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Abstract
We give an elementary and easily computable basis for the Demazure modules

in the basic representation of the affine Lie algebra !sln (and the loop group"SLn). A novel feature is that we define our basis “bottom-up” by raising
each extremal weight vector, rather than “top-down” by lowering the highest
weight vector.

Our basis arises naturally from the combinatorics of its indexing set, which

consists of certain subsets of the integers first specified by Jimbo et. al. in

terms of crystal operators. We give a new way of defining these special sets

in terms of a recursive but very simple algorithm, the roof operator, which is

analogous to the left-key construction of Lascoux-Schutzenberger. The roof

operator is in a sense orthogonal to the crystal operators.

The most important representation of the affine Kac-Moody algebra ŝln (or of the
loop group ŜLn) is the basic representation V (Λ0), the highest-weight representa-
tion associated to the extra node of the extended Dynkin diagram A

(1)
n−1. The

infinite-dimensional space V (Λ0) is filtered by the finite-dimensional Demazure
modules Vw(Λ0) for w an element of the affine Weyl group: these are modules
for a Borel subgroup of the loop group.

There are several general constructions for irreducible representations and their
Demazure modules, such as Lusztig’s canonical basis and Littelmann’s contracting
modules. However, they are extremely difficult to compute explicitly, and even the
combinatorial indexing set for a basis is very intricate. We will give an elementary
and easily computable basis for V (Λ0) and its Demazure modules.

We work inside the Fock space F , an infinite wedge product which contains
V (Λ0), analogously to the space ∧jCn which realizes a fundamental representation
of SLnC. The Fock space has a natural basis indexed by certain infinite subsets of
integers. The combinatorial part of our problem amounts to defining which of these
subsets will index basis elements of Vw(Λ0) for a given w. We describe these special
subsets in terms of a recursive but very simple algorithm, the roof operator on
subsets. This is analogous to the left-key construction of Lascoux-Schutzenberger
[11], which distinguishes the Young tableaux indexing a basis of a given Demazure
module of SLnC.

The roof operator is more elementary (and much more efficient) than the crystal
graph operators, and is in some sense orthogonal to them. One may think of the
roof operator as jumping across the crystal graph, moving each vertex down to an
extremal weight vertex w(Λ0), but not along edges of the crystal graph.

The combinatorics of the roof operator lead naturally to the definition of our
standard basis, in analogy to the method of Raghavan-Sankaran [16]. A novel
feature is that we define our basis “bottom-up” by raising each extremal weight
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vector of V (Λ0), rather than “top-down” by lowering the highest weight vector.
We prove linear independence of our basis by showing its triangular relationship to
the natural basis of the Fock space. We prove that the standard basis spans V (Λ0)
by showing that our special subsets fill the crystal graph.

The paper is organized as follows. In Section 1, we fix notation, define the roof
operator and the standard basis, and state our main results. In Section 2, we recall
the basics of crystal graphs. In Section 3, we prove the combinatorial comparison
between the subsets distinguished by our roof operator and those in the crystal
graph. In Section 4, we prove the triangularity between bases in the Fock space.

1. Main Results

Consider the complex untwisted affine Lie algebra of type A
(1)
n−1 :

g = ŝln = sln(C[t±1]) ⊕ CK ⊕ Cd,

where sln(C[t±1]) denotes the traceless n × n matrices with entries in the Laurent
polynomials C[t±1] = C[t, t−1], K is a central element of g, and d = t d

dt is a
derivation (see [6, Ch 7]). We have the Cartan decomposition g = n ⊕ h ⊕ n−,
where h is the Cartan subalgebra

h =
⊕

1≤i≤n−1

C(Eii−Ei+1,i+1) ⊕ CK ⊕ Cd ;

and n is the maximal nilpotent subalgebra

n :=
⊕

1≤i<j≤n

k≥0

CtkEij ⊕
⊕

1≤i<j≤n

k≥1

CtkEji ⊕
⊕

1≤i≤n−1

k≥1

tk(Eii − Ei+1,i+1) .

Here Eij ∈ gln(C) denotes a coordinate matrix.
Let Λ0, Λ1, . . . , Λn−1 be the fundamental weights of g, and let V (Λm) be the

level 1 irreducible g-module with highest weight Λm. (Thus, V (Λ0) is the basic
representation of g.) Let us recall the construction of V (Λm) inside the fermionic
Fock space F (cf. [6, Ch 14], [7]). Let C∞ =

⊕
i∈Z

Cεi be the C-vector space with
basis {· · · , ε−2, ε−1, ε0, ε1, ε2, · · · }.

Let T denote the collection of all subsets J ⊂ Z which are comparable to the
non-positive integers Z≤0, meaning that J\Z≤0 and Z≤0\J are both finite:

T = { J ⊂ Z s.t. |J\Z≤0|, |Z≤0\J | < ∞} .

We write such a set as:

J = {· · · < j−2 < j−1 < j0} .

Define the Fock space as the semi-infinite wedge product of C∞:

F = ∧∞/2
C

∞ :=
⊕
J∈T

CεJ ,

the C-vector space with basis elements:

εJ := · · · ∧εj−2∧εj−1∧εj0 .

Thus, the J ∈ T play the role of tableaux indexing the basis vectors of the Fock
space.
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For i, j ∈ Z, let E′
ij denote a coordinate matrix acting on C∞ by E′

ij(εj) = εi,
E′

ij(εk) = 0 for k �= j. Then for i < j, E′
ij acts on the Fock space in the expected

way:

E′
ij(εJ) =

{
±εJ\j∪i if j ∈ J, i �∈ J

0 otherwise,
Here we denote:

J \ j ∪ i := (J\{j} ) ∪ {i} ,

the operation which moves the element j ∈ J to the vacant position i �∈ J ; and
± = (−1)� with � = |J ∩ [i, j]| − 1, the sign of the permutation needed to sort the
wedge factors of εJ\j∪i into increasing order.

We let:
Êpq :=

∑
k∈Z

E′
p+nk,q+nk ,

which is a well-defined operator on F . Now, if i < j or k > 0, we let tkEij act on
F by the operator Êpq , where p = i − nk, q = j:

tkEij = Êi−nk, j : F → F .

This defines the action1 of n on F , and we can similarly define the action of n−
and h. Indeed, the Chevalley generators of n− are: Fi = Ei+1,i = Êi+1,i for
i = 1, . . . , n−1 and F0 = t−1E1,n = Ên+1,n.

Now let Lm := Z≤m ∈ T . It is well known that the U(g)-span of the highest-
weight vector εLm is an irreducible g-module:

U(g) · εLm = U(n−) · εLm
∼= V (Λm) ,

where we define Λm := Λ(m mod n).
Recall that we can realize the Weyl group W of g as a permutation group on Z.

