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HW 11/26

#2a. Proposition: Inverses are unique in a group: that is, if ab = ba = e and
ac = ca = e, then b = c.
Proof: Hypothesis: For group elements a, b, c, suppose ab = ba = e and ac = ca =
e. Then we have:

b
(i)
= be

(ii)
= b(ac)

(iii)
= (ba)c

(iv)
= ec

(v)
= c,

where: (i) is by the identity axiom; (ii) is by hypothesis; (iii) is by associativity;
(iv) is by hypothesis; and (v) is by identity. Conclusion: b = c by transitivity of
equality.

#2b. Proposition: The inverse of an inverse is the original element: (a−1)−1 = a.
First Proof: Hypothesis: a is a group element. The inverse of a−1 is the unique
element b = (a−1)−1 satisfying a−1b = e. But a−1a = e, so b = a. Conclusion:
(a−1)−1 = a.

Second Proof: We compute:

(a−1)−1 (i)
= e(a−1)−1 (ii)

= (aa−1)(a−1)−1 (iii)
= a(a−1(a−1)−1)

(iv)
= ae

(v)
= a,

where: (i) is by the identity axiom; (ii) is by the inverse axiom; (iii) is by associa-
tivity; (iv) is by inverses; and (v) is by identity. Conclusion: (a−1)−1 = a.

#3. Proposition: Let a ∈ G have finite order k = ord(a). Then ai = e if and
only if k divides i.
First Proof: Suppose k = ord(a), which means k is the smallest positive number
with ak = e. Now, if i = kn, we have ai = akn = (ak)n = en = e.

Conversely, suppose ai = e. Using the division algorithm, write i = kn + r for
0 ≤ r < k. Then we have:

e = ai = akn+r = aknar = ear = ar .

That is, ar = e for r < k; but k is the smallest positive value with ak = e, so this
can only mean r = 0. That is, i = kn.

We conclude that ai = 0 if and only if i = kn, i.e. k divides i.



Second Proof: Let I = {i ∈ Z with ai = e}. I claim I is an ideal, closed under
addition and under multiplication by Z. Indeed, if i, j ∈ I, so that ai = aj = e, then
ai+j = aiaj = e2 = e, so i+j ∈ I. Also if i ∈ I, n ≥ 0, then ain = ai · · · ai = en = e,
and ai(−n) = (ai)−1 · · · (ai)−1 = (e−1)n = e, so i(±n) ∈ I.

Now, we know that any ideal of Z is principal, meaning I = (`) = {`n, n ∈ Z}
for some integer ` ≥ 0. We know I 6= (0), since I contains k > 0, so we have ` > 0,
and ` is the smallest positive element of I. But by hypothesis, the smallest positive
element of I is ord(a) = k, so we conclude ` = k and I = (k) = {kn for n ∈ Z}.
That is, ai = e ⇔ i ∈ I ⇔ i = kn ⇔ k divides i.

HW 11/28-30

#3a. Consider the dihedral group D4 = {e, r, r2, r3, a, b, c, d}, with the relations:

r4 = e, a2 = e, b = ar = r3a, c = ar2 = r2a, d = ar3 = ra.

Besides H = {e} and H = G, the non-trivial subgroups and their cosets are:

• H1 = 〈a〉 = {1, a}, eH ∪ rH ∪ r2H ∪ r3H = {e, a}∪ {r, d}∪ {r2, c}∪ {r3, b}.

• H2 = 〈b〉 = {1, b}, eH ∪ rH ∪ r2H ∪ r3H

• H3 = 〈c〉 = {1, c}, eH ∪ rH ∪ r2H ∪ r3H

• H4 = 〈d〉 = {1, d}, eH ∪ rH ∪ r2H ∪ r3H

• H5 = 〈r2〉 = {1, r2}, eH ∪ rH ∪ aH ∪ bH = {e, r2} ∪ {r, r3} ∪ {a, c} ∪ {b, d}

• H6 = 〈r〉 = {e, r, r2, r3}, eH ∪ aH = {e, r, r2, r3} ∪ {a, b, c, d}

• H7 = 〈r2, a〉 = {e, r2, a, c = r2a}, eH ∪ bH = {e, r2, a, c} ∪ {b, d, r3, r}

• H8 = 〈r2, b〉 = {e, r2, b, d = br2}, eH ∪ aH



#3b. We have G = D4 = Sym(X), where X is a rigid square in the plane. For
each subgroup Hi ⊂ G, we construct a decorated square Xi with Hi = Sym(Xi) as
follows. First, draw a completely asymmetrical X0, so that Sym(X0) = {e}. An
element h ∈ H takes X0 to a different decorated square hX0, and we let Xi be the
union of all of these:

Xi = h1X0 ∪ · · · ∪ hkX0, where H = {h1, . . . , hk}.

A possible choice is:


