Affine Schubert Varieties and Circular Complexes

Peter Magyar
magyar@math.msu.edu
www.math.msu.edu/~magyar

revised Sept 2002
Schubert varieties have been exhaustively studied with a plethora of techniques: Coxeter groups, explicit desingularization, Frobenius splitting, etc. Many authors have applied these techniques to various other varieties, usually defined by determinantal equations. It has turned out that most of these apparently different varieties are actually Schubert varieties in disguise, so that one may use a single unified theory to understand many large families of spaces.

The most powerful result in this direction was given by Lusztig [9], [10, §11], as a footnote to his work on canonical bases. He showed that the variety of nilpotent representations of a cyclic quiver (including nilpotent conjugacy classes of matrices) is isomorphic to an open subset of a Schubert variety for the loop group $\widehat{G L}_{n}$. In this paper, we attempt to describe the affine Schubert varieties (§1) and Lusztig's isomorphism (§2) in the simplest terms possible.

We then apply this isomorphism to an interesting example, the variety of circular complexes, recovering many of the results of Mehta and Trivedi [12]. (The reader may skip to this application in $\S 3$ immediately after reading $\S 1$.) Our technique is similar to that of Lakshmibai and Magyar [8]: it is as a chapter in the "ubiquity of Schubert varieties."

1 Affine flag variety and Weyl group

We begin by describing the loop group and its flag variety as a classical group. For more details of the material of this section see Pressley-Segal [13], KacRaina [4], Slodowy [16], Kazhdan-Lusztig [5], Kumar [6, Appendix C], Shi [15], Bjorner-Brenti [2], and Eriksson-Eriksson [3].

1.1 Loop group and affine flag variety

Let \mathbf{k} be an arbitrary field, and $F:=\mathbf{k}((t))$, the field of formal Laurent series $f(t)=\sum_{i>N} a_{i} t^{i}$ with $a_{i} \in \mathbf{k}$; and $A:=\mathbf{k}[[t]]$, the ring of formal Taylor series. For such $f(t) \neq 0$, we let $\operatorname{ord}(f)$ be the smallest integer N for which $a_{N} \neq 0$.

Fix a positive integer n, and define $G=\hat{\mathrm{GL}_{n}}(\mathbf{k}):=\mathrm{GL}_{n}(F)$, the group of invertible $n \times n$ matrices with coefficients in F. We call this the loop group because for $\mathbf{k}=\mathbb{C}$ we may think of G as a completion of the group of polynomial maps from the circle $S^{1} \subset \mathbb{C}^{\times}$to $\mathrm{GL}_{n}(\mathbb{C})$.

Let $G_{j}:=\{g \in G \mid$ ord $\operatorname{det} g=j\}$, so that $G_{j} G_{k}=G_{j+k}$, and for any $\sigma \in G_{1}$, we have $G_{j}=\sigma^{j} G_{0}=G_{0} \sigma^{j}$, and $G=\coprod_{j \in \mathbb{Z}} G_{j}$. This should be thought of as the decomposition of G into connected components. (For $\mathbf{k}=\mathbb{C}$,
and g a polynomial map, the number ord $\operatorname{det} g$ is the winding number of the loop $\operatorname{det} g: S^{1} \rightarrow \mathbb{C}^{\times}$, and the G_{j} are the connected components of G in the appropriate compact-open topology.)

Let $V:=F^{n}$, a vector space over F with a natural action of G. Let e_{1}, \ldots, e_{n} denote the standard F-basis of V, and for $c \in \mathbb{Z}$, define $e_{i+n c}:=t^{c} e_{i}$. (Thus, $\left\{e_{i}\right\}_{i \in \mathbb{Z}}$ is a k-basis of V, in the sense appropriate to a topological vector space with the t-adic topology.)

An A-lattice $\Lambda \subset V$ is the A-submodule $\Lambda=A v_{1} \oplus \cdots \oplus A v_{n}$, where $\left\{v_{1}, \ldots, v_{n}\right\}$ is an F-basis of V. We may write $\Lambda=\operatorname{Span}_{\mathbf{k}}\left\langle v_{i}\right\rangle_{i \geq 1}$, the space of infinite \mathbf{k}-linear combinations of the vectors $v_{i+n c}:=t^{c} v_{i}$. Consider the family of standard A-lattices:

$$
E_{j}:=\operatorname{Span}_{A}\left\langle e_{j}, e_{j+1}, \ldots e_{j+n-1}\right\rangle=\operatorname{Span}_{\mathbf{k}}\left\langle e_{i}\right\rangle_{i \geq j}
$$

Note that $E_{j}=\sigma^{j} E_{1}$, where we use the shift operator $\sigma\left(e_{i}\right):=e_{i+1}$, or as a matrix:

$$
\sigma=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & t \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right) \in G_{1}
$$

The affine Grassmannian $\operatorname{Gr}(V)$ is the space of all A-lattices of V. Clearly $\operatorname{Gr}(V)$ is a homogeneous space with respect to the obvious action of G, and the stabilizer of the standard lattice E_{1} is $P_{\hat{0}}:=G L_{n}(A)$, the subgroup of matrices with coefficients in A and with determinant having ord $=0$. Thus $\operatorname{Gr}(V) \cong$ $G / P_{\hat{0}}$, and the connected components of the Grassmannian are $\mathrm{Gr}_{j}(V):=G_{0}$. $E_{j}=G_{j} \cdot E_{1} \cong G_{j} / P_{\hat{0}}$. In fact, $\operatorname{Gr}_{j}(V):=\{\Lambda \mid \operatorname{vdim}(\Lambda)=j\}$, where we define the virtual dimension

$$
\operatorname{vdim}(\Lambda):=\operatorname{dim}_{\mathbf{k}}\left(\Lambda / \Lambda \cap E_{1}\right)-\operatorname{dim}_{\mathbf{k}}\left(E_{1} / E_{1} \cap \Lambda\right)
$$

The complete affine flag variety $\mathrm{Fl}(V)$ is the space of all flags of lattices $\Lambda_{\bullet}=$ $\left(\Lambda_{1} \supset \cdots \supset \Lambda_{n}\right)$ such that $\Lambda_{n} \supset t \Lambda_{1}$ and $\operatorname{dim}_{\mathbf{k}}\left(\Lambda_{j} / \Lambda_{j+1}\right)=1$. There always exists an F-basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V such that $\Lambda_{j}=\operatorname{Span}_{A}\left\langle v_{j}, \ldots, v_{n}, t v_{1}, \ldots, t v_{j-1}\right\rangle$ $=\operatorname{Span}_{\mathbf{k}}\left\langle v_{i}\right\rangle_{i \geq j}$, where i runs over all integers not less than j, and $v_{i+n c}:=t^{c} v_{i}$. The standard flag is $E_{\bullet}:=\left(E_{1} \supset \cdots \supset E_{n}\right)$, whose stabilizer B is the subgroup of matrices $b \in P_{\hat{0}}$ which are lower-triangular modulo t :

$$
B:=\left\{b=\left(b_{i j}\right) \in G L_{n}(A) \mid \operatorname{ord}\left(b_{i j}\right)>0 \quad \forall i<j\right\} .
$$

Thus, $\mathrm{Fl}(V) \cong G / B$, with connected components $\mathrm{Fl}_{j}(V):=G_{j} \cdot E_{\bullet} \cong G_{j} / B=$ $\left\{\Lambda_{\bullet} \mid \operatorname{vdim}\left(\Lambda_{1}\right)=j\right\}$. Furthermore, the projection $\operatorname{Fl}(V) \rightarrow \operatorname{Gr}(V), \Lambda_{\bullet} \mapsto \Lambda_{1}$ is a bundle whose fiber is the space of complete flags in the n-dimensional \mathbf{k}-vector space $\Lambda_{1} / t \Lambda_{1}$.

1.2 Affine Weyl group

We first discuss \widetilde{W}, the Weyl group of the disconnected group G; and then W, the Weyl group of the connected component G_{0}.

Let S_{∞} be the group of bijections $\pi: \mathbb{Z} \rightarrow \mathbb{Z}$, and let $\sigma: i \mapsto i+1$ be the shift bijection. Let $\widetilde{W} \subset S_{\infty}$ be the subgroup of bijections which commute with the nth power of σ : that is, $\widetilde{W}:=\left\{\pi \in S_{\infty} \mid \pi \tau=\tau \pi\right\}$, where $\tau:=\sigma^{n}: i \mapsto i+n$.

For $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}^{n}$, define an element of $\widetilde{W}, \tau^{\mathbf{c}}: i \mapsto i+n c_{(i \bmod n)}$. This gives an embedding of the additive group $\mathbb{Z}^{n} \subset \widetilde{W}$. Furthermore, we have the embedding $S_{n} \subset \widetilde{W}$ with $\bar{\pi}(i+n c):=\bar{\pi}(i)+n c$ for $\bar{\pi} \in S_{n}$. Then we may write any element $\pi \in \widetilde{W}$ as $\pi=\bar{\pi} \tau^{\mathbf{c}}$ for unique $\bar{\pi} \in S_{n}, \mathbf{c} \in \mathbb{Z}^{n}$, and we have $\bar{\pi}_{1} \tau^{\mathbf{c}_{1}} \bar{\pi}_{2} \tau^{\mathbf{c}_{2}}=\bar{\pi}_{1} \bar{\pi}_{2} \tau^{\bar{\pi}_{2}^{-1}\left(\mathbf{c}_{1}\right)+\mathbf{c}_{2}}$. That is, $\widetilde{W}=S_{n} \ltimes \mathbb{Z}^{n}$, a semi-direct product. The normal subgroup \mathbb{Z}^{n} is the kernel of the homomorphism $\widetilde{W} \rightarrow S_{n}$ which takes each $\pi: \mathbb{Z} \rightarrow \mathbb{Z}$ to a permutation of cosets $\bar{\pi}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$.

Thus, an element $\pi \in \widetilde{W}$ is equivalent to a sequence of integers $[\pi(1), \ldots, \pi(n)]$ such that $i \mapsto \bar{\pi}(i)$ defines a permutation of $\mathbb{Z} / n \mathbb{Z}$. For example, in this one-line notation $\sigma=[2,3, \cdots, n+1]$ and $\tau^{\mathbf{c}}=\left[1+n c_{1}, 2+n c_{2}, \ldots, n+n c_{n}\right]$.

We obtain another useful notation by embedding $\widetilde{W} \subset G$. If we let $\pi=$ $\bar{\pi} \tau^{\mathbf{c}} \in W$ act F-linearly on V by $\pi\left(e_{i}\right):=e_{\pi(i)}$, the corresponding matrix is the affine permutation matrix $\left(a_{i j}\right)$ with $a_{\bar{\pi}(i), i}=t^{c_{i}}$. For example, σ becomes the matrix in G_{1} of the previous section, $\tau^{\mathbf{c}}=\operatorname{diag}\left(t^{c_{1}}, \cdots, t^{c_{n}}\right)$, and $\tau=\tau^{(1, \cdots, 1)}=$ $\operatorname{diag}(t, \cdots, t)$,

Using this embedding, we may show that $\widetilde{W} \cong N_{G}(\hat{T}) / \hat{T}$, where \hat{T} is the subgroup of diagonal matrices with entries in A.

Considering the embedding $\widetilde{W} \subset G$, we define

$$
W_{j}:=\widetilde{W} \cap G_{j}=\left\{\pi \in \widetilde{W} \mid \sum_{i=1}^{n} \pi(i)-i=j\right\}, \quad W:=W_{0}
$$

Thus W is a normal subgroup of \widetilde{W}, and we have $W=S_{n} \ltimes \mathbb{Z}_{0}^{n}$, where $\mathbb{Z}_{0}^{n}:=$ $\mathbb{Z}^{n} \cap W=\left\{\mathbf{c} \mid \sum_{i=1}^{n} c_{i}=0\right\}$. That is, $W \cong \widehat{S}_{n}$, the affine Weyl group of extended Dynkin type \widehat{A}_{n-1}.

Define the simple reflections s_{0}, \ldots, s_{n-1} in W by $s_{i}(i)=i+1, s_{i}(i+1)=i$, and $s_{i}(j)=j$ for $j \not \equiv i, i+1 \bmod n$. We shall sometimes denote $s_{n}:=s_{0}$. Then s_{0}, \ldots, s_{n-1} are involutions generating W and satisfying the Coxeter relations $\left(s_{i} s_{i+1}\right)^{3}=\mathrm{id}$ for $0 \leq i \leq n-1$, and $\left(s_{i} s_{j}\right)^{2}=\mathrm{id}$ otherwise. We have a semidirect product $\widetilde{W}=\langle\sigma\rangle \ltimes W$. Here σ acts on W via the outer automorphism: $\sigma s_{i} \sigma^{-1}=s_{i+1}$.

The Bruhat length $\ell(\pi)$ is defined as usual for $\pi \in W$, as the smallest number of simple reflections whose product is π; and we extend this to \widetilde{W} by letting $\ell\left(\sigma^{j} \pi\right):=\ell(\pi)$. We have J. Shi's formula [15]:

$$
\ell(\pi)=\sum_{1 \leq i<j \leq n} \mid \text { floor } \left.\left(\frac{\pi(j)-\pi(i)}{n}\right) \right\rvert\,,
$$

where floor (x) denotes the greatest integer not exceeding x. Lusztig showed:

$$
\ell\left(\tau^{\mathbf{c}}\right)=(n-1) c_{1}+(n-3) c_{2}+\cdots+(-n+3) c_{n-1}+(-n+1) c_{n}
$$

namely, the dot product of \mathbf{c} with

$$
2 \rho^{\vee}:=(n-1, n-3, \ldots,-n+3,-n+1)=\sum_{1 \leq i<j \leq n} e_{i}-e_{j} .
$$

1.3 Wiring diagrams

The structure of the Weyl group is further elucidated by the loop wiring diagrams (cf. Berenstein-Fomin-Zelevinsky [1]). Consider a cylinder $[0,1] \times S^{1}$. On the right end, label each point $\left(1, e^{2 \pi \sqrt{-1} i / n}\right)$ with the integer i, and similarly on the left end. Now, represent a permutation $\pi=\bar{\pi} \tau^{\mathbf{c}} \in \widetilde{W}$ by n curves, each joining a point i on the right to the point $\bar{\pi}(i)$ on the left, but looping counter-clockwise around the cylinder c_{i} times.

Example. For $n=3$, the permutation $\pi=[-2,2,6] \in W$, with $\bar{\pi}=\operatorname{id} \in S_{3}$ and $\mathbf{c}=(-1,0,1) \in \mathbb{Z}_{0}^{3}$, is represented by the picture:

Here we represent our cylinder by identifying the top and bottom borders of the picture, so that each point i on the right is connected to the same i on the left (since $\bar{\pi}=\mathrm{id}$). However, since $\mathbf{c}=(-1,0,1)$, the curve starting from 1 travels once clockwise around the cylinder, the curve from 2 travels straight across, and the curve from 3 travels once counter-clockwise.

We may read off much combinatorial data from this picture. Since the curves have a total of 4 crossings, we conclude that $\ell(\pi)=4$. By listing these crossings, as well as crossings over the top and bottom margins, we obtain a reduced decomposition: $\pi=s_{2} s_{1} s_{2} \sigma s_{2} \sigma^{-1}$. That is, the leftmost crossing switches the top two curves, giving a factor s_{2}; the second switches the bottom two curves, s_{1}; again s_{2}; then the bottom curve crosses to the top, σ; again s_{2}; and finally the top curve crosses to the bottom, σ^{-1}. Using $s_{i} \sigma=\sigma s_{i-1}$, we have $\pi=s_{2} s_{1} s_{2} s_{0}$.

1.4 Schubert varieties

By Gaussian elimination, we obtain the Bruhat decomposition of G into double B-cosets: $G=\coprod_{\pi \in \widetilde{W}} B \pi B$, where we consider each π as an affine permutation
matrix. Hence we also have a Bruhat decomposition of the affine flag variety $\operatorname{Fl}(V)=\coprod_{\pi \in \widetilde{W}} X_{\pi}^{\circ}$ into Schubert cells $X_{\pi}^{\circ}:=B \cdot \pi E_{\bullet}$, where πE_{\bullet} is a translation of the standard flag $E_{\bullet}=\left(E_{1} \supset \cdots \supset E_{n}\right)$. In particular, $\mathrm{Fl}_{j}(V)$ is the union of all X_{π}° with $\pi \in W_{j}$. The Schubert cells can be defined by dimension constraints called Schubert conditions. For $\pi \in W_{j}$, we have:

$$
\begin{aligned}
X_{\pi}^{\circ} & =\left\{\Lambda_{\bullet} \in \mathrm{Fl}(V) \mid \operatorname{dim}_{\mathbf{k}}\left(E_{j} / \Lambda_{i} \cap E_{j}\right)=\#\left(\mathbb{Z}_{\geq j} \backslash \pi \mathbb{Z}_{\geq i}\right)\right\} \\
& =\left\{\Lambda_{\bullet} \in \operatorname{Fl}_{j}(V) \mid \operatorname{dim}_{\mathbf{k}}\left(\Lambda_{i} / \Lambda_{i} \cap E_{j}\right)=\#\left(\pi \mathbb{Z}_{\geq i} \backslash \mathbb{Z}_{\geq j}\right)\right\}
\end{aligned}
$$

where $\mathbb{Z}_{\geq i}$ denotes the integers not less than i; we define $\pi \mathbb{Z}_{\geq i}:=\{\pi(i), \pi(i+$ $1), \ldots\}$; and \backslash denotes set complement. Indeed, the set on the right of the equation is clearly B-invariant, and $\pi^{\prime} E_{\bullet}$ lies in this set if and only if $\pi^{\prime}=\pi$.

The Schubert variety, meaning the topological closure $X_{\pi}:=\overline{X_{\pi}^{\circ}}$, is obtained by replacing $=$ in the above Schubert conditions with \leq. We say $\pi \leq \pi^{\prime}$ in the Chevalley-Bruhat order if $X_{\pi} \subset X_{\pi^{\prime}}$, and we can express this combinatorially as: $\pi \leq \pi^{\prime}$ iff $\# \pi \mathbb{Z}_{\geq i} \backslash \mathbb{Z}_{\geq j} \leq \# \pi^{\prime} \mathbb{Z}_{\geq i} \backslash \mathbb{Z}_{\geq j}$ for all $1 \leq i \leq n, j \in \mathbb{Z}$.

We explain below how X_{π} has the structure of a projective algebraic variety. With this structure, the varieties X_{π} include as special cases the familiar Schubert varieties for $\mathrm{GL}_{n}(\mathbf{k})$. In fact, for $\pi=\bar{\pi} \in S_{n} \subset \widetilde{W}$ and $\Lambda_{\bullet} \in X_{\pi}$, we have $\pi\left(\mathbb{Z}_{\geq 1}\right)=\mathbb{Z}_{\geq 1}$ and $\pi\left(\mathbb{Z}_{\geq n+1}\right)=\mathbb{Z}_{\geq n+1}$. Hence $\Lambda_{1} / \Lambda_{1} \cap E_{1}=0$ and $\Lambda_{1} \subset E_{1}$. Also $n=\operatorname{dim}_{\mathbf{k}}\left(\Lambda_{1} / \Lambda_{1} \cap E_{n+1}\right) \leq \operatorname{dim}_{\mathbf{k}}\left(E_{1} / E_{n+1}\right)=n$, so $\Lambda_{1}=E_{1}$ and $\Lambda_{i} \supset t \Lambda_{1}=E_{n+1}$ for $1 \leq i \leq n$. Letting $\mathbf{k}^{n}=E_{1} / E_{n+1}$ and $V_{i}:=\Lambda_{i} / E_{n+1}$, we thus find that $\Lambda_{\bullet} \in X_{\pi}$ is in natural correspondence with the complete flag

$$
\mathbf{k}^{n}=V_{1} \supset V_{2} \supset \cdots \supset V_{n} \supset 0
$$

and the affine Schubert conditions on Λ_{\bullet} are equivalent to the usual Schubert conditions

$$
\operatorname{dim}_{\mathbf{k}}\left(V_{i} \cap \bar{E}_{j}\right) \geq \#(\pi[i, n] \cap[j, n])
$$

relative to the standard flag $\bar{E}_{j}:=E_{j} / E_{n+1}$. For example, $X_{\mathrm{id}}=\left\{E_{\bullet}\right\}$, a single point.

For a general $\pi \in \widetilde{W}$, we can find a, b so that $\mathbb{Z}_{\geq a} \supset \pi \mathbb{Z}_{\geq i} \supset \mathbb{Z}_{\geq b}$ for $1 \leq i \leq n$. Then any $\Lambda_{\bullet} \in X_{\pi}$ satisfies $E_{a} \supset \Lambda_{i} \supset \bar{E}_{b}$, and we may embed X_{π} inside a partial flag variety of the finite-dimensional \mathbf{k}-vector space E_{a} / E_{b}. The flags in the image of this embedding must satisfy certain ordinary Schubert conditions, but they must also be stable under the nilpotent map induced on E_{a} / E_{b} by $t \in A$. This makes X_{π} into an algebraic variety over \mathbf{k} (in fact, even defined over the integers).

We can imitate all the standard geometric constructions for Schubert varieties of $\mathrm{GL}_{n}(\mathbf{k})$. For example, we can show $\operatorname{dim}_{\mathbf{k}} X_{\pi}=\ell(\pi)$; we can explicitly construct Bott-Samelson resolutions of X_{π} as configuration varieties; and we can use the usual Frobenius-splitting arguments to show that the variety X_{π} is normal, Cohen-Macaulay, etc.

Example. Consider as above $n=3, \pi=[-2,2,6]$. Take $a=-2, b=4$, and
write:

$$
X_{\pi}=\left\{\left(E_{-2} \stackrel{3}{\supset} \Lambda_{1} \stackrel{1}{\supset} \Lambda_{2} \stackrel{1}{\supset} \Lambda_{3} \stackrel{1}{\supset} E_{4}\right) \mid t \Lambda_{1} \subset \Lambda_{3}, \Lambda_{2} \subset E_{1}\right\},
$$

where $U \stackrel{d}{\supset} V$ means $U \supset V$ and $\operatorname{dim}_{\mathbf{k}}(U / V)=d$. All the Schubert conditions for X_{π} follow from the conditions specified on the right side of the equation.

Let $\mathbf{k}^{6}=E_{-2} / E_{4}$ with basis $\left\{\bar{e}_{-2}, \bar{e}_{-1}, \bar{e}_{0}, \bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right\}$, and take $\bar{t}: \mathbf{k}^{6} \rightarrow \mathbf{k}^{6}$, $\bar{e}_{i} \mapsto \bar{e}_{i+3} \bmod E_{4}$, so that $\bar{t}^{2}=0$. Then we have the isomorphism

$$
X_{\pi} \cong\left\{\left(\mathbf{k}^{6} \stackrel{3}{\supset} V_{1} \stackrel{1}{\supset} V_{2} \stackrel{1}{\supset} V_{3} \stackrel{1}{\supset} 0\right) \mid \bar{t}\left(V_{1}\right) \subset V_{3}, V_{2} \subset \bar{E}_{1}\right\},
$$

a subvariety of a partial flag variety of $\mathrm{GL}_{6}(\mathbf{k})$ defined by Schubert conditions and the algebraic incidence condition $\bar{t}\left(V_{1}\right) \subset V_{3}$.

Further, we can construct a Bott-Samelson variety corresponding to the reduced word $\pi=s_{2} s_{1} s_{2} s_{0}$:
where each arrow $U \leftarrow V$ indicates the condition $U \stackrel{1}{\supset} V$. We may build up this variety by starting with a single point (the standard flag) and successively adding the spaces $\Lambda_{3}^{\prime}, \Lambda_{2}, \Lambda_{3}, \Lambda_{1}$, corresponding to the reflections $s_{2}, s_{1}, s_{2}, s_{0}$. Clearly Z_{2120} is an iterated \mathbb{P}^{1}-fibration (thus smooth), and it maps birationally to X_{π} by dropping Λ_{3}^{\prime}. (In this case, X_{π} happens to be smooth itself.) Note that the pattern of inclusions defining Z_{2120} is the dual graph of the wiring diagram (turned sideways).

1.5 Partial flag variety and opposite cell

A subset $I \subset[0, n-1]$ corresponds to a parabolic subgroup $G \supset P_{I} \supset B$ with Weyl group $W_{I}:=\left\langle s_{i}\right\rangle_{i \in I} \subset W$. For $I \ni 0$, the partial flag variety corresponding to the complement $\widehat{I}:=[0, n-1] \backslash I$ is:

$$
G / P_{\widehat{I}} \cong\left\{\begin{array}{l|l}
\left(\Lambda_{1} \supset \cdots \supset \Lambda_{h}\right) & \begin{array}{c}
\Lambda_{j} \text { a lattice, } \Lambda_{h} \supset t \Lambda_{1} \\
\operatorname{dim}\left(\Lambda_{j} \backslash \Lambda_{j+1}\right)=i_{j+1}-i_{j}
\end{array}
\end{array}\right\} .
$$

We shall find it convenient to index parabolics by compositions of n : that is, sequences of positive integers $\mathbf{d}=\left(d_{1}, \ldots, d_{h}\right)$ with $d_{1}+\cdots+d_{h}=n$. Given $I=\left\{0=i_{1}<\cdots<i_{h}\right\}$, let $i_{h+1}:=n$, and define a composition by $d_{j}:=i_{j+1}-i_{j}$ (so that $i_{j}=d_{1}+\cdots+d_{j-1}$). Then we may rewrite the above more concisely as:

$$
G / P_{\widehat{I}} \cong \operatorname{Fl}(\mathbf{d} ; V):=\left\{\left(\Lambda_{1} \stackrel{d_{1}}{\supset} \cdots \stackrel{d_{h-1}}{\supset} \Lambda_{h} \stackrel{d_{h}}{\supset} t \Lambda_{1}\right)\right\} .
$$

Denoting $W_{\mathbf{d}}:=W_{\widehat{I}}$ and $E_{(j)}:=E_{1+i_{j}}, E_{(\bullet)}:=\left(E_{(1)} \supset \cdots \supset E_{(h)}\right)$, we have:

$$
\mathrm{Fl}(\mathbf{d} ; V)=\coprod_{\pi W_{\mathbf{d}} \in \widetilde{W} / W_{\mathbf{d}}} B \cdot \pi E_{(\bullet)} .
$$

In particular, for $I=\{0\}, \mathbf{d}=(n)$, we have $\widetilde{W} / W_{\mathbf{d}}=\widetilde{W} / S_{n} \cong \mathbb{Z}^{n}$, and

$$
\operatorname{Gr}(V)=G / P_{\hat{0}}=\coprod_{\mathbf{c} \in \mathbb{Z}^{n}} X_{\mathbf{c}}^{\circ}
$$

where $X_{\mathbf{c}}^{\circ}:=B \cdot \tau^{\mathbf{c}} E_{1}=\left\{\Lambda \mid \operatorname{dim}\left(\Lambda / \Lambda \cap E_{j}\right)=\#\left(\tau^{\mathbf{c}} \mathbb{Z}_{\geq 1} \backslash \mathbb{Z}_{\geq j}\right)\right\}$.
Next, for any Schubert variety X_{π}, we define a certain affine open subset, the opposite cell $X_{\pi}^{\prime} \subset X_{\pi}$ (meaning the opposite to the cell $X_{\pi}^{\circ} \subset X_{\pi}$, though X_{π}^{\prime} itself is generally not a topological cell). Let $E_{k}^{\prime}:=\operatorname{Span}_{\mathbf{k}}\left\langle e_{i}\right\rangle_{i<k}$ be the complementary space to E_{k}. Note that E_{k}^{\prime} is not an A-lattice in V : rather, it is a lattice over the ring $A^{\prime}=k\left[t^{-1}\right] \subset F$. For $\pi \in W$, define $X_{\pi}^{\prime} \subset X_{\pi} \subset \mathrm{Fl}_{0}(V)$ as the set of $\Lambda_{\bullet} \in X_{\pi}$ such that $\Lambda_{i} \cap E_{i}^{\prime}=0$ for $1 \leq i \leq n$. For example, $E_{\bullet} \in X_{\pi}^{\prime}$ for any $\pi \in W$.
[Note: The condition $\Lambda_{i} \cap E_{i}^{\prime}=0$ is equivalent to $\Lambda_{i} \oplus E_{i}^{\prime}=V$. Proof: Recall that $\operatorname{dim}_{\mathbf{k}}\left(\Lambda_{i} / \Lambda_{i} \cap E_{i}\right)-\operatorname{dim}_{\mathbf{k}}\left(E_{i} / E_{i} \cap \Lambda_{i}\right)=0$, and let $\phi: \Lambda_{i} / \Lambda_{i} \cap E_{i} \subset$ $E_{i}^{\prime} \oplus E_{i} / \Lambda_{i} \cap E_{i} \rightarrow E_{i} / \Lambda_{i} \cap E_{i}$. Thus $\Lambda_{i} \cap E_{i}^{\prime}=\operatorname{Ker}(\phi)=0 \Longleftrightarrow \operatorname{Im}(\phi)=E_{i} / \Lambda_{i} \cap E_{i}$ $\left.\Longleftrightarrow E_{i}^{\prime}+\Lambda_{i}=E_{i}^{\prime}+E_{i}=V.\right]$