Indeed, we can write the simple reflection si : Z → Z as a product of commuting
transpositions:

si :=
∏
k∈Z

(i+nk, i+1+nk) ,

so that si(i′) = i′+1 whenever i′ ≡ i mod n. Then W = 〈s0, . . . , sn−1〉 is the
corresponding Coxeter group.

The Weyl group W acts on T via w(J) := {w(j)}j∈J . Indeed, the extremal
weight vectors of V (Λm) ⊂ F are just εJ for J = w(Lm). Equivalently, a basis
vector εJ is an extremal weight vector whenever J is n-stable: that is, whenever
j−n ∈ J for all j ∈ J . We define the parabolic Bruhat order on K = {· · ·<k−1<k0}
and J = {· · ·<j−1<j0} as:

K
B
≤ J ⇐⇒

{
ki ≤ ji for all i
ki = ji for all i�0

This induces an order on the n-stable J = w(Lm) which is consistent with the usual
Bruhat order on w ∈ W .

1This action arises naturally if we identify the free C[t±1]-module C[t±1]
n

=
!n

i=1 C[t±1]εi

with the C-vector space C∞ =
!

j∈Z Cεj via: tkεi ↔ εi−nk . This gives an embedding

gln(C[t±1]) ⊂ gl∞, so that the natural action of the upper triangular part of gl∞ on the Fock
space restricts to the specified action of n ⊂ gln(C[t±1]). However, this gives only a projective
representation of the entire gln(C[t±1]), lifting to an honest representation of the central extension"gln.



4

The Demazure modules [2] of V (Λ) are the n-modules obtained by raising the
extremal weights:

Vw(Λm) ∼= U(n) · εw(Lm) .

We can get the same modules also by lowering the highest weight:

Vw(Λm) = SpanC{F k1
i1

· · ·F kt

it
εLm | k1, . . . , kr ≥ 0} ,

where w = si1 · · · sit is a reduced word.
Next we describe the sets J ∈ T which index basis vectors of

Vw(Λm) ⊂ V (Λm) ⊂ F .

Let us say that a set J ∈ T is n-bounded if ji − ji−1 ≤ n for all i. Also, we define
the order of a set J by: ord(J) := |J\Z≤0| − |Z≤0\J | ; equivalently, ord(J) = m
means that ji = m + i for all sufficiently large negative i. Now let

C(Lm) := {J ∈ T | ord(J) = m and J is n-bounded}

=
{

J = {· · ·<j−2<j−1<j0} ⊂ Z

∣∣∣∣ ji − ji−1 ≤ n for all i
ji = m + i for i � 0

}
(The reader should be aware of a frequently used alternative notation in terms of
partitions instead of subsets.2)

We can give C(Lm) a crystal graph structure by defining the crystal lowering
operators fi for i = 0, . . . , n−1, as recalled in Section 2 below. If it is defined, the
crystal operator fi on a set J picks out a certain element r ∈ J with r ≡ i mod n,
and replaces it with r+1 ≡ i+1 mod n: that is, fi(J) = J \ r ∪ (r+1) . We define
the Demazure crystal as:

Cw(Lm) = {fk1
i1

· · · fkt

it
Lm | k1, . . . , kt ≥ 0},

where w = si1 · · · sit is again a reduced word.
Our first theorem is a simpler description of the sets J in this Demazure crystal,

in analogy with the “right key” algorithm of Lascoux-Schutzenberger [11]. If J is
n-bounded but not n-stable, define the following up-operation (which is different
from the crystal operators):

up(J) := J \ p ∪ q where:

p := max{p′ | p′ ∈ J, p′−n �∈ J},
q := min{q′ > p | q′ �∈ J, q′−n ∈ J, q′ �≡ p mod n} .

To rephrase this in words, define a seam as a maximal arithmetic progression S =
{· · · < j−2n < j−n < j} contained in J . We call the vacant position j+n �∈ J the
tight end of S ; and if S is finite, we call the minimal element p ∈ S the loose end
of S. The up-operation moves p ∈ J to q �∈ J , where p is the maximal loose end in
J , part of a seam S = {p, p+n, . . . }, and q > p is the tight end of a different seam,
the minimal such tight end. See the Example below.

Iterating the up-operation “pulls out” this seam, distributing all the elements
of S to the tight ends of different seams; and then the operation starts on another
seam. After each seam is pulled out, the number of loose ends decreases by one.

2In [3] and related literature, the basis of V (Λm) is indexed by the set of all partitions λ =
(λ1≥λ2≥ · · · ) with λi ≥ 0, λi = 0 for i � 0, and λi+1−λi ≤ n−1. Namely, a set J =

{· · ·<j−1<j0} of order m corresponds to λ with λi = m + 1 − i − j1−i.
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Once all the finite seams of J are pulled out, the result is an n-stable set which we
call the roof of J :

roof(J) := up�(J) = up(· · · up(J) · · · ) = y(Lm) for some y ∈ W .

Theorem 1 Let Cw(Lm) be the Demazure crystal generated from the highest
weight Lm according to a reduced word for w ∈ W . Then:

Cw(Lm) = {J ∈ C(Lm) | roof(J) ≤ w(Lm)}

This gives a highly efficient algorithm for testing the membership of J in Cw(Lm).
(We also give below an alternative algorithm for generating all J ∈ Cw(Lm).)

Next we give elementary bases of V (Λm) and its dual which are compatible with
the Demazure modules.

Theorem 2 (i) Given J ∈ Cw(Lm), suppose upi(J) = upi−1(J) \ pi ∪ qi for
i = 1, . . . , �, and roof(J) = up�(J) = y(Lm). Define

vJ := Êp1,q1 · · · Êp�,q�
εy(Lm) .

Then the irreducible highest-weight module V (Λm), a submodule of the Fock space
F , has basis {vJ | J ∈ C(Lm)}; and the Demazure module Vw(Λm) has basis {vJ |
J ∈ Cw(Lm)}.
(ii) The irreducible lowest-weight module V (Λm)∗, a quotient of the dual Fock space
F∗, has basis {ε∗J | J ∈ C(Lm)}; and the dual Demazure module Vw(Λm)∗ has basis
{ε∗J | J ∈ Cw(Lm)}. Here ε∗J denotes a dual basis vector of F∗ restricted to V (Λm)
or to Vw(Λm) respectively.

In geometric terms, the functions ε∗J can be considered as Plucker coordinates on
the affine Grassmannian embedded in the infinite projective space P(F).

