
Peter Magyar

Research Summary 1993–2005

Nutshell Version

1. Borel-Weil theorem for configuration varieties and Schur
modules

One of the most useful constructions of algebra is the Schur module Sλ, an
irreducible polynomial representation of GLn(C), along with its character
the Schur polynomial sλ(x1, . . . , xn) . (Here λ = (λ1 ≥ . . . ≥ λn) is a
partition.) Combinatorists such as Lascoux-Schutzenberger, Stanley, and
Kraskiewicz-Pragacz defined a menagerie of generalized Schur modules and
polynomials with a variety of applications. These generalized modules SD

are associated to certain diagrams of squares in the plane, D ⊂ Z×Z , with
the original Sλ being the case when D is the Young diagram of λ .

Our paper investigates these modules from the Borel-Weil perspective, in
which a family of linear representations is realized as the projective coordi-
nate ring of a non-linear representation (i.e. a variety with GLn(C)-action).
We succeed in associating to each diagram D a projective variety FD and a
line bundle whose global sections are isomorphic to SD . These configuration
varieties are generally singular, but reduce to an ordinary flag variety in the
case when D = λ .

The key idea is that the processes of symmetrization and anti-symmetrization
which define the Schur modules of a vector space V = Cn correspond to
two geometric operations on the D-tuples of vectors V D : symmetrization
means restricting to the partial diagonal corresponding to the rows of D ;
and anti-symmetrization means taking the linear span of the subsets of vec-
tors corresponding to the columns of D .

By desingularizing the configuration varieties with Bott-Samelson vari-
eties, we obtain new fixed-point formulas for the polynomial characters sD ,
which include the Schubert, skew Schur, and flagged Schur polynomials.

In subsequent work with Lakshmibai and Littelmann, we analyze the
coordinate ring of a Bott-Samelson variety to obtain the crystal graph of
the module SD, along with a definition of generalized semi-standard Young
tableaux. These tableaux are later characterized as the peelable tableaux of
Reiner-Shimozono [RS], which are needed to prove the quiver polynomial
formulas of Knutson-Miller-Shimozono [KMS].

2. Multiple flag varieties of finite type

The classical Schubert varieties are the B-orbits on a flag variety G/B ,
which correspond to the elements of the Weyl group of G . More generally
we may consider the B-orbits on a product of partial flag varieties G/P1 ×
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· · · × G/Pk−1 : the analogy is strongest when there are finitely many such
orbits, so that the product is a spherical variety.

In this joint work with Andrei Zelevinsky and Jerzy Weyman, we explicitly
classify such spherical varieties as well as their B-orbits in the case of the
classical groups G = GLn(C) and Sp2n(C) , and partially for SOn(C) . In
fact we consider the equivalent problem of classifying the products G/P1 ×
· · · ×G/Pk with finitely many G-orbits.

The key idea is to translate the question into the language of quiver
representations. A quiver Q is a directed graph, and Rep(Q) is the abelian
category of its representations: vertices are represented by vector spaces and
arrows by linear mappings. A partial flag consisting of p subspaces, each
contained in the next, is naturally a representation of the directed path
graph with p vertices. By the same token, a k-tuple of partial flags in a
given vector space Cn is a representation of a star quiver, the union of k
directed paths at a common endpoint.

Thus, the representations of a given star quiver Q contain the k-tuples
of partial flags of every dimension, holding fixed only k and the number of
subspaces in each partial flag. The G-orbits on these multiple flag varieties
correspond to isomorphism classes of objects in Rep(Q) .

Now the solution of our problem for G = GLn(C) becomes a generalization
of Gabriel’s Theorem, which classifies those quivers having only a finite
number of isomorphism classes in each dimension. Indeed, the simply-laced
Dynkin diagrams of Gabriel’s Theorem are star quivers, and appear in our
classification, but we also get several new series since we ask only for finitely
many isomorphism classes in a given dimension.

The classical theory of quivers deals only with the general linear groups,
but surprisingly, we can adapt our technique to the other classical groups
G = Sp2n and G = SOn by defining categories of symplectic and orthogonal
representations of a star quiver, and relating these to the full representation
category.

3. Bruhat order for two flags and a line

In the above classification of spherical multiple flag varieties for G = GLn ,
the simplest case after the flag variety G/B is the product G/B × Pn−1.
Our paper makes a finer analysis of this case, characterizing the Bruhat or
closure order. (This is equivalent to the geometry of G-orbits on the product
G/B ×G/B × Pn−1, as in the paper’s title.)

The analogous problem for G/B produces the classical Bruhat-Ehresmann
order on the Weyl group W = Sn , described by its cover relations w <· rijw
(where rij is a transposition) or alternatively by Ehresmann’s tableau cri-
terion: namely, for a flag V. = (V1⊂ · · ·⊂Vn) ∈ G/B, the position of the
orbit B · V. in Bruhat order is determined by its position with respect to
the standard flag, namely by the rank numbers dim(Vi ∩ Cj) for all i, j.

