × Gr(Cr) ∼= G/PC1 × · · · × G/PCr ,

and consider the G-equivariant projection

φ : (G/B)r → Gr(D)
(g1B, . . . , grB) �→ (g1u

−1
1 PC1 , . . . , gru

−1
r PCr )

Then we have φ(u1B, . . . , urB) = (I PC1 , . . . , I PCr) and φ(Fw0; u1,...,ur ) = FD,
where w0 is the longest permutation. Since φ is a map with connected fibers be-
tween smooth projective varieties, we can push forward the compatible splitting
for Fw0; u1,...,ur ⊂ (G/B)r found in the previous section. Applying Theorem 17
and Propositions 18 and 15, we have the assertions of the theorem. •

Note that (b) and (c) of the Proposition are equivalent to the projective
normality of FD with respect to LD.

Conjecture 26 For any diagram D, and any Weyl group elements u0, u1, . . . ur,
the pairs FD ⊂ Gr(D) and Fu0; u1,...ur ⊂ (G/B)r are compatibly split, and the
subvarieties have rational singularities.
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In order to prove the character formula in the last section of this paper,
we will need stronger relations between the singular configuration varieties and
their desingularizations. In particular, we will show that our varieties have
rational singularities.

Lemma 27 Let X, Y be algebraic varities with an action of an algebraic group
G, and f : X → Y an equivariant morphism. Assume that X has an open dense
G-orbit G · x0, and take y0 = f(x0), G0 = StabG y0.

Then f−1(y0) = G0 · x0. In particular, if G0 is connected, then f−1(y0) is
connected and irreducible.

Proof. For F = C, this is trivial. Take x1 ∈ f−1(y0), and consider a path
x(t) ∈ X such that x(0) = x1 and x(t) ∈ G · x0 for small t > 0. Then the path
f(x(t)) lies in G · y0 for small t ≥ 0, and we can lift it to a path g(t) ∈ G such
that g(0) = id and f(x(t)) = g(t) · y0 for small t ≥ 0. Then x̃(t) def= g(t)−1 · x(t)
satisfies x̃(0) = x1, x̃(t) ∈ G0 · x0 for small t > 0.

For general F , T. Springer has given the following clever argument. Assume
without loss of generality that X is irreducible and G · y0 is open dense in Y .
Since an algebraic map is generically flat, and G · y0 is open, all the irreducible
components C of f−1(y0) have the same dimension dim C = dim X − dim Y .
Let Z = G · C be the closure of one of these components. Now, the restriction
f : Z → Y also satisfies our hypotheses, with C ⊂ Z again a component of
the fiber of the restricted f , so we again have dim C = dimZ − dim Y , and
dim Z = dimX . Thus G · C is an open subset of X , since X is irreducible.

Now consider the open set G · C ∩ G · x0 ⊂ X . Choose a point z in this
set which does not lie in any other component C′ of our original f−1(y0). For
any other component C′, choose a similar point z′. But we have g · z ∈ C,
g′ ·z′ = g0g ·z ∈ C′ for some g, g′, g0 ∈ G, and in fact g0 ∈ G0. Thus C′ = g0 ·C,
and G0 permutes the components transitively. Hence, G0 · x0 has at least as
many irreducible components as the whole f−1(y0), and the lemma follows. •
Proposition 28 (Inamdar-van der Kallen) Suppose D1, D2 are diagrams ad-
mitting sequences of permutations with (α) and (β) as above, such that D2 is
obtained by removing some of the columns of D1. Denote F1 = FD1 , F2 = FD2 ,
L2 = LD2 , and consider the projection pr : F1 → F2.
Then:
(a) H0(F1, pr∗L2) = H0(F2,L2), and this G-module has a good filtration (one
whose quotients are isomorphic to H0(G/B,Lλ) for dominant weights λ).
(b) Hi(F1, pr∗L2) = Hi(F2,L2) = 0 for all i > 0.
(c) Ripr∗OF1 = 0 for all i > 0.
(d) If F has characteristic zero, then FD has rational singularities for any north-
west diagram D.

