Basic number sets

Natural numbers $\mathbb{N}=\{0,1,2,3,4,5, \ldots\}$, infinite set, ordering $a<b$, WellOrdering Axiom
Integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ with operations,$+-\times$
Rational numbers $\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a \in \mathbb{Z}, b \in \mathbb{N}\right\}$ with operations,,$+- \times, \div$

Division with remainder

THEOREM 1.1 For $a, b \in \mathbb{Z}, b>0$, there exist unique $q, r \in \mathbb{Z}$ such that $a=q b+r$ and $0 \leq r<b$.
Proof of Existence.

$$
\begin{aligned}
& \mathbb{Z}=\cdots \cup\{-b,-b+1, \ldots,-1\} \cup\{0,1, \ldots, b-1\} \\
& \cup\{b, b+1, \ldots, 2 b-1\} \cup\{2 b, 2 b+1, \ldots, 3 b-1\} \cup \cdots
\end{aligned}
$$

Then a lies in one of the above intervals, $a \in\{n b, n b+1, \ldots, n b+i, \ldots, n b+b-1\}$ for some $n \in \mathbb{Z}$, which means $a=n b+i$ with $0 \leq i<b$. Thus $q=n, r=i$ satisfies the required properties.
Proof of Uniqueness. Suppose $a=q b+r=q^{\prime} b+r^{\prime}$ with $0 \leq r, r^{\prime}<b$. Then:

$$
r-r^{\prime}=(a-q b)-\left(a-q^{\prime} b\right)=\left(q-q^{\prime}\right) b
$$

which is a multiple of $b>0$. But:

$$
-b<-r^{\prime} \leq r-r^{\prime} \leq r<b
$$

and the only multiple of b in this interval is zero, so $r-r^{\prime}=\left(q-q^{\prime}\right) b=0$. Thus $r-r^{\prime}=0$ and $q-q^{\prime}=0$, so $r=r^{\prime}$ and $q=q^{\prime}$.

Long division algorithm $b \bar{a}$ gives method for computing q, r.

Euclidean Algorithm.

For $a, b \in \mathbb{N}$, their greatest common divisor $d=\operatorname{gcd}(a, b)=(a, b)$ is the largest integer dividing both a and b (with no remainder).
EXAMPLE: The divisors of 12 are $1,2,3,4,6,12$; divisors of 8 are $1,2,4,8$. Thus $\operatorname{gcd}(12,8)=4$.
The Euclidean Algorithm is an efficient method to find $\operatorname{gcd}(a, b)$ for $a \geq b>$ 0 by repeated division with remainder:

$$
\begin{aligned}
a & =q_{1} b+r_{1} \\
b & =q_{2} r_{1}+r_{2} \\
r_{1} & =q_{3} r_{2}+r_{3} \\
\vdots & \\
r_{n-2} & =q_{n} r_{n-1}+r_{n} \\
r_{n-1} & =q_{n+1} r_{n}+0
\end{aligned}
$$

This process must terminate since $a \geq b>r_{1}>r_{2}>\cdots \geq 0$, and we cannot keep decreasing infinitely by Well-Ordering.
Formally, if we start with $r_{-1}=a, r_{0}=b$, and we have already computed r_{1}, \ldots, r_{i-1} for some $i \geq 1$, then q_{i}, r_{i} are computed recursively by the formula:

$$
r_{i-2}=q_{i} r_{i-1}+r_{i},
$$

stopping when $r_{i}=0$. Next time, we will prove that the gcd is the last non-zero remainder:

$$
r_{n} \stackrel{!!}{=} \operatorname{gcd}(a, b)
$$

Example. Find $\operatorname{gcd}(57,21)$.

$$
\begin{aligned}
57 & =2 \cdot 21+15 \\
21 & =1 \cdot 15+6 \\
15 & =2 \cdot 6+3 \\
6 & =2 \cdot 3+0 .
\end{aligned}
$$

Here $a=57>b=21>r_{1}=15>r_{2}=6>r_{3}=3>r_{4}=0$.
The gcd is the last non-zero remainder: $\operatorname{gcd}(57,21)=r_{3}=3$.

Extended Euclidean Algorithm

For $\operatorname{gcd}(a, b)=d$, we can find integers $s, t \in \mathbb{Z}$ such that

$$
d=s a+t b
$$

by starting with $d=r_{n}=r_{n-2}-q_{n} r_{n-1}$ and successively substituting $r_{i}=r_{i-2}-q_{i} r_{i-1}$ for $i=n-1, n-2, \ldots, 1$.
In our example:

$$
\begin{aligned}
d=3 & =15-2 \cdot 6 \\
6 & =21-1 \cdot 15 \\
15 & =57-2 \cdot 21 .
\end{aligned}
$$

Successively substituting:

$$
\begin{array}{rlclll}
d=3 & = & 15-2 \cdot 6 & & \\
& = & 15-2(21-1 \cdot 15) & = & -2 \cdot 21+3 \cdot 15 \\
& = & -2 \cdot 21+3 \cdot(57-2 \cdot 21) & = & 3 \cdot 57-8 \cdot 21
\end{array}
$$

so we can take $s=3, t=-8$ to satisfy $3=s \cdot 57+t \cdot 21$.