More generally, for $\pi \in W_{k}=\sigma^{k} W, X_{\pi} \subset \mathrm{Fl}_{k}(V)$, we let

$$
\begin{aligned}
X_{\pi}^{\prime} & :=\left\{\Lambda_{\bullet} \in X_{\pi} \mid \Lambda_{i} \cap E_{i+k}^{\prime}=0, \quad 1 \leq i \leq n\right\} \\
& =\left\{\Lambda_{\bullet} \in X_{\pi} \mid \Lambda_{i} \oplus E_{i+k}^{\prime}=V, \quad 1 \leq i \leq n\right\}
\end{aligned}
$$

Thus $\sigma^{k} E_{\bullet} \in X_{\pi}^{\prime}$. We define $X_{\pi}^{\prime} \subset X_{\pi} \subset \mathrm{Fl}_{k}(\mathbf{d}, V)$ similarly: e.g., for $X_{\pi}^{\prime} \subset$ $X_{\pi} \subset \operatorname{Gr}(V)$, we require $\Lambda \cap E_{k+1}^{\prime}=0$, so $E_{k+1} \in X_{\pi}^{\prime}$.

Now we examine certain affine Grassmannian Schubert varieties which will occur in the following section. Suppose $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ satisfies $0 \leq c_{1} \leq \cdots \leq$ $c_{n} \leq n$ and $c_{1}+\cdots+c_{n}=n$. Let $c_{j}^{\prime}:=\#\left(\tau^{\mathbf{c}} \mathbb{Z}_{\geq 1} \backslash \tau^{j} \mathbb{Z}_{\geq 1}\right)=\#\left\{i \mid c_{i} \leq j\right\}$, the conjugate-complement partition of \mathbf{c}. Then we have:

$$
X_{\mathbf{c}}^{\circ}=\left\{\Lambda \in \operatorname{Gr}(V) \mid E_{1} \supset \Lambda \supset t^{n} E_{1}, \operatorname{dim}\left(\Lambda / \Lambda \cap t^{j} E_{1}\right)=c_{j}^{\prime}, 1 \leq j \leq n\right\}
$$

Since the maximal parabolic $P_{\hat{0}}$ stabilizes $t^{j} E_{1}$, we have $X_{\mathbf{c}}^{\circ}=P_{\hat{0}} \cdot \tau^{\mathbf{c}} E_{1}$. Furthermore, letting $X_{\mathbf{c}}^{\circ \prime}:=X_{\mathbf{c}}^{\circ} \cap X_{\mathbf{c}}^{\prime}$, we obtain:

$$
X_{\mathbf{c}}^{\circ \prime}=\left\{\begin{array}{l|l}
\Lambda \in \operatorname{Gr}(V) & \begin{array}{c}
\operatorname{dim}\left(\Lambda / \Lambda \cap t^{j} E_{1}\right)=c_{j}^{\prime}, 1 \leq j \leq n \\
E_{1} \supset \Lambda \supset t^{n} E_{1}, \quad \Lambda \cap t^{n} E_{1}^{\prime}=0
\end{array}
\end{array}\right\}
$$

Since $\mathrm{GL}_{n}(\mathbf{k}) \subset P_{\hat{0}}$ is the joint stabilizer of $t^{j} E_{1}$ and $t^{j} E_{1}^{\prime}$, we have $X_{\mathbf{c}}^{\circ \prime}=$ $\mathrm{GL}_{n}(\mathbf{k}) \cdot \tau^{\mathbf{c}} E_{1}$.

2 Lusztig's isomorphism

In this and the following section, we consider how certain varieties of matrices may be considered as opposite cells in affine Schubert varieties.

2.1 Nilpotent matrices

Let $\mathcal{N} \subset M_{n \times n}(\mathbf{k})$ be the set of nilpotent $n \times n$ complex matrices, on which $G L_{n}(\mathbf{k})$ acts by conjugation. Lusztig [9] has given an equivariant algebraic isomorphism between \mathcal{N} and the opposite cell of a Schubert variety in $\operatorname{Gr}(V)$.

A matrix in $G L_{n}(\mathbf{k})$ has a natural A-linear action on V, and for $N \in \mathcal{N}$ we can define $\phi_{N}: V \rightarrow V$,

$$
\begin{aligned}
\phi_{N}(v) & :=\frac{t^{n-1}}{1-t^{-1} N}(v) \\
& =t^{n-1} v+t^{n-2} N(v)+t^{n-3} N^{2}(v)+\cdots+N^{n-1}(v)
\end{aligned}
$$

Lusztig's isomorphism is given by the map

$$
\begin{aligned}
\Phi: \mathcal{N} & \rightarrow \operatorname{Gr}(V) \\
N & \mapsto
\end{aligned} \phi_{N}\left(E_{1}\right) .
$$

Note that Φ is $G L_{n}(\mathbf{k})$-equivariant: for $g \in G L_{n}(\mathbf{k})$, we have $\Phi\left(g N g^{-1}\right)=$ $g \phi_{N}\left(g^{-1} E_{1}\right)=g \phi_{N}\left(E_{1}\right)=g \Phi(N)$. We also have $E_{1} \supset \Phi(N) \supset t^{n} E_{1}$ for all $N \in \mathcal{N}$.

We may parametrize the $G L_{n}(\mathbf{k})$-orbits in \mathcal{N} by n-tuples of integers $\mathbf{b}=$ $\left(b_{1}, \ldots, b_{n}\right)$, where $n \geq b_{1} \geq \cdots \geq b_{n} \geq 0$ and $b_{1}+\cdots+b_{n}=n$. That is, the orbit $\mathcal{N}_{\mathbf{b}} \subset \mathcal{N}$ consists of those nilpotents whose largest Jordan block has size b_{1}, the next largest has size b_{2}, etc. The open orbit of principal nilpotents is $\mathcal{N}_{(n, 0, \ldots, 0)}$, the closed orbit $\{0\}=\mathcal{N}_{(1, \ldots, 1)}$.

Let $\mathbf{c}=\left(n-b_{1}, \ldots, n-b_{n}\right)$. Applying elementary linear algebra to the description of $X_{\mathbf{c}}^{\circ \prime}$ in the previous section, we may easily show that:

$$
\Phi\left(\mathcal{N}_{\mathbf{b}}\right)=X_{\mathbf{c}}^{\circ^{\prime}} \quad \text { and } \quad \Phi\left(\overline{\mathcal{N}}_{\mathbf{b}}\right)=X_{\mathbf{c}}^{\prime}
$$

where $\overline{\mathcal{N}}_{\mathbf{b}}$ denotes the closure. In particular,

$$
\Phi(\mathcal{N})=X_{(0, n, \cdots, n)}^{\prime}=\left\{\Lambda \in \operatorname{Gr}(V) \mid \Lambda \stackrel{n}{\supset} t^{n} E_{1}\right\}
$$

Example. Note that we can renormalize our map by a τ-shift: $\Phi\left(\overline{\mathcal{N}}_{\mathbf{b}}\right)=X_{\mathbf{c}}^{\prime} \cong$ $X_{\tau^{j} \mathbf{c}}^{\prime}$ (equivariant isomorphism) for any $j \in \mathbb{Z}$. Thus for the example of $\S 3, \S 4$, we have: $X_{(-1,0,1)}^{\prime} \cong X_{(1,2,3)}^{\prime} \cong \Phi\left(\overline{\mathcal{N}}_{(2,1,0)}\right)$.

Let us write our map in coordinates. We represent $v=\sum_{i=1}^{\infty} a_{i} e_{i} \in E_{1}$ (where $a_{i} \in \mathbf{k}$) by the semi-infinite column vector with entries a_{i}; and $\Lambda=$
$\operatorname{Span}_{A}\left\langle v_{1}, \ldots, v_{n}\right\rangle \in \operatorname{Gr}(V)$ by the semi-infinite matrix $\left[v_{1}, \cdots, v_{n}\right]$. Then we may write

$$
\Phi(N)=\left[\begin{array}{c}
N^{n-1} \\
\vdots \\
N^{2} \\
N \\
I \\
0 \\
\vdots
\end{array}\right]
$$

where I is the identity matrix. From this we see how the Plucker coordinates (the $n \times n$ minors of this matrix) restrict to polynomial functions on \mathcal{N}. In particular, since the vanishing ideal of the Schubert subvarieties $X_{\mathbf{c}} \subset \operatorname{Gr}(V)$ is generated by the vanishing of certain Plucker coordinates, we obtain generators for the ideal of $\overline{\mathcal{N}}_{\mathbf{b}} \subset \mathcal{N}$. (Cf. Weyman [17]).