Proof. (i) Consider a sequence of permutations w1, w2, . . . wr (where r is the
number of columns in D1) such that u1 = w1, u2 = w1w2, . . . satisfies (α) and
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(β), and let Y = Yw0,w1,...wr , (where w0 is the longest permutation). Then we
have a commutative diagram of surjective morphisms

Y
Φ1→ F1
Φ2↘ ↓ pr

F2

where Φj = φ ◦ f , where φ and f are the maps defined in the proofs of Propo-
sitions 21 and 25 in the cases D = Dj . All of these spaces have dense G-orbits.
Furthermore, the stabilizer of a general point in FD is an intersection of par-
abolic subgroups and is connected. Thus, by the above lemma, the fibers of Φ1

are generically connected.
(ii) Now (i) and Lemma 23 insure that the hypotheses of Kempf’s lemma (Propo-
sition 22) are satisfied. Thus Ri(Φ1)∗OY = 0 for i > 0, and by the Leray spectral
sequence we have, for all i ≥ 0,

Hi(Y, Φ∗
1pr∗L2) = Hi(F1, (Φ1)∗(Φ1)∗pr∗L2).

(iii) Furthermore, F1 is normal by the previous Proposition, and Φ1 is separable
with connected fibers, so

(Φ1)∗(Φ1)∗pr∗L2
∼= [(Φ1)∗(Φ1)∗OF1 ] ⊗ pr∗L2

∼= pr∗L2.

Thus Hi(Y, Φ∗
1pr∗L2) = Hi(F1, pr∗L2) for all i ≥ 0.

(iv) An exactly similar argument shows that Hi(Y, Φ∗
2L2) = Hi(F2,L2) for all

i ≥ 0. But Φ∗
2 = Φ∗

1pr∗, so for all i,

Hi(F1, pr∗L2) = Hi(Y, Φ∗
2L2) = Hi(F2,L2).

But we saw in Lemma 23 that Hi(Y, Φ∗
2L2) vanishes for i > 0, so (b) of the

present Proposition follows.
(v) We also saw in the proof of Lemma 23 that H0(Y, Φ∗

2L2) has an excellent
filtration as a B-module. But this is equivalent to it having a good filtration as
a G-module, so (a) follows.
(vi) Now consider the spectral sequence

Ripr∗R
j(Φ1)∗OY ⇒ Ri+j(Φ2)∗OY .

For i > 0, we have Ri(Φ1)∗OY = 0 and Ri(Φ2)∗OY = 0 by (ii) above. Because
of this and the normality of F1, we have for all i > 0,

0 = Ri(Φ2)∗OY

= Ripr∗(Φ1)∗OY

= Ripr∗OF1 .
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this shows (c).
(vii) Now take D2 = D an arbitrary northwest diagram, and D1 = D̂ its
maximal blowup. Then pr is a resolution of singularities by Proposition 14.
Assume, as we will show in the next section, that D1 admits a sequence of
permutations as required. Then (c) holds, and this is precisely the definition of
rational singularities in characteristic zero, so we have (d). •

4.3 Monotone sequences of permutations

Let D = (C1, C2, . . . , Cr) be a northwest diagram with ≤ n rows. In this
section, we will construct by a recursive algorithm a sequence of permutations
u1, u2, . . . ur ∈ Σn satisfying the conditions of the previous section: for all j,
(α) �(uj) = �(uj−1) + �(u−1

j−1uj), and
(β) uj( {1, 2, . . . , |Cj | } ) = Cj .

Given a column C ⊂ N, a missing tooth of C is an integer i such that
i ∈ C but i + 1 �∈ C. The only C with no missing teeth are the initial intervals
{1, 2, 3, . . . , i}. Now consider the leftmost column CJ of our diagram D with
missing teeth, and let I be the highest missing tooth in CJ . Because D is
northwest, I is a missing tooth of Cj for all j ≥ J . Define the derived diagram
D′ = (C′

1, C
′
2, . . .) by

C′
j = {i | i ∈ C, i < I} ∪ {i − 1 | i ∈ C, i ≥ I}.

That is, we erase the Ith row of D and push all lower squares upward by one
row (orthodontia).

Lemma 29 If D is northwest with ≤ n rows, then D′ is northwest with ≤ n−1
rows and no missing teeth in the first J − 1 columns

Proof. The only doubtful case in checking the northwest property is that of
two squares (i1, j1) and (i2, j2) in D′ with j1 < Jn ≤ j2 and i1 > i2. Since
j1 < Jn, we have Cj1 = {1, 2, . . . , i1 − 1, i1, . . .}, so that i2 ∈ Cj1 and i2 ∈ C′

j1
.

Hence (i2, j1) ∈ D′ as required. •
Now, consider the following elements of Σn:

κ
(n)
I (i) =


i if i < I
i + 1 if I ≤ i < n
I if i = n

Then κ
(n)
1 , . . . , κ

(n)
n are minimum length coset representatives of the quotient

Σn/Σn−1, and for any permutation π ∈ Σn−1, we have �(κnπ) = �(κn) + �(π).
Furthermore, we have

Cj =
{ {1, 2, . . . , |Cj |} for j < J

κ
(n)
I C′

j for j ≥ J
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Now, starting with D, a northwest diagram with ≤ n rows, we can define a se-
quence of derived diagrams D = D(n), D(n−1), . . . , D(1), where D(i) = (D(i+1))′

is a northwest diagram with ≤ i rows. We have the associated sequence of (I, J),
which we denote (In, Jn), (In−1, Jn−1),. . . , (I1, J1). Finally, for each column Cj ,
let m = m(j) be the largest number with Jm ≤ j, and define

uj = κ
(n)
In

κ
(n−1)
In−1

· · ·κ(m)
Im

(possibly an empty product, in which case uj = id). This is a reduced decom-
position of uj, in the sense that �(uj) is the sum of the lengths of the factors.
Since κ

(i)
i = id, and Jn ≤ Jn−1 ≤ · · ·, each uj is an initial string of uj+1. Thus

the uj have the desired monotonicity property (α). Property (β) follows easily
by induction on n.

5 A Weyl character formula

The results of the last two sections allow us to apply the Atiyah-Bott Fixed
Point Theorem to compute the characters of the Schur modules for northwest
diagrams. To apply this theorem, we must examine the points of FD fixed under
the action of H , the group of diagonal matrices. We must also understand the
action of H on the tangent spaces at the fixed points.

Using other Lefschetz-type theorems, this data also specifies the dimensions
of the Schur modules and the Betti numbers of smooth configuration varieties.

5.1 Fixed points and tangent spaces

The following formula is due to Atiyah and Bott [2] in the complex analytic
case, and was extended to the algebraic case by Nielsen [25].

Theorem 30 Let F be an algebraically closed field, and suppose the torus H =
(F×)n acts on a smooth projective variety X with isolated fixed points, and acts
equivariantly on a line bundle L → X. Then the character of H acting on the
cohomology groups of L is given by:∑

i

(−1)i tr(h | Hi(X, L)) =
∑

p fixed

tr(h | L|p)
det(id− h | T ∗

p X)
,

where p runs over the fixed points of H, L|p denotes the fiber of L above p, and
T ∗

p X is the cotangent space. •

We will apply the formula for X = FD a smooth configuration variety, where
D = (C1, C2, . . .) is a lexicographic northwest diagram with ≤ n rows and
D̂ = D.
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Fixed points. Assume for now that the columns are all distinct. Let H =
{h = diag(x1, . . . , xn) ∈ GL(n)} act on Gr(D) and FD by the restriction of
the GL(n) action. Then by Proposition 14, we have FD = ID = {(VC)C∈D ∈
Gr(D) | C ⊂ C′ ⇒ VC ⊂ VC′}, a smooth variety.

A point in FD ⊂ Gr(D) = Gr(C1) × Gr(C2) × · · · is fixed by H if and only
if each component is fixed. Now, the fixed points of H in Gr(l, Fn) are the
coordinate planes Ek1,...,kl

= Span(ek1 , . . . , ekl
), where the ek are coordinate

vectors in Fn (c.f. [12]). For instance, the fixed points in Pn−1 are the n
coordinate lines Fek. We may describe the fixed points in Gr(C) as ES =
Span(ek | k ∈ S), where S ⊂ {1, . . . , n} is any set with |S| = |C|.

Hence the fixed points in FD are as follows: Take a function τ which assigns
to any column C a set τ(C) ⊂ {1, . . . , n} with | τ(C)| = |C|, and C ⊂ C′ ⇒
τ(C) ⊂ τ(C′). We will call such a τ a standard column tabloid for D. Then the
fixed point corresponding to τ is Eτ = (Eτ(C))C∈D.