The vectors vJ possess a triangularity property with respect to the standard
basis of the Fock space. Define lexicographic order on sets K, J as follows:

K
lex
< J ⇐⇒

{
kN < jN for some N
ki = ji for all i < N .

Proposition 3 Let us write:

vJ =
∑
K

aJ
KεK with coefficients aJ

K ∈ C .

(i) We have a non-zero coefficient aJ
K �= 0 only if K

lex
≤ J .

(ii) We have a non-zero leading coefficient aJ
J �= 0 for every J , given explicitly as

follows. If J is n-stable, then aJ
J = 1. If J is n-bounded but not n-stable, suppose

that upi(J) = upi−1(J) \ pi ∪ qi, and t is maximal such that p1 ≡ · · · ≡ pt mod n .

Define µd := #{ i ≤ t | qi − pi = d } and J̃ := upt(J). Then:

aJ
J = ±

∏
d≥1

µd!

 a
!J!J .

In part (ii), note that the sequence S = {p1 < . . . < pt} is actually the first seam
of J pulled out by the roof algorithm: S = {p , p+n, . . . , p+n(t−1)}. Iterating
part (ii), we get a combinatorial formula for the leading coefficient aJ

J of each vJ

depending only on the sequences p1, . . . , p� and q1, . . . , q� in the roof algorithm.
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Example Let n = 5 and let:

J := {. . . ,−4,−3,−2,−1, 0, 3, 4, 7, 10, 12, 14, 17, 18, 23, 27, 32, 33, 35, 37} .

Then J ∈ C(Lm) for m = 13, since L0 ⊂ J and |J\L0| = 13, so that ord(J) =
ord(L0)+13 = 13. We sort J into its residue classes mod n to show the seam
structure. We mark the maximal loose end with boldface, and the tight end used
by the up-operation with T .

J =


· · · −4 · · · · · · · ·
· · · −3 · 7 12 17 · 27 32 37
· · · −2 3 · · 18 23 · 33 ·
· · · −1 4 · 14 · · · · ·
· · · 0 · 10 · · · · 35 ·

 =


· · · · · · · ·
· 7 12 17 · 27 32 37
3 · · 18 23 · 33 T

4 · 14 · · · · ·
· 10 · · · · 35 ·



up→


· · · · · · · · ·
· 7 12 17 · 27 32 37 T

3 · · 18 23 · 33 38 ·
4 · 14 · · · · · ·
· 10 · · · · · · ·

 up2

−→


· · · · · · · · · ·
· 7 12 17 · 27 32 37 42 47
3 · · 18 23 T · · · ·
4 · 14 · · · · · · ·
· 10 · · · · · · · ·



up5

−→


· · · · · · · · · ·
· 7 12 17 · · · · ·
3 · · 18 23 28 33 38 43 48
4 · 14 T · · · · · ·
· 10 · · · · · · · ·

 up16

−→


· · · · · · · · · · · · ·
· 7 12 17 22 27 32 37 42 47 52 57 62
3 T · · · · · · · · · ·
4 · · · · · · · · · · · ·
· · · · · · · · · · · · ·



up12

−→


· · · · · · · · · · ·
· · · · · · · · · · · · ·
3 8 13 18 23 28 33 38 43 48 53 58 63
4 · · · · · · · · · ·
· · · · · · · · · · ·

 = roof(J) = y(L14) .

We thus have (p1, q1)=(35, 38), (p2, q2)=(33, 42), (p3, q3)=(38, 47), . . . , and:

vJ = Ê35,38 Ê33,42 Ê38,47 · · · εy(L14)

= Ê5,8Ê
2
3,12 Ê 5

2,3 Ê 7
3,4 Ê 8

4,7 Ê5,57 Ê 12
2,3 εy(L14) .

Since J has seven loose ends, we must apply Proposition 3(ii) seven times to com-
pute: aJ

J = ± 1! · 2! · 5! · 7! · 8! · 1! · 1! · 12! . (Here we have only one factor for each
seam, though in general there will be several.)

To determine a reduced decomposition for the Weyl group element y, we start
with the extremal weight K = y(L14) and perform the simple reflection: K �→
sr(K), where

r := min { k �∈K | k+1∈K }

is the minimal “hole” of K, and sr := s(r mod n). This will always give K
B
> sr(K),

and iterating the operation produces a canonical reduced word for y. Indeed,

y(L14) = s2 s1 s3 s2 s0 (s4s3 s2 s1 s0)11 s4 L14 .

See also the Example in the next section. �

Next we consider the modifications which must be made to our theory to generalize
it to positive characteristic. Since the leading coefficients aJ

J are not necessarily ±1,
the vectors vJ could become linearly dependent if we work over Z and then reduce
modulo a prime. To define a characteristic-free basis { v ′

J | J ∈ Cw(Lm) }, we start
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with v ′
J := εJ for n-stable J , then for a general n-bounded J we define:

v ′
J :=

Êp1,q1 · · · Êpt,qt∏
d∈Z

µd!
· v ′!J =

∏
d∈Z

d �≡0

Ê µd

p,p+d

µd!
· v ′!J ,

where t is maximal such that p := p1 ≡ · · · ≡ pt mod n. The second equality follows
because di := qi − pi �≡ 0 mod n, so all the operators Êp,p+d commute with each
other. The basis {v ′

J} clearly lies in the Kostant Z-form of the Demazure module
Vw(Λm), and it has leading coefficients ±1, so it reduces to a basis over an arbitrary
field. (Cf. [4, Ch. 26].)

Theorem 1 also gives an alternative “bottom-up” algorithm to generate Cw(Lm),
as opposed to the “top-down” definition in terms of crystal lowering operators. We
write:

C=y(Lm) := {J ∈ C(Lm) | roof(J) = y}
= {y(Lm)} ∪ up−1(y(Lm)) ∪ up−1 up−1(y(Lm)) ∪ · · ·

where up−1(Ĵ) means the set of all J such that up(J) = Ĵ . To compute this for
any given Ĵ ∈ C(Lm), we first find p̃ < p̂ , the two maximal loose ends of Ĵ (with
one or both possibly = −∞). Next we choose any q > p̂−n such that q+n is the
tight end of a seam S ⊂ Ĵ of length |S| ≥ 2, and we let q̂ be the maximal tight end
of Ĵ less than q. Finally, we define:

P (q) :=

{
p

∣∣∣∣∣ p−n, p �∈ Ĵ

max(p̂, q̂ ) < p < q

}
∪
{

p = p̂−n

∣∣∣∣∣ p−n �∈ Ĵ

max(p̃, q̂ ) < p

}
.

Then we have:

up−1(Ĵ) =

{
J := Ĵ \ q ∪ p

∣∣∣∣∣ q−n, q ∈ Ĵ , q+n �∈ Ĵ

q > p̂−n, p ∈ P (q)

}
.

Applying this to all y ≤ w, we generate all J ∈ Cw(Lm).
We will prove Theorem 1 in Section 3 and Proposition 3 in Section 4. Theorem

2 is a corollary, as follows. By Theorem 1 and the definitions, we have:

V ′ := SpanC{ vJ | roof(J) ≤ w } = SpanC{ vJ | J ∈ Cw(Lm) } ⊂ Vw(Λm) .

Proposition 3 implies that the vJ are linearly independent vectors in F (since
they are triangular with respect to the standard basis {εJ} ), so that dimC V ′ =
|Cw(Lm)| ; but it is well known from crystal graph theory (Section 2 below) that
|Cw(Lm)| = dimC Vw(Λm), so that V ′ = Vw(Λm). This shows Theorem 2 for the
Demazure module Vw(Λm), and the claims for the irreducible module and the dual
modules follow trivially.

We comment on related work which is closest to our point of view. The pioneering
paper [1] by the Kyoto school defined the tableaux C(Lm) for V (Λm) ( in fact for
all V (�Λm) ), and the crystal graph structure was first defined by Jimbo et al.
[5]. Certain Demazure crystals Cw(Lm) were considered in [9],[10], and related
references include [3], [8]. Our construction of the “monomial” basis vJ is inspired
by the work of Raghavan-Sankaran [16] (generalized in Littelmann [14]).

Notation For a set J ⊂ Z, we define:

J≡i := {j ∈ J | j ≡ i mod n} , J<r := {j ∈ J | j < r} .



8

Similarly for J>r , for J≡i
>r := J≡i ∩ J>r , for q≤J≤r := J≥q ∩ J≤r , etc.

2. Crystal Operators

In this section, we review the necessary facts about the crystal raising and low-
ering operators acting on C(Lm). 3 These operators were first defined in our case by
the Kyoto school [5], and they can also be derived from Littelmann’s path model
(as modified for semi-infinite paths in [15]). The crystal operators are basically
different from the up-operation: indeed, by Theorem 1 the two are in some sense
transversal to each other.

If it is defined, the lowering operator fi for i = 0, 1, . . . n−1 acting on a set
J ∈ T picks out a certain element r ∈ J with r ≡ i mod n, and replaces it with
r+1 ≡ i+1 mod n. (We say that fi(J) is “lower” than J because it is farther from
the highest-weight element Lm.) Similarly, the raising operator ei(J) picks out a
certain element r′ ∈ J with r′ ≡ i+1 and replaces it with r′−1 ≡ i. We have:
fi(J) = J ′ ⇐⇒ J = ei(J ′).

Definition Given J ∈ T .
(i) Let

R := { r s.t. for all k ≥ r , |r≤J≡i
≤k | > |r≤J

≡(i+1)
≤k | } .

If R is empty, then fi(J) is undefined. Otherwise,

fi(J) := J \ r ∪ (r+1) , where r := min(R) .

(ii) Let

R′ := { r′ s.t. for all k ≤ r′, |k≤J
≡(i+1)
≤r′ | > |k≤J≡i

≤r′ | } .

If R′ is empty, then ei(J) is undefined. Otherwise,

ei(J) := J \ r′ ∪ (r′−1) , where r′ := max(R′) .

The importance of the crystal operators lies in the following Refined Demazure
Character Formula (cf. Jimbo, et al. [5]). Define the weight of a tableau J ∈ C(Lm)
by wt(Lm) := Λm and wt(fi(J)) := wt(J) − αi.

Proposition The character of the Demazure module Vw(Λm) is the weight gen-
erating function of the crystal graph Cw(Lm): that is,∑

µ

dimCVw(Λm)µ eµ =
∑

J∈Cw(Lm)

ewt(J) .

In particular, dimCVw(Λm) = #Cw(Lm).

Let us give a more pictorial way to understand these operators in the spirit of
Lascoux-Schutzenberger [11]: we progressively remove elements of J which are
irrelevant to the action. We call j ∈ J≡i the i-elements of J , and we write sets
as usual in increasing order: J = {· · ·<j−1<j0}. We start by removing all j ∈ J
except the i- and (i+1)-elements. We consider each remaining i-element which is
immediately followed by an (i+1)-element, and we remove these pairs. Now we

3These operators are sometimes encoded in the crystal graph having vertices J ∈ C(Lm) and

i-colored edges J
i→ fiJ .
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look again for remaining i-elements followed by (i+1)-elements, and remove these
pairs. After finitely many iterations, we are left with a finite subset

J ′ = {j′1 < · · · < j′s < j′′1 < · · · < j′′t } ⊂ J with all j′k ≡ i+1, j′′k ≡ i .

Then we take r = j′′1 , the smallest i-element, and r′ := j′s, the largest (i+1)-element
of J ′, so that:

fi(J) = J \ j′′1 ∪ (j′′1 +1) , ei(J) = J \ j′s ∪ (j′s−1) .

Example We exhibit the action of e2, f2 on the J from our previous example.
This time, we write the elements of J reduced modulo n = 5: since J is n-bounded,
this loses no information. We have underlined the elements to be removed.

J = { · · · ,−3,−2,−1, 0, 3, 4, 7, 10, 12, 14, 17,18, 23, 27, 32, 33, 35, 37 }
= · · · 2 3 4 5 3 4 2 5 2 4 2 3 3 2 2 3 5 2
⇒ · · · 2 3 3 2 2 2 3 3 2 2 3 2
⇒ 3 2 2 3 2 2

J ′ = 3 2 2 2

f2(J) = · · · 2 3 4 5 3 4 3 5 2 4 2 3 3 2 2 3 5 2
f2
2 (J) = · · · 2 3 4 5 3 4 3 5 2 4 2 3 3 3 2 3 5 2

f3
2 (J) = · · · 2 3 4 5 3 4 3 5 2 4 2 3 3 3 2 3 5 3

f4
2 (J) = undefined

e2(J) = · · · 2 3 4 5 2 4 2 5 2 4 2 3 3 2 2 3 5 2
e2
2(J) = undefined

Note that the irrelevant elements removed from J are the same as those from ei(J)
and fi(J), so we can easily perform ei and fi repeatedly.

In the previous example we computed roof(J) = y(Lm), where:

y = s2 s1 s3 s2 s0 (s4s3 s2 s1 s0)11 s4 .