2.2 Cyclic quivers

Lusztig [10] has generalized the above isomorphism (and simultaneously another isomorphism of Zelevinsky [18], [8]). The generalization involves a positive integer parameter h, with the case $h=1$ reducing to our discussion of nilpotent matrices.

The cyclic quiver \widehat{A}_{h-1} is the oriented graph:

For a fixed h-tuple of positive integers $\mathbf{d}=\left(d_{1}, \cdots, d_{h}\right)$, we define the \mathbf{d} dimensional representations of this quiver to be the affine space

$$
M_{d(h) \times d(1)}(\mathbf{k}) \times M_{d(1) \times d(2)}(\mathbf{k}) \times \cdots \times M_{d(h-1) \times d(h)}(\mathbf{k}) .
$$

(For legibility, we have written $d(j)$ instead of d_{j}.) That is, a representation $\left(M_{1}, \ldots, M_{h}\right)$ is a way of replacing each arrow $i \rightarrow i-1$ by a linear map M_{i} : $\mathbf{k}^{d(i)} \rightarrow \mathbf{k}^{d(i-1)}$, where we take $d_{0}:=d_{h}$. (For all j, k, we write $d_{j+h k}:=d_{j}$.) We have a natural action of the group $\mathrm{GL}_{\mathbf{d}}(\mathbf{k}):=\mathrm{GL}_{d(1)}(\mathbf{k}) \times \cdots \times \mathrm{GL}_{d(h)}(\mathbf{k})$ on the space of representations:

$$
\left(g_{1}, \ldots, g_{h}\right) \cdot\left(M_{1}, \ldots, M_{h}\right):=\left(g_{h} M_{1} g_{1}^{-1}, g_{1} M_{2} g_{2}^{-1}, \ldots, g_{h-1} M_{h} g_{h}^{-1}\right)
$$

Our main concern is a certain $\mathrm{GL}_{\mathbf{d}}(\mathbf{k})$-stable subvariety \mathcal{M} of the representations, the space of nilpotent representations). We define:

$$
\mathcal{M}=\mathcal{M}^{\mathbf{d}}:=\left\{\left(M_{1}, \ldots, M_{h}\right) \mid M_{1} M_{2} \cdots M_{h} \in M_{d(h) \times d(h)}(\mathbf{k}) \text { is nilpotent }\right\} .
$$

The condition is equivalent to $M_{j+1} M_{j+2} \cdots M_{h} M_{1} \cdots M_{j} \in M_{d(j) \times d(j)}(\mathbf{k})$ being nilpotent for any j. In general \mathcal{M} is a connected but reducible variety. I believe it has at most h components, all of equal dimension.

Examples. (i) For $\mathbf{d}=(1,1,1)$, we have $\mathcal{M}=\left\{\left(m_{1}, m_{2}, m_{3}\right) \in \mathbf{k}^{3} \mid m_{1} m_{2} m_{3}=\right.$ $0\}$, the union of the three coordinate planes. Similarly for $\mathbf{d}=\left(1^{n}\right)$.
(ii) For $\mathbf{d}=(2,1,1)$, we have $\mathcal{M}=\left\{\left(\left[m_{1}, m_{1}^{\prime}\right],\left[m_{2}, m_{2}^{\prime}\right]^{T}, m_{3}\right) \mid\left(m_{2} m_{2}+\right.\right.$ $\left.\left.m_{1}^{\prime} m_{2}^{\prime}\right) m_{3}=0\right\}$, with two irreducible components of dimension four.

We define an isomorphism from \mathcal{M} to a union of opposite cells of Schubert varieties in $\operatorname{Fl}(\mathbf{d}, V)$. Here we take $n:=d_{1}+\cdots+d_{h}$, so that \mathbf{d} is a composition of n, and we consider $V=V_{1} \oplus \cdots \oplus V_{n}$, where $V_{j}=F^{d(j)}$.

First, we embed

$$
\begin{gathered}
M_{d(h) \times d(1)}(\mathbf{k}) \times \cdots \times M_{d(h-1) \times d(h)}(\mathbf{k}) \hookrightarrow G=G L_{n}(F), \\
M=\left(M_{1}, \ldots, M_{h}\right) \longmapsto \tilde{M}:=\left(\begin{array}{ccccc}
0 & M_{2} & 0 & \cdots & 0 \\
0 & 0 & M_{3} & \cdots & 0 \\
\vdots & \vdots & : & & \vdots \\
0 & 0 & 0 & \cdots & M_{h} \\
t^{-1} M_{1} & 0 & 0 & \cdots & 0
\end{array}\right) .
\end{gathered}
$$

That is, $\tilde{M}=\tilde{M}_{1}+\cdots+\tilde{M}_{h}$, where $\tilde{M}_{i}: V \rightarrow V$,

$$
\tilde{M}_{j}(v):=\left\{\begin{array}{cl}
t^{-\delta_{1 j}} M_{j}(v) & \text { for } v \in V_{j} \\
0 & \text { for } v \in V_{k}, k \neq j
\end{array}\right.
$$

We adopt the notations $\tilde{M}_{j+h k}:=\tilde{M}_{j}$, and:

$$
\tilde{M}_{j}^{[k]}:=\underbrace{\tilde{M}_{j-k+1} \cdots \tilde{M}_{j-1} \tilde{M}_{j}}_{k \text { factors }} .
$$

Note that $\tilde{M}_{j} \tilde{M}_{k}=0$ unless $k=j+1$, and for $M \in \mathcal{M}$, we have $\tilde{M}_{j}^{[h d(j)]}=$ $\left(\tilde{M}_{j}^{[h]}\right)^{d(j)}=0$, so that $\tilde{M}^{n}=0$. Now we can define $\psi_{M}: V \rightarrow V$,

$$
\begin{aligned}
\psi_{M}(v):= & \frac{t^{n-1}}{1-\tilde{M}}(v) \\
= & t^{n-1}(\\
\quad & v_{1}+\tilde{M}_{1}\left(v_{1}\right)+\tilde{M}_{h} \tilde{M}_{1}\left(v_{1}\right)+\cdots+\tilde{M}_{1}^{[n h-h]}\left(v_{1}\right) \\
& \quad+v_{2}+\tilde{M}_{2}\left(v_{2}\right)+\tilde{M}_{1} \tilde{M}_{2}\left(v_{2}\right)+\cdots+\tilde{M}_{2}^{[n h-h+1]}\left(v_{2}\right) \\
& \quad+\quad \cdots \\
& \left.\quad+v_{h}+\tilde{M}_{h}\left(v_{h}\right)+\tilde{M}_{h-1} \tilde{M}_{h}\left(v_{h}\right)+\cdots+\tilde{M}_{h}^{[n h-1]}\left(v_{h}\right)\right)
\end{aligned}
$$

where $v=v_{1}+\cdots+v_{h}$ with $v_{j} \in V_{j}$.
Recall $E_{(\bullet)}=\left(E_{(1)} \supset \cdots \supset E_{(h)}\right)$, the standard flag in $\mathrm{Fl}(\mathbf{d}, V)$, where $E_{(j)}:=E_{1+d(1)+\cdots+d(j-1)}$ and $E^{(j)} \oplus E_{(j)}^{\prime}=V$. Then Lusztig's isomorphism is given by the map:

$$
\begin{aligned}
\Psi: \mathcal{M} & \rightarrow \\
M & \mapsto \\
& \mapsto \psi_{M}\left(E_{(\bullet)}\right)
\end{aligned}
$$

where

$$
\psi_{M}\left(E_{(\bullet)}\right):=\left(\psi_{M}\left(E_{(1)}\right) \supset \cdots \supset \psi_{M}\left(E_{(h)}\right)\right)
$$

We give three coordinate descriptions of Ψ. First, consider the decomposition, $E_{1}=\mathbf{k}^{d(1)} \oplus \cdots \oplus \mathbf{k}^{d(h)} \oplus t \mathbf{k}^{d(1)} \oplus \cdots$, so that we can write $V \ni$ $v=u_{1}+\cdots+u_{h}+t u_{h+1}+\cdots$ with $u_{i} \in \mathbf{k}^{d(i) \bmod n}$. Then we may write $\Psi(M)=\left(\Lambda_{1} \supset \cdots \supset \Lambda_{h}\right)$ with

$$
\Lambda_{j}=\left\{u_{1}+\cdots+u_{h}+t u_{h+1}+\cdots \mid u_{i-1}=M_{i}\left(u_{i}\right) \quad \forall i \leq n h-h+j\right\}
$$

Second, we write a partial flag $\left(\Lambda_{1} \supset \cdots \supset \Lambda_{h}\right)$ by a semi-infinite matrix of n column-vectors $\left[v_{1}, \cdots, v_{n}\right]$ which are compatible with all the lattices in the flag: that is, $\Lambda_{j}=\operatorname{Span}_{\mathbf{k}}\left\langle v_{i}\right\rangle_{i \geq 1+d(1)+\cdots+d(j-1)}$. We will write $\left[v_{1}, \cdots, v_{n}\right]$ as a block matrix with blocks of sizes d_{1}, \cdots, d_{h}. Let I_{j} be an identity matrix of size d_{j}, and denote $M_{j+h k}:=M_{j}, \quad M_{j}^{[k]}:=M_{j-k+1} \cdots M_{j-1} M_{j}$. Then:

$$
\Psi(M)=\left[\left.\begin{array}{cccc}
M_{1}^{[n h-h]} & M_{2}^{[n h-h+1]} & \cdots & M_{h}^{[n h-1]} \\
\vdots & \vdots & & \vdots \\
M_{1} & M_{1} M_{2} & \cdots & M_{h}^{[h]} \\
I_{1} & M_{2} & \cdots & M_{h}^{[h-1]} \\
0 & I_{2} & \cdots & M_{h}^{[h-2]} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & I_{h} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots
\end{array} \right\rvert\,\right.
$$

Third, taking bases adapted to each lattice Λ_{j} (i.e. performing column reduction on the above matrix), we obtain:

$$
\Lambda_{1}=\left[\begin{array}{cccc}
M_{1}^{[n h-h]} & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
M_{h} M_{1} & 0 & \cdots & 0 \\
M_{1} & 0 & \cdots & 0 \\
I_{1} & 0 & \cdots & 0 \\
0 & I_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & I_{h} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots
\end{array}\right], \quad \Lambda_{2}=\left[\begin{array}{cccc}
M_{2}^{[n h-h+1]} & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
M_{h} M_{1} M_{2} & 0 & \cdots & 0 \\
M_{1} M_{2} & 0 & \cdots & 0 \\
M_{2} & 0 & \cdots & 0 \\
I_{2} & 0 & \cdots & 0 \\
0 & I_{3} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & I_{1} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots
\end{array}\right], \quad \text { etc. }
$$

From all these descriptions, we see that Ψ is $\mathrm{GL}_{\mathbf{d}}(\mathbf{k})$-equivariant (provided we diagonally embed $\left.\mathrm{GL}_{\mathbf{d}}(\mathbf{k}) \subset \mathrm{GL}_{n}(\mathbf{k})\right)$. Also $E_{1} \supset \psi_{M}\left(E_{(1)}\right) \supset \cdots \supset$ $\psi_{M}\left(E_{(h)}\right) \supset t^{n} E_{1}$ for all $M \in \mathcal{M}$.

2.3 Image of Lusztig's isomorphism

The map Ψ embeds \mathcal{M} in $\mathrm{Fl}(\mathbf{d}, V)$. We give several descriptions of the image. From the last coordinate description of Ψ, we may easily show:

This suggests how to describe the image as a union of opposite cells of Schubert varieties: $\Psi(\mathcal{M})=\cup_{\pi} X_{\pi}^{\prime}$ for certain $\pi \in \widetilde{W} / W_{\mathbf{d}}$. Let $\mathbb{Z}_{(j)}:=$ $\mathbb{Z}_{\geq 1+d(1)+\cdots+d(j-1)}$, and consider the sets $\pi \mathbb{Z}_{(j)}, 1 \leq j \leq h$, which determine π modulo $W_{\mathbf{d}}$. These sets should contain numbers as small as possible subject to the conditions:

$$
\begin{aligned}
& \begin{array}{ll}
\pi \mathbb{Z}_{(1)} & \stackrel{d(1)}{\supset} \pi \mathbb{Z}_{(2)} \\
d(1) \cup & \stackrel{d(2)}{\supset} \cdots \stackrel{d(h-1)}{\supset} \pi \mathbb{Z}_{(h)} \stackrel{d(h)}{\supset} \tau \pi \mathbb{Z}_{(1)} \\
& \\
d(2) \cup & d(h) \cup
\end{array} \\
& \tau^{n-1} \mathbb{Z}_{(2)} \supset \tau^{n-1} \mathbb{Z}_{(3)} \supset \cdots \quad \supset \tau^{n} \mathbb{Z}_{(1)}
\end{aligned}
$$

where $A \stackrel{d}{\supset} B$ means $A \supset B$ and $\#(A \backslash B)=d$. There should be at most h such permutations π which are Bruhat-maximal. One can construct them by first maximizing a particular $\pi \mathbb{Z}_{(j)}$, then constructing the rest of the sets, which might not always be possible.

Example. For $\mathbf{d}=(1,1,1), n=3$, we have $\mathbb{Z}_{(j)}=\mathbb{Z}_{\geq j}$, and the three irreducible components are $\pi_{1}=[5,9,10]=[2,3,1] \tau^{(1,2,3)} ; \pi_{2}=[8,6,10]=$ $[2,3,1] \tau^{(2,3,1)} ; \pi_{3}=[9,8,7]=[2,3,1] \tau^{(2,2,2)}$. Each π_{j} is obtained by filling $\pi \mathbb{Z}_{(j)}$ with numbers as small as possible subject to $\pi \mathbb{Z}_{(j)}{ }^{d(j)} t^{n--1} E_{(j+1)}$, then constructing the rest of the $\pi \mathbb{Z}_{(k)}$.

Specifically, to get $\pi=\pi_{1}$, we start with $\pi \mathbb{Z}_{\geq 1} \stackrel{1}{\supset} \mathbb{Z}_{\geq 8}$, yielding $\pi \mathbb{Z}_{\geq 1}=$ $\{5,8,9,10, \ldots\}$. Next $\pi \mathbb{Z}_{\geq 1} \stackrel{1}{\supset} \pi \mathbb{Z}_{\geq 2} \stackrel{1}{\supset} \mathbb{Z}_{\geq 9}$, yielding $\pi \mathbb{Z}_{\geq 2}=\{8,9,10,11, \ldots\}$. Similarly $\pi \mathbb{Z}_{\geq 3}=\{8,10,11,12, \ldots\}$, and we conclude $\pi=[5,9,10]$.

The other components are obtained similarly. Note that since the d_{j} are all equal to a constant $d=1$, the automorphism $\sigma^{d}=\sigma$ acts on $\Psi(\mathcal{M})$. In fact, $\pi^{(1)}=\sigma \pi^{(2)} \sigma^{-1}=\sigma^{2} \pi^{(3)} \sigma^{-2}$.

For a given \mathbf{d}, the $G L_{\mathbf{d}}(\mathbf{k})$-orbits of \mathcal{M} are distinguished from each other by certain collections of invariants, the rank numbers $\mathbf{r}=\left(r_{j}^{k}\right)$, where

$$
r_{j}^{k}:=\operatorname{rank}\left(M_{j}^{[k]}: \mathbf{k}^{d(j)} \rightarrow \mathbf{k}^{d(j-k)}\right) \quad \text { for } \quad 1 \leq j \leq h, 1 \leq k \leq(n-1) h .
$$

(In fact, it suffices to consider $k<h \cdot \min \left(d_{1}, \ldots, d_{h}\right)$.) We also define $r_{j}^{0}:=d_{j}$ and $r_{j}^{k}:=0$ if not otherwise defined.

For a given collection of rank numbers $\mathbf{r}:=\left(r_{j k}\right)_{j k}$, we denote the corresponding nilpotent quiver orbit by $\mathcal{M}^{\mathbf{r}} \subset \mathcal{M}$. Not every collection of rank numbers is realized by an orbit: rather, the nonnegative integer entries in \mathbf{r} must obey the constraints:

$$
m_{j}^{k}:=r_{j}^{k}-r_{j}^{k+1}-r_{j-1}^{k+1}+r_{j-1}^{k+2} \geq 0
$$

[Note: m_{j}^{k} is the multiplicity in $\left(M_{1}, \ldots, M_{h}\right)$ of the indecomposable quiver summand I_{j}^{k} defined as follows: letting $\bar{i}:=i \bmod h$, we define vector spaces U_{1}, \ldots, U_{h} by $\oplus_{l=1}^{h} U_{l}:=\operatorname{Span}_{\mathbf{k}}\left\langle e_{j-i}\right\rangle_{0 \leq i \leq k}$ with $e_{i} \in U_{\bar{i}}$; and maps $L_{\bar{i}}: U_{\bar{i}} \rightarrow U_{\bar{i}-1}$ with $L_{\bar{i}}\left(e_{i}\right):=e_{i-1}$ and $L_{\bar{j}-\bar{k}}\left(e_{j-k}\right):=0$. Thus for $h=1$, the representation I_{j}^{k} reduces to a nilpotent Jordan block of size $k+1$.]

The image of a quiver orbit under Ψ can be described as:

Here we take $E_{(j+h k)}:=t^{k} E_{(j)}$. The image of the orbit closure $\overline{\mathcal{M}^{\mathbf{r}}}$ is obtained by replacing $=$ by \leq in the Schubert conditions. From this, we may deduce that $\Psi\left(\mathcal{M}^{\mathbf{r}}\right)=X_{\pi}^{\circ \prime}$ and $\Psi\left(\overline{\mathcal{M}^{\mathbf{r}}}\right)=X_{\pi}^{\prime}$ for a certain explicitly constructable $\pi=\pi^{\mathbf{r}} \in \widetilde{W} / W_{\mathbf{d}}$.

3 The Variety of circular complexes

3.1 Circular complexes and Lusztig's isomorphism

We apply the previous constructions to a particularly simple, but interesting case, intensively considered from a different point of view by Mehta and Trivedi [12]. For positive integers $a \leq b$, we consider the variety of two-step circular complexes or loop-complexes:

$$
\mathcal{L}=\mathcal{L}_{a, b}:=\left\{(X, Y) \in M_{b \times a}(\mathbf{k}) \times M_{a \times b}(\mathbf{k}) \mid X Y=0, Y X=0\right\}
$$

Recall that any finite linear chain-complex can be "rolled up" into such a twostep complex by letting \mathbf{k}^{a} (resp. \mathbf{k}^{b}) be the direct sum of all the odd-numbered (resp. even-numbered) spaces in the linear complex. This gives a natural map from the variety of chain-complexes to \mathcal{L}.

Now, \mathcal{L} is a subvariety of the representations of the affine quiver $\widehat{A}_{1} ;$ a subvariety which is invariant under the natural action of the group $G L_{a, b}(\mathbf{k}):=$ $G L_{a}(\mathbf{k}) \times G L_{b}(\mathbf{k})$, namely $\left(g_{a}, g_{b}\right) \cdot(X, Y):=\left(g_{b} X g_{a}^{-1}, g_{a} Y g_{b}^{-1}\right)$. We easily see
that \mathcal{L} is a finite union of $G L_{a, b}(\mathbf{k})$-orbits. In fact, \mathcal{L} has exactly $a+1$ open orbits $\mathcal{L}_{0}^{\circ}, \ldots, \mathcal{L}_{a}^{\circ}$, whose closures give the $a+1$ irreducible components of \mathcal{L} :

$$
\mathcal{L}_{c}^{\circ}:=\{(X, Y) \in \mathcal{L} \mid \operatorname{rank} X=c, \operatorname{rank} Y=a-c\}, \quad \mathcal{L}_{c}:=\overline{\mathcal{L}_{c}^{\circ}}
$$

We define an isomorphism from \mathcal{L} to a union of opposite cells of Schubert varieties in the partial affine flag variety $\operatorname{Fl}(a, b ; V)$, where $V=F^{n}$ and $n=a+b$. Our notation will emphasize the block decomposition $V=F^{a} \oplus F^{b}$, as well as:

$$
E=\mathbf{k}^{a} \oplus \mathbf{k}^{b} \oplus t \mathbf{k}^{a} \oplus t \mathbf{k}^{b} \oplus \cdots
$$

In this case, Lusztig's isomorphism is given by the map $\Psi: \mathcal{L} \rightarrow G / P_{a} \cong$ $\mathrm{Fl}(a, b ; V)$ as:

$$
\Psi(X, Y):=\left(\begin{array}{cc}
t I_{a} & t Y \\
X & t I_{b}
\end{array}\right) \quad \bmod P_{\widehat{0, a}}
$$

where I_{m} is an identity matrix of size m; or in terms of lattices, $\Psi(X, Y)=$ $\left(\Lambda_{1} \supset \Lambda_{2}\right)$, where $E \supset \Lambda_{i}$ and:

$$
\Lambda_{1}=\left[\begin{array}{cc}
0 & 0 \\
X & 0 \\
I_{a} & Y \\
0 & I_{b} \\
0 & 0 \\
\vdots & \vdots
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
X & 0 \\
I_{a} & 0 \\
0 & I_{b} \\
0 & 0 \\
\vdots & \vdots
\end{array}\right] \bmod P, \quad \Lambda_{2}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
Y & 0 \\
I_{b} & X \\
0 & I_{a} \\
0 & 0 \\
\vdots & \vdots
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
Y & 0 \\
I_{b} & 0 \\
0 & I_{a} \\
0 & 0 \\
\vdots & \vdots
\end{array}\right] \bmod P
$$

Here the column vectors of each matrix give an A-basis for $\Lambda_{i} \subset E$, written with respect to $E=\operatorname{Span}_{\mathbf{k}}\left\langle e_{i}\right\rangle_{\imath 1}$. The blocks have sizes a, b, a, b, \ldots. The $\operatorname{map} \Psi$ is $G L_{a, b}(\mathbf{k})$-equivariant, provided we embed $G L_{a, b}(\mathbf{k}) \subset G L_{n}(\mathbf{k}) \subset G$ as block-diagonal matrices with constant coefficients.

We easily deduce:

$$
\Psi\left(\mathcal{L}_{c}\right)=\left\{\begin{array}{l|ll}
\bullet & \Lambda_{\bullet} \operatorname{Fl}(a, b ; V) & \begin{array}{ll}
E_{(2)} \supset E_{(3)} & \Lambda_{1} \cap E_{(3)}^{\prime}=\Lambda_{2} \cap E_{(4)}^{\prime}=0 \\
b \cup & a \cup \\
\Lambda_{1} \supset \Lambda_{2} \supset t \Lambda_{1} & \operatorname{dim}\left(\Lambda_{1} / \Lambda_{1} \cap E_{(3)}\right) \leq c \\
a \cup b \cup & \operatorname{dim}\left(\Lambda_{2} / \Lambda_{2} \cap E_{(4)}\right) \leq a-c
\end{array} \\
E_{(4)} \supset E_{(5)} &
\end{array}\right\}
$$

Here

$$
E_{(1)}=E_{1}, \quad E_{(2)}=E_{a+1}, \quad E_{(3)}=E_{a+b+1}, \quad E_{(4)}=E_{2 a+b+1}, \quad E_{(5)}=E_{2 a+2 b+1}
$$

From this, we may also realize \mathcal{L}_{c} as a subset of an ordinary flag variety $\mathrm{Fl}\left(b, a, b ; \mathbf{k}^{a+2 b}\right)$, the variety of partial flags

$$
\mathbf{k}^{a+2 b} \stackrel{b}{\supset} U_{1} \stackrel{a}{\supset} U_{2} \stackrel{b}{\supset} 0 .
$$

In fact, let $\mathbf{k}^{a+2 b}=E_{(2)} / E_{(5)}$, with \mathbf{k}-basis $\left\{\bar{e}_{a+1}, \ldots, \bar{e}_{2 a+2 b}\right\}$, where $\bar{e}_{i}:=e_{i}$ $\bmod E_{(5)}$. Thus $\bar{E}_{(3)} \supset \bar{E}_{(4)}$ is the standard flag in $\operatorname{Fl}\left(b, a, b ; \mathbf{k}^{a+2 b}\right)$. We also define the nilpotent linear operator $\bar{t}: \mathbf{k}^{a+2 b} \rightarrow \mathbf{k}^{a+2 b}$ by $\bar{t}\left(\bar{e}_{i}\right)=\bar{e}_{i+n} \bmod E_{(5)}$. Then we have:

$$
\mathcal{L}_{c} \cong \Psi\left(\mathcal{L}_{c}\right) \cong\left\{\begin{array}{l|l}
U_{\bullet} \in \operatorname{Fl}\left(b, a, b ; \mathbf{k}^{a+2 b}\right) & \begin{array}{c}
U_{1} \supset \bar{E}_{(4)}, \quad U_{2} \subset \bar{E}_{(3)}, \\
\operatorname{dim}\left(U_{1} \cap \bar{E}_{(3)}\right) \geq a+b-c \\
\operatorname{dim}\left(U_{2} \cap \bar{E}_{(4)}\right) \geq b-a+c \\
U_{1} \cap \bar{E}_{(3)}^{\prime}=U_{2} \cap \bar{E}_{(4)}^{\prime}=0 \\
U_{2} \supset \bar{t}\left(U_{1}\right)
\end{array}
\end{array}\right\}
$$

This is precisely the opposite cell of a Schubert variety in $\mathrm{Fl}\left(b, a, b ; \mathbf{k}^{a+2 b}\right)$, but with the additional algebraic incidence condition $U_{2} \supset \bar{t}\left(U_{1}\right)$, which can be written in terms of the Plucker coordinates of U_{1}, U_{2}.

3.2 Affine permutations for circular complexes

We wish to identify the image of \mathcal{L}_{c} as the opposite cell of an affine Schubert variety,

$$
\Psi\left(\mathcal{L}_{c}\right)=X_{\pi}^{\prime}, \quad \text { for some } \quad \pi=\pi_{c} \in W_{a} \backslash \widetilde{W} / W_{a}
$$

First, we construct the sets $\pi \mathbb{Z}_{(1)}, \pi \mathbb{Z}_{(2)}$, which then determine π modulo W_{a}. These sets should contain numbers as small as possible subject to the conditions:

$$
\begin{array}{llc}
\mathbb{Z}_{(2)} & \supset \mathbb{Z}_{(3)} & \\
b \cup & a \cup \\
\pi \mathbb{Z}_{(1)} & \stackrel{a}{\supset} \pi \mathbb{Z}_{(2)} & b \\
a \cup \pi \mathbb{Z}_{(1)} & \#\left(\pi \mathbb{Z}_{(1)} \backslash \mathbb{Z}_{(3)}\right)=c \\
a \cup b \cup & \#\left(\pi \mathbb{Z}_{(2)} \backslash \mathbb{Z}_{(4)}\right)=a-c \\
\mathbb{Z}_{(4)} & \supset \mathbb{Z}_{(5)} &
\end{array}
$$

To construct π according to these constraints, we will divide $[1, n]$ into intervals (blocks) of the form:

$$
\underbrace{i, \ldots, j}_{(k)}:=[i, i+1, \ldots, j],
$$

where $k=j-i+1$ is the number of integers in the interval. We perform two subdivisions as follows:

$$
\begin{aligned}
{[1, \ldots, n]:=} & {[\underbrace{1, \ldots, c, \underbrace{c+1, \ldots, a}_{\mathrm{II}(a-c)}, \underbrace{a+1, \ldots, 2 a-c}_{\mathrm{III}(a-c)},}_{\mathrm{I}(c)}} \\
& \underbrace{2 a-c+1, \ldots, a+b-c}_{\mathrm{IV}(b-a)}, \underbrace{a+b-c+1, \ldots, a+b}_{\mathrm{V}(c)}] \\
{[1, \ldots, n]:=} & \underbrace{1, \ldots, a-c, \underbrace{}_{\mathrm{II}^{\prime}}(c)}_{\mathrm{I}^{\prime}(a-c)}, \\
& \underbrace{a+c+1, \ldots, b+c}_{\mathrm{IV}^{\prime}(b-a)}, \underbrace{b+c+1, \ldots, a+b}_{\mathrm{V}^{\prime}(a-c)}]
\end{aligned}
$$

where we have numbered the blocks with roman numerals. Now π takes the first set of blocks to the second set, as well as shifting them by powers of τ :

$$
\begin{aligned}
\pi:= & \underbrace{a+1, \ldots, a+c}_{\mathrm{V}^{\prime}(c)}, \underbrace{a+2 b+c+1, \ldots, 2 a+2 b}_{\tau\left(\mathrm{III}^{\prime}\right)}, \underbrace{a+b+1, \ldots, 2 a+b-c)}_{\tau(\mathrm{II})}, \\
& \underbrace{2 a+b+c+1, \ldots, a+2 b+c}_{\tau\left(\mathrm{IV}^{\prime}\right)(b-a)}, \underbrace{3 a+2 b-c+1, \ldots, 3 a+2 b}_{\tau^{2}\left(\mathrm{I}^{\prime}\right)(c)}]
\end{aligned}
$$

Recall that π represents the double coset $W_{a} \pi W_{a}$: in fact, π is maximal with respect to the left action of W_{a}, and minimal with respect to the right action. This is the correct normalization so that $\ell\left(\pi_{c}\right)=\operatorname{dim}_{\mathbf{k}}\left(\mathcal{L}_{c}\right)$.

To analyze the decomposition of π into simple reflections, we construct its loop wiring diagram. As before, the strip below (with top and bottom edges identified) represents a cylinder with $n=a+b$ dots on either end. For each i we write $\pi(i)=\bar{\pi}(i)+n j$, and we draw a wire connecting the dot i on the right to the dot $\bar{\pi}(i)$ on the left, but looping upwards (around the cylinder) j times. We will group the wires into five cables corresponding to our blocks I, ... , V (on the right) and $\mathrm{I}^{\prime}, \ldots, \mathrm{V}^{\prime}$ (on the left), so that the cable starting at I represents c non-crossing wires, etc. As a final simplification, instead of drawing the diagram for π, we instead draw the diagram for $\tau^{-1} \pi$ (a harmless normalization, since τ is in the center of \widetilde{W}).

Whenever a cable with k wires crosses one with k^{\prime} wires, we have a total of $k k^{\prime}$ wire crossings. Thus the six cable-crossings of our picture give a wire-crossing total of:

$$
\ell(\pi)=(a-c)^{2}+c^{2}+(a-c)(b-a)+2 c(a-c)+c(b-a)=a b
$$

which we may confirm by checking directly that $\operatorname{dim}\left(\mathcal{L}_{c}\right)=a b$.
Now we may write a reduced decomposition for π as follows. For integers i, k, define the affine permutation $s_{i}^{[k]}:=s_{i} s_{i-2} \cdots s_{i-2 k+2}$, which has k mutually
commuting factors. Recall our convention $s_{i+n j}:=s_{i}$. For each cable crossing:

we define the associated "totally commutative" permutation:

$$
s_{i+1}^{[j, k]}:=s_{i+k}^{[1]} s_{i+k+1}^{[2]} \cdots s_{i+k+m}^{[\min (m, j, k)]} \cdots s_{i+j+k}^{[\min (j, k)]} \cdots s_{i+j+m^{\prime}}^{\left[\min \left(m^{\prime}, j, k\right)\right]} \cdots s_{i+j+1}^{[2]} s_{i+j}^{[1]}
$$

Finally, we can write

$$
\pi=\tau s_{1}^{[a-c, c]} s_{a+1}^{[b-a, c]} s_{b+1}^{[a-c, c]} s_{a+1}^{[a-c, b-a]} s_{b+a-c+1}^{[c, c]} s_{c+1}^{[a-c, a-c]},
$$

where the six factors (other than τ) correspond to the cable crossings, listed left to right.

3.3 Bott-Samelson resolution

We can use the above data to give a Bott-Samelson resolution of singularities for \mathcal{L}_{c}. Although this is clearly far from a minimal resolution, it brings the circular complexes into the framework of Frobenius splittings and other results for Bott-Samelson varieties (cf. Mathieu [11], Kumar [7], Ramanathan [14], ...). In particular, we have the following results proved by Mehta-Trivedi [12]

Theorem The variety of circular complexes \mathcal{L}_{c} and the closures of all its $G L_{n}(\mathbf{k})$-orbits are normal, Cohen-Macaulay, and have rational singularities.

The construction of the affine Bott-Samelson variety $Z_{\mathbf{i}}$ corresponding to a reduced word $\mathbf{i}=\left(i_{1}, \ldots, i_{l}\right)$ is exactly analogous to (and includes as a special case) the construction for $G L_{n}(\mathbf{k})$. (Cf. §1.4.)

We illustrate with the simplest example in our case: $c=1, a=2, b=3$, $n=5$ so that each of the blocks $\mathrm{I}, \ldots, \mathrm{V}$ has size 1 , and our cable diagram in the previous section is a simple wiring diagram. Then $\pi=s_{1} s_{3} s_{4} s_{3} s_{0} s_{2}$, and the Bott-Samelson variety is:

$$
Z_{\mathbf{i}}:=\left\{\right\} .
$$

Here $E_{j}:=\operatorname{Span}_{\mathbf{k}}\left\langle e_{i}\right\rangle_{i \geq j}$, and each arrow $U \leftarrow V$ indicates the conditions $U \supset V$, $\operatorname{dim}_{\mathbf{k}}(U / V)=1$. We construct a point of $Z_{\mathbf{i}}$ by starting with the standard flag $E_{1} \supset E_{3} \supset \cdots$, and successively choosing the spaces $\Lambda_{2}, \Lambda_{4}^{\prime}, \Lambda_{5}, \Lambda_{4}, \Lambda_{1}$,
Λ_{3}, corresponding to the letters $1,3,4,3,0,2$. Each such choice corresponds to a fibration with fiber \mathbb{P}^{1}, hence $Z_{\mathbf{i}}$ is smooth of dimension $\ell(\pi)=6$. As we did for X_{π}, we can embed $Z_{\mathbf{i}}$ into a finite-dimensional flag variety for the \mathbf{k}-vector space $t^{-1} E_{3} / t E_{1}$, since $t^{-1} E_{3} \supset \Lambda \supset t E_{1}$ for $\Lambda=\Lambda_{1}, \ldots, \Lambda_{5}, \Lambda_{4}^{\prime}$.

We can define a regular, birational map of $Z_{\mathbf{i}}$ onto X_{π} by forgetting all the spaces except $\left(\Lambda_{1}, \Lambda_{3}\right)$. This map is generically one-to-one because generically all the spaces are determined by Λ_{1}, Λ_{3} : that is, $\Lambda_{2}=\Lambda_{1} \cap E_{1}, \Lambda_{5}=t \Lambda_{1}+t E_{1}$, etc. To desingularize the opposite cell $X_{\pi}^{\prime} \cong \mathcal{L}_{c}$, we consider the subset of $Z_{\mathbf{i}}$ where Λ_{1}, Λ_{3} are generic with respect to the opposite standard flag $E_{1}^{\prime}, E_{3}^{\prime}$.

References

[1] A. Berenstein, S. Fomin, and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), 49-149.
[2] A. Björner and F. Brenti, Affine permutations of type A, El. J. Combin. 3, Foata Festschrift.
[3] H. Eriksson and K. Eriksson, Affine Weyl groups as infinite permutations, Electron. J. Combin. 5 (1998), Research Paper 18.
[4] V.G. Kac and A.K. Raina, Highest Weight Representations of Infinite Dimensional Lie Algebras, World Scientific 1987.
[5] D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), 129-168.
[6] S. Kumar, Infinite Grassmannians and moduli spaces of G-bundles, in Vector Bundles on Curves, Springer LNM 1649 (1997), 1-50.
[7] S. Kumar, Demazure character formula in arbitrary Kac-Moody setting, Invent. Math. 89 (1987), 395-423.
[8] V. Lakshmibai and P. Magyar, Degeneracy schemes, quiver schemes, and Schubert varieties, Internat. Math. Res. Notices 12 (1988) 627-640.
[9] G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981) 169-178.
[10] G. Lusztig, Canonical bases arising from quantized universal enveloping algebras, JAMS 3 (1990) 447-498.
[11] O. Mathieu, Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque 159-160 (1988) 1-267.
[12] V.B. Mehta and V. Trivedi, The variety of circular complexes and Fsplitting, Invent. Math. 137 (1999), 449-460.
[13] A. Pressley and G. Segal, Loop Groups, Oxford Science Publications, Clarendon Press, Oxford (1986).
[14] A. Ramanathan, Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math. 80 (1985), 283-294.
[15] J. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Springer Lecture Notes in Math. 1179 (1986).
[16] P. Slodowy, On the geometry of Schubert varieties attached to Kac-Moody Lie algebras, in Algebraic Geometry - Vancouver 1984, Canad. Math. Soc. Conf. Proc. 6, 405-442.
[17] J. Weyman, On the equations of conjugacy classes of nilpotent matrices, Invent. Math. 98, 229-245.
[18] A.V. Zelevinsky, Two remarks on graded nilpotent classes, Russian Math. Surveys 40 (1985) 199-200.