Tangent spaces at fixed points. We may naturally identify the tangent
space TV0Gr(l, Fn) = HomF (V0, F

n/V0). If V0 is a fixed point (that is, a space
stable under H), then h ∈ H acts on a tangent vector φ ∈ HomF (V0, F

n/V0)
by (h · φ)(v) = h(φ(h−1v)). For (VC)C∈D ∈ Gr(D), we have T(VC) Gr(D) =⊕

C∈D Hom(VC , Fn/VC). Furthermore, if (VC)C∈D ∈ FD, then

T(VC)FD = {φ = (φC)C∈D ∈⊕C∈D Hom(VC , Fn/VC) |
C ⊂ C′ ⇒ φC′ |VC ≡ φC mod VC′}

(that is, the values of φC and φC′ on VC agree up to translation by elements of
VC′). See [12].

For a fixed point Eτ = (Eτ(C)), we will find a basis for TEτ consisting of
eigenvectors of H . Now, the eigenvectors in TEτ Gr(D) =

⊕
C∈D Hom(VC , Fn/VC)

are precisely φijC0 = (φijC0
C )C∈D, where i, j ≤ n, C0 is a fixed column of D, and

φijC0
C (el)

def= δC0,Cδilej (δ being the Kronecker delta). The eigenvalue is

h · φijC0 = diag(x1, . . . xn) · φijC0 = x−1
i xj φijC0 .

To obtain eigenvectors of TEτFD, we must impose the compatibility condi-
tions. An eigenvector φ with eigenvalue x−1

i xj must be a linear combination
φ =

∑
C∈D aCφijC with aC ∈ F . By the compatibility, we have that

C ⊂ C′, i ∈ t(C), j �∈ t(C′) ⇒ aC = aC′ .

We wish to find the number dij of linearly independent solutions of this condition
for aC .

Given a poset with a relation ⊂, define its connected components as the
equivalence classes generated by the elementary relations x ∼ y for x ⊂ y. Now
for a given i, j consider the poset whose elements are those columns C of D such



Configuration Varieties and Schur Modules 28

that i ∈ t(C), j �∈ t(C), with the relation of ordinary inclusion. Then dij is the
number of components of this poset.

Note that the eigenvectors for all the eigenvalues span the tangent space.
Thus

det( id−h | T ∗
Eτ

) =
∏
i�=j

(1 − xix
−1
j )dij(τ).

Bundle fibers above fixed points. Finally, let us examine the line bundles L
on FD obtained by giving each column C a multiplicity m(C) ≥ 0. If m(C) > 0
for all columns C of D, then L ∼= LD′ for the diagram D′ with the same columns
as D, each repeated m(C) times. If some of the m(C) = 0, then L is the pullback
of LD′ for the diagram D′ with the same columns as D, each taken m(C) times,
where 0 times means deleting the column. In the second case, L is effective, but
not ample.

It follows easily from the definition that

tr(h | L|Eτ ) = x
−wt1(τ)
1 · · ·x−wtn(τ)

n ,

where
wti(τ) =

∑
C

i∈τ(C)

m(C).

Hence we obtain:

∑
i

(−1)i tr(h | Hi(FD,LD)) =
∑

τ

∏
i x

−wti(τ)
i∏

i�=j(1 − xix
−1
j )dij(τ)

,

where τ runs over the standard column tabloids of D.

5.2 Character formula

We summarize in combinatorial language the implications of the previous sec-
tion.

We think of a diagram D as a list of columns C1, C2, . . . ⊂ N, possibly with
repeated columns. Given a diagram D, the blowup diagram D̂ is the diagram
whose columns consist of all the columns of D and all possible intersections
of these columns. We will call the columns which we add to D to get D̂ the
phantom columns.

We may define a standard column tabloid τ for the diagram D̂ with respect to
GL(n), to be a filling (i.e. labeling) of the squares of D̂ by integers in {1, . . . , n},
such that:
(i) the integers in each column are strictly increasing, and
(ii) if there is an inclusion C ⊂ C′ between two columns, then all the numbers
in the filling of C also appear in the filling of C′.
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Given a tabloid τ for D̂, define integers wti(τ) to be the number of times i
appears in the filling, but not counting i’s which appear in the phantom columns.
Also define integers dij(τ) to be the number of connected components of the
following graph: the vertices are columns C of D̂ such that i appears in the
filling of C, but j does not; the edges are (C, C′) such that C ⊂ C′ or C′ ⊂ C.
(An empty graph has zero components.)

Recall that a diagram D is northwest if i ∈ Cj , i′ ∈ Cj′ ⇒ min(i, i′) ∈
Cmin(j,j′). The following theorem applies without change to northeast diagrams
and any other diagrams obtainable from northwest ones by rearranging the order
of the rows and the order of the columns. Also, we can combine it with Theorem
6 to compute the character for the complement of a northwest diagram in an
n × r rectangle.

Denote a diagonal matrix by h = diag(x1, . . . , xn).

Theorem 31 Suppose D is a northwest diagram with ≤ n rows, and F an
algebraically closed field. Then:
(a) The character of the Weyl module WD (for GL(n, F ) ) is given by

charWD (h) =
∑

τ

∏
i x

−wti(τ)
i∏

i�=j(1 − xix
−1
j )dij(τ)

,

where τ runs over the standard tabloids for D̂.
(b) For F of characteristic zero, the character of the Schur module SD (for
GL(n, F )) is given by

charSD(h) =
∑

τ

∏
i x

wti(τ)
i∏

i�=j(1 − x−1
i xj)dij(τ)

,

where τ runs over the standard tabloids for D̂.

Example. Consider the following diagram and some of its standard tabloids
for n = 3:

D =
�

� � �

� � �

D̂ =
�

� � � �

� � �

τ1 =
1
2 2 2 2

3 3 3
τ2 =

2
3 3 1 1

3 3 3
τ3 =

1
3 1 1 1

2 2 1

Note that since the order of the columns is irrelevant, we may insert the phantom
column of D̂ in the middle of D rather than at the end. The tabloid τ1 has weight
monomial x1x

3
2x

3
3 (since the entry 2 in the phantom column is not counted in
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the weight), and the denominator multiplicities are: d13 = d21 = d23 = d31 =
d32 = 1, the rest zero. Thus, its contribution to charSD is:

x1x
3
2x

3
3

(1 − x−1
1 x3)(1 − x−1

2 x1)(1 − x−1
2 x3)(1 − x−1

3 x1)(1 − x−1
3 x2)

.

The tabloid τ2 has weight x2
1x2x

4
3, and d31 = 2, d12 = d21 = d32 = 1, the

rest zero. Its contribution is:

x2
1x2x

4
3

(1 − x−1
3 x1)2(1 − x−1

1 x2)(1 − x−1
2 x1)(1 − x−1

3 x2)
.

New standard tabloids can be obtained from any given one by applying a
permutation of {1, 2, 3} to the entries, and rearranging the new entries in the
columns to make them increasing. For instance, τ3 = πτ2, where π is the
three-cycle (123). Altogether there are 24 standard tabloids for D̂ grouped in
four orbits of Σ3. Note that in this case the standard tabloids are standard
skew tableaux in the usual sense: they are fillings with the columns strictly
increasing top-to-bottom, and the rows weakly increasing right-to-left. This is
true in general when D̂ is a skew diagram, though not all the standard tableaux
are obtained in this way.

Working out our formula, we find that the 24 rational terms simplify to the
polynomial

charSD = (x1 x2 + x1 x3 + x2 x3)
(x1

3 x2
2 + x1

2 x2
3 + x1

3 x2 x3 + 2 x1
2 x2

2 x3

+x1 x2
3 x3 + x1

3 x3
2 + 2 x1

2 x2 x3
2 + 2 x1 x2

2 x3
2

+x2
3 x3

2 + x1
2 x3

3 + x1 x2 x3
3 + x2

2 x3
3) .

