Group Exercise Solutions

HW 11/26
\#2a. Proposition: Inverses are unique in a group: that is, if $a b=b a=e$ and $a c=c a=e$, then $b=c$.
Proof: Hypothesis: For group elements a, b, c, suppose $a b=b a=e$ and $a c=c a=$ e. Then we have:

$$
b \stackrel{(\mathrm{i})}{=} b e \stackrel{(\mathrm{ii})}{=} b(a c) \stackrel{(\mathrm{iii})}{=}(b a) c \stackrel{(\mathrm{iv})}{=} e c \stackrel{(\mathrm{v})}{=} c
$$

where: (i) is by the identity axiom; (ii) is by hypothesis; (iii) is by associativity; (iv) is by hypothesis; and (v) is by identity. Conclusion: $b=c$ by transitivity of equality.
\#2b. Proposition: The inverse of an inverse is the original element: $\left(a^{-1}\right)^{-1}=a$. First Proof: Hypothesis: a is a group element. The inverse of a^{-1} is the unique element $b=\left(a^{-1}\right)^{-1}$ satisfying $a^{-1} b=e$. But $a^{-1} a=e$, so $b=a$. Conclusion: $\left(a^{-1}\right)^{-1}=a$.
Second Proof: We compute:

$$
\left(a^{-1}\right)^{-1} \stackrel{(\mathrm{i})}{=} e\left(a^{-1}\right)^{-1} \stackrel{(\mathrm{ii})}{=}\left(a a^{-1}\right)\left(a^{-1}\right)^{-1} \stackrel{(\mathrm{iii})}{=} a\left(a^{-1}\left(a^{-1}\right)^{-1}\right) \stackrel{(\mathrm{iv})}{=} a e \stackrel{(\mathrm{v})}{=} a,
$$

where: (i) is by the identity axiom; (ii) is by the inverse axiom; (iii) is by associativity; (iv) is by inverses; and (v) is by identity. Conclusion: $\left(a^{-1}\right)^{-1}=a$.
\#3. Proposition: Let $a \in G$ have finite order $k=\operatorname{ord}(a)$. Then $a^{i}=e$ if and only if k divides i.
First Proof: Suppose $k=\operatorname{ord}(a)$, which means k is the smallest positive number with $a^{k}=e$. Now, if $i=k n$, we have $a^{i}=a^{k n}=\left(a^{k}\right)^{n}=e^{n}=e$.

Conversely, suppose $a^{i}=e$. Using the division algorithm, write $i=k n+r$ for $0 \leq r<k$. Then we have:

$$
e=a^{i}=a^{k n+r}=a^{k n} a^{r}=e a^{r}=a^{r} .
$$

That is, $a^{r}=e$ for $r<k$; but k is the smallest positive value with $a^{k}=e$, so this can only mean $r=0$. That is, $i=k n$.

We conclude that $a^{i}=0$ if and only if $i=k n$, i.e. k divides i.

Second Proof: Let $I=\left\{i \in \mathbb{Z}\right.$ with $\left.a^{i}=e\right\}$. I claim I is an ideal, closed under addition and under multiplication by \mathbb{Z}. Indeed, if $i, j \in I$, so that $a^{i}=a^{j}=e$, then $a^{i+j}=a^{i} a^{j}=e^{2}=e$, so $i+j \in I$. Also if $i \in I, n \geq 0$, then $a^{i n}=a^{i} \cdots a^{i}=e^{n}=e$, and $a^{i(-n)}=\left(a^{i}\right)^{-1} \cdots\left(a^{i}\right)^{-1}=\left(e^{-1}\right)^{n}=e$, so $i(\pm n) \in I$.

Now, we know that any ideal of \mathbb{Z} is principal, meaning $I=(\ell)=\{\ell n, n \in \mathbb{Z}\}$ for some integer $\ell \geq 0$. We know $I \neq(0)$, since I contains $k>0$, so we have $\ell>0$, and ℓ is the smallest positive element of I. But by hypothesis, the smallest positive element of I is $\operatorname{ord}(a)=k$, so we conclude $\ell=k$ and $I=(k)=\{k n$ for $n \in \mathbb{Z}\}$. That is, $a^{i}=e \Leftrightarrow i \in I \Leftrightarrow i=k n \Leftrightarrow k$ divides i.

HW 11/28-30
\#3a. Consider the dihedral group $D_{4}=\left\{e, r, r^{2}, r^{3}, a, b, c, d\right\}$, with the relations:

$$
r^{4}=e, \quad a^{2}=e, \quad b=a r=r^{3} a, \quad c=a r^{2}=r^{2} a, \quad d=a r^{3}=r a
$$

Besides $H=\{e\}$ and $H=G$, the non-trivial subgroups and their cosets are:

- $H_{1}=\langle a\rangle=\{1, a\}, e H \cup r H \cup r^{2} H \cup r^{3} H=\{e, a\} \cup\{r, d\} \cup\left\{r^{2}, c\right\} \cup\left\{r^{3}, b\right\}$.
- $H_{2}=\langle b\rangle=\{1, b\}, e H \cup r H \cup r^{2} H \cup r^{3} H$
- $H_{3}=\langle c\rangle=\{1, c\}, e H \cup r H \cup r^{2} H \cup r^{3} H$
- $H_{4}=\langle d\rangle=\{1, d\}, e H \cup r H \cup r^{2} H \cup r^{3} H$
- $H_{5}=\left\langle r^{2}\right\rangle=\left\{1, r^{2}\right\}, e H \cup r H \cup a H \cup b H=\left\{e, r^{2}\right\} \cup\left\{r, r^{3}\right\} \cup\{a, c\} \cup\{b, d\}$
- $H_{6}=\langle r\rangle=\left\{e, r, r^{2}, r^{3}\right\}, e H \cup a H=\left\{e, r, r^{2}, r^{3}\right\} \cup\{a, b, c, d\}$
- $H_{7}=\left\langle r^{2}, a\right\rangle=\left\{e, r^{2}, a, c=r^{2} a\right\}, e H \cup b H=\left\{e, r^{2}, a, c\right\} \cup\left\{b, d, r^{3}, r\right\}$
- $H_{8}=\left\langle r^{2}, b\right\rangle=\left\{e, r^{2}, b, d=b r^{2}\right\}, e H \cup a H$
$\# 3$ b. We have $G=D_{4}=\operatorname{Sym}(X)$, where X is a rigid square in the plane. For each subgroup $H_{i} \subset G$, we construct a decorated square X_{i} with $H_{i}=\operatorname{Sym}\left(X_{i}\right)$ as follows. First, draw a completely asymmetrical X_{0}, so that $\operatorname{Sym}\left(X_{0}\right)=\{e\}$. An element $h \in H$ takes X_{0} to a different decorated square $h X_{0}$, and we let X_{i} be the union of all of these:

$$
X_{i}=h_{1} X_{0} \cup \cdots \cup h_{k} X_{0}, \quad \text { where } H=\left\{h_{1}, \ldots, h_{k}\right\} .
$$

A possible choice is:

