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Division Algorithm. Let F [x] be a polynomial ring, where F is any field,
such as Q,R,C,Zp. The long division algorithm allows us to divide a poly-
nomial a(x) by b(x) to get a quotient polynomial q(x) with remainder r(x):

a(x) = q(x)b(x) + r(x) with deg r(x) < deg b(x) or r(x) = 0.

Apart from an algorithm, the existence and uniqueness of such q(x), r(x) can
be proved just as for division of integers.

Euclidean Algorithm.

We say one polynomial divides another, c(x) | a(x), when a(x) = c(x)q(x) for
some polynomial q(x) ∈ F [x]; this just means the remainder of a(x)÷ c(x) is
r(x) = 0. Equivalently, we say c(x) is a factor or divisor of a(x). Multiplying
by a non-zero constant u ∈ F has no effect on divisibility: if c(x) is a factor
of a(x), then so is u c(x), since:

a(x) = c(x)q(x) ⇐⇒ a(x) = u c(x) · 1uq(x).

In fact u is a unit in F [x], taking the role of ±1 in the integer ring Z.
For a(x), b(x) ∈ F [x], their greatest common divisor d(x) = gcd(a(x), b(x))

is a highest-degree polynomial dividing both a(x) and b(x).

example: In Q[x], the divisors of a(x) = 9x2 − 4 are:

u, u (3x−2), u (3x+2), u (9x2−4)

for any non-zero constant u ∈ F . The divisors of b(x) = 3x2 + 2x are:

u, u x, u (3x+2), u (3x2+2x).

Thus d(x) = gcd(a(x), b(x)) = u (3x+2), which is unique except for the con-
stant multiple. If we choose u = 1

3 so as to make the leading coefficient equal
to 1, we get the unique d(x) = 1

3(3x+2) = x+2
3 .

The Euclidean Algorithm is an efficient method to find gcd(a, b) for deg a(x) ≥
deg b(x) by repeated division with remainder, which works just as for integers.

Example. Find d(x) = gcd(a(x), b(x)) for:

a(x) = 6x4 + 2x3 + 5x2 + 3x + 2 , b(x) = 2x2 + 1.

Repeated long division gives:

a(x) = (3x2+x+1) b(x) + r1(x) where r1(x) = 2x+1

b(x) = (x−1
2) r1(x) + r2(x) where r2(x) = 3

2

r1(x) = (43x+2
3) r2(x) + 0 .

The gcd is the last non-zero remainder: d(x) = r2(x) = 3
2 , which we can

multiply by any non-zero constant u.
Given r−1(x) = a(x), r0(x) = b(x), r1(x), . . . , ri(x), the iterative rule is:

ri−1(x) = qi+1(x)ri(x) + ri+1(x) with deg ri(x) > deg ri+1(x), ending when
we reach ri+1(x) = 0.



Extended Euclidean Algorithm

For gcd(a(x), b(x)) = d(x), we compute polynomials f(x), g(x) ∈ F [x] with:

d(x) = f(x)a(x) + g(x)b(x).

Continuing our example, we solve for the the Euclidean algorithm remainders:

r2(x) = b(x)− (x−1
2) r1(x)

r1(x) = a(x)− (3x2+x+1) b(x).

Substituting the second equation into the first:

d(x) = r2(x) = b(x)− (x−1
2) r1(x)

= b(x)− (x−1
2)

(
a(x)− (3x2+x+1) b(x)

)
= −(x−1

2) a(x) +
(
1+(x−1

2)(3x2+x+1)
)
b(x)

3
2 = (−x+1

2) a(x) + (3x3−1
2x

2+1
2x+1

2) b(x).

To tidy this, we can multiply by u = 2
3 to make u d(x) = 1:

1 = (−2
3x+1

3) a(x) + (2x3−1
3x

2+1
3x+1

3) b(x).

Claim: d(x) = r2(x) is indeed the greatest common divisor.
We first prove that d(x) must divide both a(x) and b(x). From the end

of the Euclidean algorithm, we get d(x) | d(x) = r2(x) and d(x) | q3(x)r2(x) =
r1(x); proceeding backward we get:

d(x) | q2(x)r1(x) + r2(x) = b(x).

d(x) | q1(x)a(x) + r1(x) = a(x).