Since D is a skew diagram, we can also compute this using the Littlewood-
Richardson Rule:

charSD = s(4,3,0) + s(4,2,1) + s(3,3,1) ,

where sλ is the classical Schur polynomial with highest weight λ. There seems to
be a subtle relationship between the column tabloids of D̂ and the LR tableaux
of D, and it may be possible to prove the LR rule using the present methods. •

Proof of the Theorem. (i) Consider the map pr : F
D̂

→ FD, and the
pullback line bundle pr∗LD. This is the bundle on F

D̂
which corresponds to

giving multiplicity mC = 0 to the phantom columns C of D̂. Let RHS denote
the right hand side of our formula in (a). Then by the analysis of Section 5.1,
RHS is equal to the right hand side of the Atiyah-Bott formula (Theorem 30)
for X = F

D̂
, L = pr∗LD. Thus

RHS = char
∑

i

(−1)iHi(F
D̂

, pr∗LD).
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(ii) By Proposition 28, we have Hi(F
D̂

, pr∗LD) = 0 for i > 0, and H0(F
D̂

, pr∗LD) =
H0(FD,LD). Thus RHS = charH0(FD,LD).
(iii) By Proposition 25, the restriction of global sections of LD from Gr(D) to
FD is surjective, and we have

RHS = charH0(FD,LD)
= char Im

(
rest : H0(Gr(D),LD) → H0(FD,LD)

)
= charWD.

The last equality holds by Proposition 2, and we have proved (a). Then (b)
follows because SD = (WD)∗. •

5.3 Dimension formula

We compute the dimension of the GL(n)-module SD by means of the Hirzebruch-
Riemann-Roch Theorem. Again, each standard column tabloid of D̂ gives a
contribution, which is a rational number, possibly negative. The contribution
is the value of a certain multivariable polynomial RR at a sequence of integers
specific to the tabloid. For practical purposes, it is easier to find the dimension
by specializing our character formula above to the identity element. However,
the present formula gives quite a striking expression for this dimension as a sum
and difference of fractions.

Let M = dimFD, the dimension of the configuration variety (which may be
computed as in Corollary 4). Define an (M + 1)-variable polynomial, homoge-
neous of degree M , by

RRM (b; r1, . . . , rM ) = coeff at UM of

(
exp(bU)

M∏
i=1

riU

1 − exp(−riU)

)
,

where the right side is understood as a Taylor series in U . For example,

RR2(b; r1, r2) =
1
2
b2 +

1
2
r1b +

1
2
r2b +

1
12

r2
1 +

1
4
r1r2 +

1
12

r2
2 .

For general M the polynomial is factorable.
Now, for each standard tabloid τ , define a multiset of integers r(τ) =

{r1, r2, . . . , rM} by inserting the entry i − j with multiplicity dij(τ) for each
ordered pair (i, j):

r(τ) = �
1≤i,j≤n

dij(τ) · {i − j} .

That is, the total multiplicity of the integer k in the multiset r(τ) is∑
1≤i,j≤n
i−j=k

dij(τ) .
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Let b(τ) be the sum of the entries of the tabloid τ of D̂, not counting entries in
the phantom columns:

b(τ) =
∑

(i,j)∈D

τ(i, j) .

Theorem 32 The dimension of the Weyl module WD for GL(n) (and of the
Schur module SD in characteristic zero) is

dim WD = dimSD =
∑

τ

RRM (b(τ); r(τ))∏M
k=1 r(τ)i

=
∑

τ

RRM (b(τ); r(τ))∏
i�=j(i − j)dij(τ)

where τ runs over the standard column tabloids for D̂.

Examples. Consider the diagram

D = � � · · ·�
consisting of a single row of k squares, and take n = 2. Then FD = P1 and
RR1(b; r1) = b + 1

2r1. Also LD
∼= O(k), and our formula becomes

dim SD = dimH0(P1,O(k))

=
2k + 1

2 (1)
2 − 1

+
k + 1

2 (−1)
1 − 2

= k + 1 .

Now let D be the diagram of the previous section, whose list of columns is
D = {{1, 2}, {2, 3}, {2, 3}, {3}}, and take n = 3. Then the variety FD is 5 di-
mensional, and the Riemann-Roch polynomial RR5(b; r1, . . . , r5) is a 6-variable
polynomial with 172 terms homogeneous of degree 5. However, the formula
calls only for evaluating this polynomial at small integer arguments, which is
well within the range of easy computer calculations. The result is:

dim SD =
87437
1440

− 2795
288

− 1431
640

+
71

5760
− 110123

5760
+

1431
640

− 71
5760

− 25
1152

−2795
288

+
57
160

− 25
1152

− 3
640

− 3
640

− 25
1152

+
57
160

− 2795
288

− 25
1152

− 71
5760

+
1431
640

− 110123
5760

+
71

5760
− 1431

640
− 2795

288
+

87437
1440

= 45 ,

which agrees with the character formula derived above. •

The Theorem follows immediately from the Hirzebruch-Riemann-Roch Theorem
[4], combined with Bott’s Residue Formula [5], [3], according to the method of
Ellingsrud and Stromme [9].
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Proposition 33 Suppose the torus T = C∗ is one-dimensional, and acts with
isolated fixed points.

Let v = 1 in the Lie algebra t = C, and at each T -fixed point p, let b(p) =
tr(v | L|p). Denote the v-eigenspace decomposition of the tangent space by
TpX = ⊕M

i=1Cri(p), where ri(p) are the integer eigenvalues. Also, define the
polynomial RRM (b; r1, . . . , rM ) as above.

Then the algebraic Euler characteristic of L is given by:∑
i

(−1)i dim Hi(X, L) =
∑

p fixed

RRM (b(p); r1(p), . . . , rM (p))
det(v | TpX)

.

In our case, we consider X = F
D̂

over the field F = C and take the T in
the Proposition to be C∗ ⊂ GL(n), q → diag(q−1, q−2, . . . , q−n). (This is the
principal one-dimensional subtorus corresponding to the half-sum of positive
roots.) Then the tangent eigenvalues at the fixed points Eτ specialize to the
subtorus, and give us the information required to compute the dimension of
WD = H0(F

D̂
, π∗LD). (We may check directly that the fixed points of the

subtorus are identical to those of the large torus of all diagonal matrices.) Now,
the dimension of the Weyl module is independent of the field F by the Remark
in section 1.2, so our Theorem holds in general. •

5.4 Betti numbers

In this section, we compute the betti numbers of the smooth configuration
varieties of Section 5.1.

Proposition 34 (Bialynicki-Birula [6]) Let X be a smooth projective variety
over an algebraically closed field F , acted on by the one-dimensional torus F×

with isolated fixed points. Then there is a decomposition

X =
∐

p fixed

Xp,

where the Xp are disjoint, locally closed, F×-invariant subvarieties, each iso-
morphic to an affine space Xp

∼= Ad+(p).
The dimensions d+(p) are given as follows. Let the tangent space TpX ∼=⊕

n∈Z an(p)Fn, where an(p) ∈ N and Fn is the one-dimensional representation
of F× for which the group element t ∈ F× acts as the scalar tn. Then

d+(p) =
∑
n>0

an(p).

•
Over C, the above proposition does not quite give a CW decomposition for

X , since the boundaries of the cells need not lie in cells of lower dimension.
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Nevertheless, dimR ∂Xp ≤ dimR Xp − 2, and this is enough to fix the betti
numbers βi = dimR Hi(X,R). Namely, β2i = #{p | d+(p) = i}, and β2i+1 = 0.

Now apply this to X = FD of Section 5.1, acted on by the n-dimensional
torus H . Again consider the pricipal embedding

F× → H
q �→ diag(q−1, q−2, . . . , q−n).

An eigenvector of weight xix
−1
j is of positive F×-weight exactly when i < j.

Thus, for a fixed point (standard tabloid) τ of D, define

d+(τ) =
∑
i<j

dij(τ).

We then have the

Proposition 35 Suppose F = C, and D is a northwest diagram with ≤ n rows
and D̂ = D. Then the betti numbers of FD are

β2i = #{τ | d+(τ) = i}, β2i+1 = 0,

and the Poincare polynomial

P (x,FD) def=
∑

i

βix
i =

∑
τ

x2d+(τ),

where τ runs over the standard tabloids of D. •

In fact, our proof shows the above propostion for a broader class of spaces.
Suppose D = (C1, C2, . . .) is an arbitrary diagram such that the variety

IncD
def= {(VC)C∈D ∈ Gr(D) | C ⊂ C′ ⇒ VC ⊂ VC′}

is smooth. Then the proposition holds with FD replaced by IncD.
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