By Theorem 1, this means that J ∈ Cy(Lm):

J = f•
2 f•

1 f•
3 f•

2 f•
0 (f•

4 f•
3 f•

2 f•
1 f•

0 )11 f•
4 L14 ,

where each f•
i represents some non-negative integer power of fi. We see from this

the comparative rapidity of the roof algorithm in defining and generating Demazure
crystals. �

3. Proof of Theorem 1

For a set J ∈ C(Lm), let Cy(Lm) be the unique minimal Demazure crystal con-
taining J , and define the ceiling of J to be the extremal element of Cy(Lm):

ceil(J) := y(Lm) .

Thus Cw(Lm) = {J ∈ C(Lm) | ceil(J) ≤ w(Lm)} , and we can restate:

Theorem 1 We have roof(J) = ceil(J) for all J ∈ C(Lm).

For J �= Lm, we define:

a(J) := max{a | La ⊂ J} and r(J) := min J>a(J) .

That is, a(J) < r(J) are the smallest consecutive elements of J which are not
consecutive integers.
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We let emax
i (J) denote the result of applying the highest possible power of the

raising operator ei to J , and we let:

K := emax
r−1J ,

where r := r(J). Observe that r−1 ∈ K (and thus K �= J), since in J<r = La(J),
the pairs of consecutive entries congruent to r−1 and r are irrelevant for the crystal
operation.

Ceiling Lemma
(i) For all J ∈ C(Lm), we have:

r(ceil(J)) = r(J) and a(ceil(J)) = a(J) .

(ii) With J �= Lm and K as above, we have:

ceil(J) > ceil(K) = sr−1 ceil(J) .

Roof Lemma With J �= Lm and K as above, we have:

roof(J) > roof(K) = sr−1 roof(J) .

Assuming these two Lemmas, we can immediately prove Theorem 1 by induction
on the quantity:

height(J) :=
∑
i≤0

(ji − i − m) ,

a sum with finitely many non-zero terms for J ∈ C(Lm). If height(J) = 0, then
J = Lm and there is nothing to prove. Otherwise, height(K) < height(J), and we
may assume roof(K) = ceil(K). Then the Roof and Ceiling Lemmas imply:

roof(J) = sr−1 roof(K) = sr−1 ceil(K) = ceil(J) . �

Proof of Ceiling Lemma. We first prove that a(ceil(J)) ≤ a(J). Let a := a(J). Let
ceil(J) = sit · · · si1 , a reduced decomposition. Then for some ct, . . . , c1 ≥ 0, J =
f ct

it
· · · f c1

i1
Lm. The sequence {it, . . . , i1} must contain a subsequence {a+1, . . . , m}.

Let {jk, . . . , j1} be the rightmost such subsequence: that is, j1 is the rightmost
occurrence of m in {it, . . . , i1}; and for k = 1, . . . , m−a−1, after jk has been
determined let jk+1 be the rightmost occurrence of m−k in {it, . . . , i1} to the left
of jk. Let fmax

i T denote the result of applying the lowering operator fi as many
times as possible to T ; thus, for example, ceil(J) = fmax

it
· · · fmax

i1
Lm. Then

a(fmax
it

· · · fmax
i1 Lm) ≤ a(fmax

jk
· · · fmax

j1 Lm) = m−k,

for k = 1, . . . , m−a. Setting k = m−a, we obtain the result.
We prove (i) and (ii) together by induction on height(J). Let r := r(J). If

height(J) = 0 then ceil(J) = J = Lm, so (i) is true, and (ii) is vacuously true.
Assume height(J) > 0. Note that

ceil(J) ≥ ceil(K) ≥ sr−1 ceil(J) ,

so (ii) is equivalent to ceil(J) �= ceil(K).
If r(J) = a(J) + 2, then a(K) = a(J) + 1. Since height(K) < height(J),

by induction, a(ceil(K)) = a(K), thus a(ceil(K)) = a(K) > a(J) ≥ a(ceil(J)),
implying ceil(K) �= ceil(J). Therefore ceil(J) = sr−1 ceil(K), and clearly (i) follows.
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If r(J) > a(J) + 2, on the other hand, let wLm = ceil(K). Since height(K) <
height(J), by induction we have a(wLm) = a(K) = a and r(wLm) = r(K) = r−1.
Define

v = sa+1sa+2 · · · sr−2 w .

Note that a(vLm) = a+1. Let v = sit · · · si1 be a reduced decomposition. Then
w = sr−2 · · · sa+1sit · · · si1 , also a reduced decomposition. Indeed, if we define k by
r(wLm) = wk (where wLm = {· · ·>w−2>w−1>w0} ), then

(sa+(j+1) · · · sa+1sit · · · si1Lm)k = 1 + (sa+j · · · sa+1sit · · · si1Lm)k

for j = 1, . . . , r−a−3, and

(sa+1sit · · · si1Lm)k = 1 + (sit · · · si1Lm)k .

In other words, with each successive multiplication of v = sit · · · si1 by sa+j for
j = 1, . . . , r−a−2, the product increases.

Now suppose ceil(J) = wLm. Then J = f
cr−2
r−2 · · · f ca+1

a+1 fdt

it
· · · fd1

i1
Lm for some

cr−2, . . . , ca+1, dt, . . . , d1 ≥ 0. Thus, e
ca+1
a+1 · · · ecr−2

r−2 J ∈ Cv(Lm). Thus
a(eca+1

a+1 · · · ecr−2
r−2 J) ≥ a(vLm) = a+1, a contradiction. Therefore ceil(J) �= wLm, so

ceil(J) = sr−1wLm, from which (i) follows immediately. �

Proof of Roof Lemma. For i ∈ Z, define roofi(J) by

roofi(J) := roof(Li ∪ J).

Several properties of roofi(J) follow easily from the definition:
1. roofi(J) = roofi+1(J) if i + 1 ∈ J .
2. roofi(J) = roof(roofi+1(J) \ {i + 1}) if i + 1 �∈ J .
3. roofi(J) = roof(J) if J ⊃ Li ; roofi(J) = Li if Li ⊃ J .

For T ∈ C(Lk), define

lub(T ) = min
lex
≥

{
J ′ ∈ C(Lk)

∣∣∣ J ′ B
≥ T,

J ′ is n-stable

}
.

If T has at most one seam, then roof(T ) = lub(T ). Since roofi+1(J) \ (i+1) has at
most one seam, property 2 above can be modified:

4. roofi(J) = lub( roofi+1(J) \ (i+1) ) if i+1 �∈ J .
For k ∈ Z≥0, let r[k] := r + kn. We will prove the following eight statements

ak—hk together by decreasing induction on k. Then we will show that the Roof
Lemma is a consequence of statement c0 (i.e., ck for k = 0).
(ak) Either roofr[k](K) = roofr[k](J) or roofr[k](K) = sr−1 roofr[k](J).