Therefore, d(x) is some common divisor of a(x), b(x). (Of course, here d(x) =
3
2 divides any polynomial, but the argument illustrates the general case.)

Finally, we prove d(x) is the greatest common divisor of a(x), b(x). Sup-
pose that c(x) is any common divisor, so c(x) | a(x) and c(x) | b(x). Then
clearly c(x) | f(x)a(x) + g(x)b(x) = d(x), so that any common divisor c(x) is
also a divisor of d(x), making d(x) the greatest common divisor.

Irreducible Polynomials.

Just as for integers, a non-trivial factorization of a polynomial f(x) writes it
as the product of smaller-degree polynomials in F [x]:

f(x) = g(x)h(x) for deg g(x),deg h(x) < deg f(x).

Factoring out a non-zero constant u ∈ F from f(x) = u · 1
uf(x) does not

count as a factorization, since the second factor is not of smaller degree:
deg 1

uf(x) = deg f(x). If f(x) = u is itself a non-zero constant, then no
non-trivial factorization is possible.



Repeated factorization must end, since the degrees of the factors keep
getting smaller. The process ends with polynomials p(x) which have no di-
visors except a constant u and u p(x): we call these irreducible polynomials,
analogous to prime numbers. Constant functions do not count as irreducibles.

The analog of the Prime Divisibility Property ([H] Thm 1.5 p. 18) is:

Theorem: If p(x) is an irreducible polynomial with p(x) | a(x)b(x), then
p(x) | a(x) or p(x) | b(x).

Proof: Let p(x) be an irreducible polynomial with p(x) | a(x)b(x). If p(x) | a(x),
the conclusion holds, and we are done.

If p(x) is not a divisor of a(x), and p(x) has no other non-trivial divisors,
then p(x) and a(x) have greatest common divisor d(x) = 1. The Extended
Euclidean Algorithm gives f(x)p(x) + g(x)a(x) = 1. Multiplying by b(x):

p(x) | f(x)p(x)b(x) + g(x)a(x)b(x) = b(x).

That is, p(x) | b(x), and the conclusion holds in this case also.

Unique Factorization Theorem: In a polynomial ring F [x], any polyno-
mial f(x) with deg f(x) > 1 can be factored into irreducible polynomials in
only one way, unique except for reordering the factors, and multiplying the
factors by non-zero constants.

Proof: As we have seen, it is always possible to factor f(x) until the factors are
irreducible. Suppose we had two factorizations into irreducible polynomials:

f(x) = p1(x) · · · p`(x) = q1(x) · · · qm(x).

Since p1(x) divides the product q1(x)q2(x) · · · qm(x), by the Prime Divisibility
Property, either p1(x) | q1(x) or p1(x) | q2(x) · · · qm(x). In the second case, we
repeat this argument until we finally find p1(x) | qj(x) for some qj(x). Since
p1(x) and qj(x) are both irreducible, this means qj(x) = u1 p1(x) for some non-
zero constant u1 ∈ F . Let us reorder the factors q1, . . . , qm so that qj = q1 is
at the beginning, with q1(x) = u1 p1(x), and our equation becomes:

p1(x) p2(x) · · · p`(x) = u1 p1(x) q2(x) · · · qm(x).

Cancelling p1(x) from both sides gives:

p2(x) · · · p`(x) = u1 q2(x) · · · qm(x).

Now we perform the same process repeatedly, cancelling p2(x), . . . , p`(x), until
finally we are left with only some extra qi factors if ` < m:

1 = u1u2 · · ·u` q`+1(x) · · · qm(x).

However, the last factors q`+1(x) · · · qm(x) cannot be present, since an irre-
ducible polynomial qj(x) is not constant, not invertible, and cannot multiply
to produce 1.

Therefore ` = m, and we can rearrange the qi(x)’s so that qi(x) = ui pi(x)
for non-zero constants ui ∈ F . This is what we wanted to show.


