Division Algorithm. Let $F[x]$ be a polynomial ring, where F is any field, such as $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_{p}$. The long division algorithm allows us to divide a polynomial $a(x)$ by $b(x)$ to get a quotient polynomial $q(x)$ with remainder $r(x)$:

$$
a(x)=q(x) b(x)+r(x) \quad \text { with } \quad \operatorname{deg} r(x)<\operatorname{deg} b(x) \text { or } r(x)=0 .
$$

Apart from an algorithm, the existence and uniqueness of such $q(x), r(x)$ can be proved just as for division of integers.

Euclidean Algorithm.

We say one polynomial divides another, $c(x) \mid a(x)$, when $a(x)=c(x) q(x)$ for some polynomial $q(x) \in F[x]$; this just means the remainder of $a(x) \div c(x)$ is $r(x)=0$. Equivalently, we say $c(x)$ is a factor or divisor of $a(x)$. Multiplying by a non-zero constant $u \in F$ has no effect on divisibility: if $c(x)$ is a factor of $a(x)$, then so is $u c(x)$, since:

$$
a(x)=c(x) q(x) \quad \Longleftrightarrow \quad a(x)=u c(x) \cdot \frac{1}{u} q(x) .
$$

In fact u is a unit in $F[x]$, taking the role of ± 1 in the integer ring \mathbb{Z}.
For $a(x), b(x) \in F[x]$, their greatest common divisor $d(x)=\operatorname{gcd}(a(x), b(x))$ is a highest-degree polynomial dividing both $a(x)$ and $b(x)$.
EXAMPLE: In $\mathbb{Q}[x]$, the divisors of $a(x)=9 x^{2}-4$ are:

$$
u, u(3 x-2), u(3 x+2), u\left(9 x^{2}-4\right)
$$

for any non-zero constant $u \in F$. The divisors of $b(x)=3 x^{2}+2 x$ are:

$$
u, u x, u(3 x+2), u\left(3 x^{2}+2 x\right) .
$$

Thus $d(x)=\operatorname{gcd}(a(x), b(x))=u(3 x+2)$, which is unique except for the constant multiple. If we choose $u=\frac{1}{3}$ so as to make the leading coefficient equal to 1 , we get the unique $d(x)=\frac{1}{3}(3 x+2)=x+\frac{2}{3}$.
The Euclidean Algorithm is an efficient method to find $\operatorname{gcd}(a, b)$ for $\operatorname{deg} a(x) \geq$ $\operatorname{deg} b(x)$ by repeated division with remainder, which works just as for integers.
Example. Find $d(x)=\operatorname{gcd}(a(x), b(x))$ for:

$$
a(x)=6 x^{4}+2 x^{3}+5 x^{2}+3 x+2 \quad, \quad b(x)=2 x^{2}+1
$$

Repeated long division gives:

$$
\begin{aligned}
a(x) & =\left(3 x^{2}+x+1\right) b(x)+r_{1}(x) \text { where } r_{1}(x)=2 x+1 \\
b(x) & =\left(x-\frac{1}{2}\right) r_{1}(x)+r_{2}(x) \text { where } r_{2}(x)=\frac{3}{2} \\
r_{1}(x) & =\left(\frac{4}{3} x+\frac{2}{3}\right) r_{2}(x)+0 .
\end{aligned}
$$

The gcd is the last non-zero remainder: $d(x)=r_{2}(x)=\frac{3}{2}$, which we can multiply by any non-zero constant u.

Given $r_{-1}(x)=a(x), r_{0}(x)=b(x), r_{1}(x), \ldots, r_{i}(x)$, the iterative rule is: $r_{i-1}(x)=q_{i+1}(x) r_{i}(x)+r_{i+1}(x)$ with $\operatorname{deg} r_{i}(x)>\operatorname{deg} r_{i+1}(x)$, ending when we reach $r_{i+1}(x)=0$.

Extended Euclidean Algorithm

For $\operatorname{gcd}(a(x), b(x))=d(x)$, we compute polynomials $f(x), g(x) \in F[x]$ with:

$$
d(x)=f(x) a(x)+g(x) b(x) .
$$

Continuing our example, we solve for the the Euclidean algorithm remainders:

$$
\begin{aligned}
& r_{2}(x)=b(x)-\left(x-\frac{1}{2}\right) r_{1}(x) \\
& r_{1}(x)=a(x)-\left(3 x^{2}+x+1\right) b(x) .
\end{aligned}
$$

Substituting the second equation into the first:

$$
\begin{aligned}
d(x)=r_{2}(x) & =b(x)-\left(x-\frac{1}{2}\right) r_{1}(x) \\
& =b(x)-\left(x-\frac{1}{2}\right)\left(a(x)-\left(3 x^{2}+x+1\right) b(x)\right) \\
& =-\left(x-\frac{1}{2}\right) a(x)+\left(1+\left(x-\frac{1}{2}\right)\left(3 x^{2}+x+1\right)\right) b(x) \\
\frac{3}{2} & =\left(-x+\frac{1}{2}\right) a(x)+\left(3 x^{3}-\frac{1}{2} x^{2}+\frac{1}{2} x+\frac{1}{2}\right) b(x) .
\end{aligned}
$$

To tidy this, we can multiply by $u=\frac{2}{3}$ to make $u d(x)=1$:

$$
1=\left(-\frac{2}{3} x+\frac{1}{3}\right) a(x)+\left(2 x^{3}-\frac{1}{3} x^{2}+\frac{1}{3} x+\frac{1}{3}\right) b(x) .
$$

Claim: $d(x)=r_{2}(x)$ is indeed the greatest common divisor.
We first prove that $d(x)$ must divide both $a(x)$ and $b(x)$. From the end of the Euclidean algorithm, we get $d(x) \mid d(x)=r_{2}(x)$ and $d(x) \mid q_{3}(x) r_{2}(x)=$ $r_{1}(x)$; proceeding backward we get:

$$
\begin{array}{r}
d(x) \mid q_{2}(x) r_{1}(x)+r_{2}(x)=b(x) . \\
d(x) \mid q_{1}(x) a(x)+r_{1}(x)=a(x) .
\end{array}
$$

Therefore, $d(x)$ is some common divisor of $a(x), b(x)$. (Of course, here $d(x)=$ $\frac{3}{2}$ divides any polynomial, but the argument illustrates the general case.)

Finally, we prove $d(x)$ is the greatest common divisor of $a(x), b(x)$. Suppose that $c(x)$ is any common divisor, so $c(x) \mid a(x)$ and $c(x) \mid b(x)$. Then clearly $c(x) \mid f(x) a(x)+g(x) b(x)=d(x)$, so that any common divisor $c(x)$ is also a divisor of $d(x)$, making $d(x)$ the greatest common divisor.

Irreducible Polynomials.

Just as for integers, a non-trivial factorization of a polynomial $f(x)$ writes it as the product of smaller-degree polynomials in $F[x]$:

$$
f(x)=g(x) h(x) \quad \text { for } \quad \operatorname{deg} g(x), \operatorname{deg} h(x)<\operatorname{deg} f(x)
$$

Factoring out a non-zero constant $u \in F$ from $f(x)=u \cdot \frac{1}{u} f(x)$ does not count as a factorization, since the second factor is not of smaller degree: $\operatorname{deg} \frac{1}{u} f(x)=\operatorname{deg} f(x)$. If $f(x)=u$ is itself a non-zero constant, then no non-trivial factorization is possible.

Repeated factorization must end, since the degrees of the factors keep getting smaller. The process ends with polynomials $p(x)$ which have no divisors except a constant u and $u p(x)$: we call these irreducible polynomials, analogous to prime numbers. Constant functions do not count as irreducibles.

The analog of the Prime Divisibility Property ($[\mathrm{H}]$ Thm 1.5 p. 18) is:
Theorem: If $p(x)$ is an irreducible polynomial with $p(x) \mid a(x) b(x)$, then $p(x) \mid a(x)$ or $p(x) \mid b(x)$.
Proof: Let $p(x)$ be an irreducible polynomial with $p(x) \mid a(x) b(x)$. If $p(x) \mid a(x)$, the conclusion holds, and we are done.

If $p(x)$ is not a divisor of $a(x)$, and $p(x)$ has no other non-trivial divisors, then $p(x)$ and $a(x)$ have greatest common divisor $d(x)=1$. The Extended Euclidean Algorithm gives $f(x) p(x)+g(x) a(x)=1$. Multiplying by $b(x)$:

$$
p(x) \mid f(x) p(x) b(x)+g(x) a(x) b(x)=b(x) .
$$

That is, $p(x) \mid b(x)$, and the conclusion holds in this case also.
Unique Factorization Theorem: In a polynomial ring $F[x]$, any polynomial $f(x)$ with $\operatorname{deg} f(x)>1$ can be factored into irreducible polynomials in only one way, unique except for reordering the factors, and multiplying the factors by non-zero constants.

Proof: As we have seen, it is always possible to factor $f(x)$ until the factors are irreducible. Suppose we had two factorizations into irreducible polynomials:

$$
f(x)=p_{1}(x) \cdots p_{\ell}(x)=q_{1}(x) \cdots q_{m}(x) .
$$

Since $p_{1}(x)$ divides the product $q_{1}(x) q_{2}(x) \cdots q_{m}(x)$, by the Prime Divisibility Property, either $p_{1}(x) \mid q_{1}(x)$ or $p_{1}(x) \mid q_{2}(x) \cdots q_{m}(x)$. In the second case, we repeat this argument until we finally find $p_{1}(x) \mid q_{j}(x)$ for some $q_{j}(x)$. Since $p_{1}(x)$ and $q_{j}(x)$ are both irreducible, this means $q_{j}(x)=u_{1} p_{1}(x)$ for some nonzero constant $u_{1} \in F$. Let us reorder the factors q_{1}, \ldots, q_{m} so that $q_{j}=q_{1}$ is at the beginning, with $q_{1}(x)=u_{1} p_{1}(x)$, and our equation becomes:

$$
p_{1}(x) p_{2}(x) \cdots p_{\ell}(x)=u_{1} p_{1}(x) q_{2}(x) \cdots q_{m}(x)
$$

Cancelling $p_{1}(x)$ from both sides gives:

$$
p_{2}(x) \cdots p_{\ell}(x)=u_{1} q_{2}(x) \cdots q_{m}(x)
$$

Now we perform the same process repeatedly, cancelling $p_{2}(x), \ldots, p_{\ell}(x)$, until finally we are left with only some extra q_{i} factors if $\ell<m$:

$$
1=u_{1} u_{2} \cdots u_{\ell} q_{\ell+1}(x) \cdots q_{m}(x)
$$

However, the last factors $q_{\ell+1}(x) \cdots q_{m}(x)$ cannot be present, since an irreducible polynomial $q_{j}(x)$ is not constant, not invertible, and cannot multiply to produce 1.

Therefore $\ell=m$, and we can rearrange the $q_{i}(x)$'s so that $q_{i}(x)=u_{i} p_{i}(x)$ for non-zero constants $u_{i} \in F$. This is what we wanted to show.