(bk) roofr[k](K)
B
≤ roofr[k](J).

(ck) If r[k] ∈ J \ K, r[k] − 1 ∈ K \ J , then roofr[k]−2(K) = sr−1 roofr[k]−2(J).

(dk) If r[k] ∈ J ∩ K, but r[k] − 1 �∈ J or K, then roofr[k]−2(K) = roofr[k]−2(J).

(ek) If r[k], r[k] − 1 �∈ J ∪ K, then roofr[k]−2(K) = roofr[k]−2(J).

(fk) If r[k] − 1 ∈ J ∩ K, but r[k] �∈ J or K, then roofr[k]−2(K) = roofr[k]−2(J).

(gk) Either roofr[k]−2(K) = roofr[k]−2(J) or roofr[k]−2(K) = sr−1 roofr[k]−2(J).
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(hk) roofr[k]−2(K)
B
≤ roofr[k]−2(J).

Our induction proof will establish the following implications:

(ak+1−fk+1) ⇒ (gk+1,hk+1) ⇒ (ak,bk) ⇒ (ck,dk, ek)

(dm, em, fm : m>k ) ⇒ (fk)

For the starting point of induction, select k large enough so that r[k − 2] > j0. For
such k, by property 3, roofi(K) = roofi(L) = Li for i = r[k−2], r[k−1], r[k]. Thus
ak−hk are trivially true.

(ak+1−fk+1) ⇒ (gk+1,hk+1) :

Let us restate this as: (ak−fk) ⇒ (gk,hk). If any of the hypotheses of ck − fk are
satisfied, then ck − fk imply gk and hk. There are two possibilities omitted from
the hypotheses of ck − fk:

(i) r[k] − 1 ∈ J \ K, r[k] ∈ K \ J , and
(ii) r[k] − 1, r[k] ∈ J ∩ K.

However, (i) cannot occur, since K is obtained from J by applying the raising
operator er−1 several times. If (ii) occurs, then by property 1, roofr[k−2](J) =
roofr[k](J), and roofr[k−2](K) = roofr[k](K). Thus, in this case as well, gk and hk

follow immediately from ak and bk.

(gk+1,hk+1) ⇒ (ak,bk) :

Define t by roofr[k](J) = upt(roofr[k+1]−2(J)). Then necessarily roofr[k](K) =
upt(roofr[k+1]−2(K)). Letting T = roofr[k+1]−2(J), U = roofr[k+1]−2(K), we show
that

Either upi(U) = upi(T ) or upi(U) = sr−1 upi(T ), and(1)

upi(U)
B
≤ upi(T )(2)

0 ≤ i ≤ t, by induction on i; the result is then obtained by setting i = t.

We have up0(T ) := T , up0(U) := U ; thus (1) and (2) hold for i = 0. Let 0 < i ≤ t,
and assume that (1) and (2) hold for i − 1. Then either

(i) upi−1(U) = upi−1(T ), in which case

upi(U) = up(upi−1(U)) = up(upi−1(T )) = upi(T ), or

(ii) upi−1(U) = sr−1 upi−1(T ) and upi−1(U)
B
≤ upi−1(T ). In this case, define p, q

by
upi(T ) = upi−1(T ) \ p ∪ q.

Then it is easy to see that upi(U) = upi−1(U) \ p ∪ q′, where

q′ =


q, if q �≡ r − 1, r mod n

q + 1, if q ≡ r − 1 mod n

q − 1, if q ≡ r mod n

.

Thus upi(U) = sr−1 upi(T ) and upi(U)
B
≤ upi(T ). This proves (1) and (2).
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(dm, em, fm : m > k) ⇒ (fk) :

Let m > k be the minimum integer such that not both r[m] − 1 and r[m] are in
K. Then, by the definition of the raising operator er−1, it is not possible that
r[m] ∈ J \K, r[m]− 1 ∈ K \ J . Thus either the hypotheses of dm, em, or fm must
hold. Thus roofr[m]−2(J) = roofr[m]−2(K). Since also

r[k]−2≤J≤r[m]−2 = r[k]−2≤K≤r[m]−2 ,

we have roofx(J) = roofx(K), for r[k] − 2 ≤ x ≤ r[m] − 2.

(ak,bk) ⇒ (dk) :

By Property 1, roofr[k]−1(J) = roofr[k](J) and roofr[k]−1(K) = roofr[k](K). Now

ak, bk imply that if J ′ ∈ C(Lm) is n-stable and J ′ B
≥ roofr[k]−1(K) \ {r[k] − 1},

then J ′ B
≥ roofr[k]−1(J) \ {r[k] − 1} (the same statement with J and K switched

holds obviously). The result follows from Property 4.

(ak,bk) ⇒ (ck) :

Let J ′ = maxB
≥
{roofr[k](J), sr−1 roofr[k](J)}. By Property 1, roofr[k]−1(J) =

roofr[k](J). If J ′ ∈ T is n-stable and J ′ B
≥ roofr[k]−1(J) \ {r[k] − 1}, then J ′ B

≥

Ĵ \ {r[k] − 1}; conversely, if J ′ ∈ T is n-stable and J ′ B
≥ Ĵ \ {r[k] − 1}, then

J ′ B
≥ roofr[k]−1(J) \ {r[k] − 1}. Thus roofr[k]−2(Ĵ) = roofr[k]−2(J).

We claim that K
B
≤ sr−1K. Indeed, let m > k be the minimum integer greater

than k such that not both r[m] − 1, r[m] ∈ K. Then by the definition of the

raising operator er−1, it is not possible that r[m] ∈ K. Thus roofr[m]−2(K)
B
≤

sr−1 roofr[m]−2(K). Define t′ by roofr[k](K) = upt′(roofr[m]−2(K)). Then it is

easy to see that upi(roofr[m]−2(K))
B
≤ sr−1 upi(roofr[m]−2(K)), 1 ≤ i ≤ t′. This

proves the claim.
Define t by roofr[k]−2(Ĵ) = upt(Ĵ). Then by Property 1, roofr[k]−2(K) =

roofr[k]−1(K) = upt(roofr[k](K)). For 1 ≤ i ≤ t, let

upi(Ĵ) = upi−1(Ĵ) \ p ∪ q.

Then upi(roofr[k](K)) = upi−1(roofr[k](K)) \ p ∪ q′, where

q′ =

{
q, if q �≡ r mod n

q − 1, if q ≡ r mod n
.

The result follows from this.

(ak,bk) ⇒ (ek) :

We have that roofr[k]−2(J) = roof(roofr[k](J) \ {r[k] − 1, r[k]}), roofr[k]−2(K) =
roof(roofr[k](K) \ {r[k] − 1, r[k]}). Let L = roofr[k](J) \ {r[k] − 1, r[k]}. If L has
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only one seam, then the result is obvious. Thus assume that L has two seams:

S1 = {r[k] = p1 < · · · < pt}
S2 = {r[k] − 1 = pt+1 < · · · < pt+s}

where pi+1 = pi + n, 1 ≤ i ≤ t + s − 1, i �= t. Then upt(L) has exactly one
seam, namely S2 with possibly some additional elements added to its tight end.
Thus roofr[k]−2(J) = roof(upt(L)) = lub(upt(L)). We claim that lub(upt(L)) =
lub(L). The claim implies roofr[k]−2(J) = lub(L) = lub(roofr[k](J)\{r[k]−1, r[k]});
replacing J with K, in precisely the same manner we show that roofr[k]−2(K) =
lub(roofr[k](K) \ {r[k] − 1, r[k]}). But it is clear that lub(roofr[k](J) \ {r[k] −
1, r[k]}) = lub(roofr[k](K)\{r[k]−1, r[k]}). Thus the result follows from the claim.

To prove the claim, note that since upt(L)
B
≥ L, lub(upt(L))

lex
≥ lub(L). It

suffices to show that lub(L)
B
≥ upt(L), since this implies lub(L)

lex
≥ lub(upt(L)). We

show something slightly stronger: if M
B
≥ L is n-stable, then M

B
≥ upt(L). We can

express M = L \ {p1, . . . , pt+s} ∪ {p1, . . . , pt+s}, where xi > pi, i = 1, . . . , t + s.
Likewise, upt(L) = L\{p1, . . . , pt}∪{q1, . . . , qt}, where upi(L) = upi−1(L)\pi∪qi.

To show M
B
≥ upt(L), it suffices to show that qi ≤ xi, i = 1, . . . , t. This is clear

from the definition of the up operation. Indeed, let imax be the largest i for which
qi − pi > n. There are no tight ends in upt(L) between r[k] and qimax ; thus qi ≤ xi,
1 ≤ i ≤ imax. If imax < t, then for imax < i ≤ t,

qi = min{q �∈ L | q − pi ≤ n − 1, q − n ∈ upi−1(L), q �≡ r mod n, }.
Inductively, this implies that qi ≤ xi.

This completes the proof of ak − hk. Noting that r[0] = r, we see that c0 im-
plies roofr−2(K) = sr−1 roofr−2(J). By property 3, roof(J) = roofa(J)(J) and
roof(K) = roofa(J)(K). Using identical arguments as in the proof of (gk+1,hk+1) ⇒
(ak,bk), we see that roofa(J)(K) = sr−1 roofa(J)(J), which completes the proof of
the Roof Lemma. �

4. Proof of Proposition 3

4.1. Proof of Proposition 3(i). The result states that:

vJ =
∑
K

aJ
K εK ,

where the sum runs over K
lex
≤ J . We use induction on �, where roof(J) = up�(J).

If � = 0, then vJ = εJ and there is nothing to prove.
Now let � > 0. We inductively apply the Proposition to Ĵ := up(J) = J \ p ∪ q ,

so that:
v "J =

∑
"K

a
"J"K ε "K ,

where the sum runs over K̂
lex
≤ Ĵ . Thus:

vJ = Êpq v "J =
∑
"K
∑
h∈Z

a
"J"K Ep+nh,q+nh ε "K .
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It suffices to show the following:

Lemma Let Ĵ := up(J) = J \ p ∪ q. Consider any K̂
lex
≤ Ĵ and any h ∈ Z such

that:
p′ := p+nh �∈ K̂ and q′ := q+nh ∈ K̂ .

Then we have:

K := K̂ \ q′ ∪ p′
lex
≤ J = Ĵ \ q ∪ p .

We prove the Lemma using several facts which follow easily from the definitions. Let
K, J ∈ C(Lm). For J = {· · ·<j−1<j0} with ord(J) = m, recall that: height(J) :=∑

i≤0 (ji − i − m) .

1. If aJ
K �= 0, then height(K) = height(J).

2. If aJ
K �= 0, then |K≡i

>N | = |J≡i
>N | for all N � 0.

3. If Ĵ = up(J) = J \ p ∪ q, then Ĵ≡q ⊂ Ĵ≤q.
4. If J>p contains no loose ends of J (that is, j−n ∈ J for all j ∈ J>p), and

|K≡i
≥p| = |J≡i

≥p| for some i, then K≡i
≥p

B
≥ J≡i

≥p.

Proceeding with the proof of the Lemma, suppose first that K̂ = Ĵ . By Fact 3

we must have q′ ≤ q, so p′ ≤ p and clearly K = Ĵ \ q′ ∪ p′
lex
≤ Ĵ \ q ∪ p = J .

Now let K̂
lex
< Ĵ , and let k̂ be the split point, the value such that:

k̂ ∈ K̂, k̂ �∈ Ĵ , and K<"k = J<"k.

Case (a): k̂ < p. Then:

k̂ ∈ K̂, k̂ �∈ J and K̂<"k = Ĵ<"k = J<"k ,

so K̂
lex
≤ J . But clearly K

lex
≤ K̂, so K

lex
≤ J as desired.

Case (b): p ≤ k̂. If p′ ≤ p, then clearly K
lex
≤ J as desired. On the other

hand, suppose p < p′. Then K<p = K̂<p = Ĵ<p = J<p by the definition of k̂.
Furthermore, for all i and some N < p we have |K≡i

>N | = |J≡i
>N | by Fact 2, and thus

|K≡i
≥p| = |J≡i

≥p|. By definition J>p contains no loose ends, so Fact 4 implies that

K≡i
≥p

B
≥ J≡i

≥p for all i. We also have K<p = J<p, so K
B
≥ J . If K

B
> J , then clearly

height(K) > height(J), contradicting Fact 1. We conclude that K = J , and we are
done.

This proves the Lemma, and hence Proposition 3(i).

4.2. Proof of Proposition 3(ii). To derive the formula relating the leading co-
efficients aJ

J and a
!J!J , note first that

vJ = (Êp1q1 · · · Êptqt)v !J
=

∑
K

∑
h1,... ,ht∈Z

a
!J
K (Ep1+nh1,q1+nh1 · · ·Ept+nht,qt+nht) εK

=
∑
K

∑
h1,... ,ht∈Z

± a
!J
K εK↑(h1,... ,ht) ,



16

where we use notation:

K↑(h1, . . . , ht) := K \ {q1+nh1, . . . , qt+nht} ∪ {p1+nh1, · · · pt+nht}
provided qi+nhi ∈ K and pi+nhi �∈ K for all i ≤ t ; otherwise K↑(h1, . . . , ht) is
undefined, and εK↑(h1,... ,ht) := 0.

Lemma (i) If J = K↑(h1, . . . , ht) for some K with a
!J
K �= 0, then K = J̃ .

(ii) If J = J̃↑(h1, . . . , ht), then there is a unique permutation σ of {1, 2, . . . , r}
such that

pi+nhi = pσ(i) , qi+nhi = qσ(i) .

We obtain in this way every permutation σ satisfying qi − pi = qσ(i) − pσ(i) for all
i ≤ t.

The Proposition follows easily from (i) and (ii) of the Lemma, since:

vJ =
∑
K

∑
h1,... ,ht∈Z

K↑(h1,... ,ht)=J

a
!J
K (Ep1+nh1,q1+nh1 · · ·Ept+nht,qt+nht) εK

(i)
=

a
!J!J

∑
h1,... ,ht∈Z!J↑(h1,... ,ht)=J

(Ep1+nh1,q1+nh1 · · ·Ept+nht,qt+nht) ε !J
+ lower

(ii)
=

(
a
!J!J
∑

σ

(Epσ(1) ,qσ(1) · · ·Epσ(r),qσ(r) ) ε !J
)

+ lower

(∗)
=

(
a
!J!J
∑

σ

(Ep1q1 · · ·Eptqt) ε !J
)

+ lower

= ± a
!J!J · #{σ} · εJ + lower ,

where σ runs over the set of all permutations of {1, . . . , t} such that qi − pi =
qσ(i) − pσ(i) for i ≤ t : clearly #{σ} =

∏
d≥1 µd! . Equation (∗) holds because the

operators Epiqi all commute for i ≤ t. It remains to prove the Lemma.

Proof of Lemma (i). Suppose J = K↑(h1, . . . , ht) = J̃↑(0, . . . , 0) and a
!J
K �= 0. Let

p′ := min{p1+nh1, . . . , pt+nht} , p := p1 = min{p1, . . . , pt} .

We clearly have K<min(p,p′) = J̃<min(p,p′). If p′ < p, then p′ �∈ K, p′ ∈ J̃ , and

K<p′ = J̃<p′ , so J̃
lex
< K, which contradicts Proposition 3(i).

Thus p ≤ p′, and K<p = J̃<p. Furthermore, by Fact 2 in the proof of Prop.
3(i), for any i ≤ t we have |K≡i

>N | = |J̃≡i
>N | for some N < p. Hence for any i,

|K≡i
≥p| = |J̃≡i

≥p| . Since J̃>p clearly has no loose ends, Fact 4 implies K≡i
≥p

B
≥ J̃≡i

≥p

for any i, and we also know K<p = J̃<p. We conclude that K
B
≥ J̃ , and a fortiori

K
lex
≥ J̃ . Since K

lex
≤ J̃ by Proposition 3(i), we must have K = J̃ .
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Proof of Lemma (ii). Suppose J = J̃↑(0, . . . , 0) = J̃↑(h1, . . . , ht). Define:

p′i := pi + nhi , q′i := qi + nhi , di := qi − pi := q′i − p′i

Then we have {p1, . . . , pt} = {p′1, . . . , p′t} and {q1, . . . , qt} = {q′1, . . . , q′t}, so there
exist permutations α, β of {1, . . . , r} such that:

pi = p′α(i) , qi = q′β(i) .

We will use the following facts:
1. We have pi = p + n(i − 1) for i = 1, . . . , r, and also q1 < q2 < · · · < qt .

This follows from the seam-pulling action of the up-operation.
2. If i < j and qi ≡ qj mod n, then di ≥ dj .

Indeed, for a fixed k, the set of all qi ≡ k mod n forms an arithmetic
progression {q, q+n, . . . }, whereas the corresponding set of {pi | qi ≡ k} is a
subset of the arithmetic progression {p1, p2, . . . } = {p, p+n, . . . }. Hence, if
i < j and qi ≡ qj mod n, then pj −pi ≥ qj −qi, and so di = qi−pi ≥ qj −pj =
dj .

3. α(i) = β(i) ⇐⇒ di = dα(i) =⇒ qi ≡ qα(i) mod n
If α(i) = β(i), then di = qi − pi = q′β(i) − p′α(i) = q′α(i) − p′α(i) = dα(i) , and

also qi = q′β(i) ≡ qβ(i) = qα(i).

Now assume α �= β, and let j be the smallest value such that α(j) �= β(j) . Then j
is minimal with β−1α(j) �= j, and necessarily:

β−1α(j) > j with qβ−1α(j) = q′α(j) ≡ qα(j) .

Consider the sequence: j, α(j), α2(j), α3(j), . . . . If α(j), α2(j), · · · , αc(j)<j,
then by the definition of j and Fact 3 we have:

dj �= dα(j) = dαα(j) = dααα(j) = · · · = dαc+1(j)

qα(j) ≡ qαα(j) ≡ qααα(j) ≡ · · · ≡ qαc+1(j) .

But we eventually have αc+1(j) = j, so to avoid the contradiction dj �= dj , there
must exist some k := αc+1(j) such that:

k > j with dk = dα(j) and qk ≡ qα(j) .

Case (a): j < β−1α(j) ≤ k. Then by Fact 2, we have dβ−1α(j) ≥ dk = dα(j).
But:

dβ−1α(j) = qβ−1α(j) − pβ−1α(j)

< qβ−1α(j) − pj

< q′α(j) − p′α(j) = dα(j) ,

so this case is impossible.
Case (b): j < k < β−1α(j). Then by Fact 1, we have pj < pk < qk < qβ−1α(j).

But:
qβ−1α(j) = q′α(j)

= p′α(j) + dα(j)

= pj + dk

< pk + dk = qk .

Thus, this case is impossible also.
The above contradictions show that α = β. Hence we have

p + nhi = p′i = pσ(i) , q + nhi = q′i = qσ(i) ,

where σ = α−1 = β−1, which is the first part of Lemma (ii).
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To see the second part of Lemma (ii), suppose pi, qi given and let σ satisfy
di = dσ(i). Then define hi := (pσ(i) − pi)/n, so that p′i := pi + nhi = pσ(i) and:

q′i := qi + nhi = p′i + di = pσ(i) + dσ(i) = qσ(i) .

Thus {p1, . . . , pt} = {p′1, . . . , p′t} and {q1, . . . , qt} = {q′1, . . . , q′t}, so J = J̃↑(h1, . . . , ht),
as desired.

This proves the Lemma, and hence Proposition 3(ii).
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