We give explicit generalizations of these two descriptions to our case. We
index orbits by permutation matrices specifying a flag V., then “decorate”
this matrix with a certain partition which specifies a line L. We define
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a series of moves on these decorated matrices which correspond to cover
relations of the B-orbits. Next we give a tableau criterion, by which an
element (V. , L) ∈ G/B × Pn−1 is measured by the previous rank numbers
and by the new rank numbers dim((Vi + Cj) ∩ L).

One easily sees that the cover moves give an order weaker than the Bruhat
order, while the rank numbers give a stronger order. To prove that these
three orders are actually equivalent, we show that for any two elements
related in the rank order, we can increase the smaller element by a cover
move, while still maintaining the relation in rank order.

The combinatorial result is an interesting new ranked poset on decorated
permutations which we conjecture to be lexicographically shellable, Sperner
and unimodal (but not rank-symmetric).

4. Degeneracy schemes and Schubert varieties

Jointly with Lakshmibai, we exploit another connection between flags
and quiver representations to answer a question of Buch-Fulton [BF] about
representations of the oriented path quiver: namely, sequences of linear maps
V1 → · · · → Vn .

Consider the variety of all such representations for some fixed complex
vector spaces Vi . This variety is stratified by isomorphism classes in the
category of quiver representations. The closure of each stratum is called a
degeneracy locus: it allows one to associate a certain characteristic class to
a sequence of maps of vector bundles E1 → · · · → En over a fixed complex
algebraic variety. Buch-Fulton gave explicit formulas for these characteristic
classes in terms of the Chern classes of the bundles Ei , generalizing the
Thom-Porteous formula.

These formulas become more geometrically useful if the degeneracy loci
are Cohen-Macaulay varieties. We show this by exploiting a map of Zelevinksy
which embeds our variety of quiver representations inside a certain partial
flag variety G/P , where G = GLN (C) with N =

∑
i dim(Vi) . (This map is

quite different from the trivial identification of a flag with a quiver repre-
sentation.) In fact, this map takes each degeneracy locus to an open subset
of a Schubert variety in G/B.

In our paper, we establish the scheme version of this picture. That is, a
degeneracy locus is naturally defined as a (not necessarily reduced) determi-
nantal scheme, and we show that Zelevinsky’s map pulls back the known (re-
duced) scheme structure of a Schubert variety to this determinantal scheme.
The proof requires only elementary linear algebra. Therefore the degeneracy
scheme is indeed a reduced variety, and its singularities are no worse than
those of the Schubert variety (which are known to be Cohen-Macaulay).

This technique is known as the ubiquity of Schubert varieties. Many de-
terminantal varieties, such as ladder varieties (matrix rank varieties), the
variety of (linear or circular) complexes, and the variety of nilpotent matri-
ces can be analyzed by reducing them to Schubert varieties (possibly of a
loop group). My Notes on Circular Complexes give a survey.
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The result of our paper is another key ingredient in the Knutson-Miller-
Shimozono analysis of quiver polynomials [KMS].

5. Littelmann paths for the basic representation of an affine
Lie algebra

Our more recent work is inspired by the product phenomenon, a well-
known but somewhat mysterious fact about the basic irreducible represen-
tations V (`Λ0) of an affine Lie algebra ĝ (or of a loop group). Namely, when
these representations are restricted to the corresponding finite-dimensional
Lie algebra g , they factor as semi-infinite tensor products of finite-dimensional
g-modules. Furthermore the finite-dimensional Demazure module V−λ(`Λ0),
where −λ is an anti-dominant translation in the affine Weyl group, factors
as a g-module in many cases.

There are two main approaches to explaining this phenomenon. The first,
due to the Kyoto school of Jimbo, Kashiwara, et. al., is in terms of the crys-
tal graph of V (`Λ0), a kind of combinatorial skeleton of the ĝ-module. The
Kyoto path model constructs this crystal as an infinite tensor product of cer-
tain finite-dimensional ĝ-crystals. These so-called perfect crystals, possessing
delicate combinatorial properties, are conjectured to exist for all types, but
the known constructions are fairly ad hoc, mainly for the classical types.

In this paper, we make a step toward a uniform construction of the Ky-
oto path model in the framework of Littelmann’s path model, which real-
izes crystal graphs in terms of piecewise-linear paths in the vector space
of weights. We generalize Littelmann’s finite-length paths to certain semi-
infinite paths called skeins. We then construct the Kyoto path model of
the ` = 1 basic representation V (Λ0) for those simple g which possess a
minuscule coweight. This includes the classical types as well as E6, E7. We
also produce the path crystals of the Demazure modules V−λ(Λ0) .

A key ingredient is the automorphism of the extended Dynkin diagram
(and hence of the affine Lie algebra) associated to each minuscule coweight.

Partly inspired by our work, Fourier-Littelmann [FL] recently gave an el-
egantly simple and general proof of the tensor product phenomenon (though
not a construction of the crystal graph).

6. Product deformations of affine Schubert varieties

Our current work in progress involves a second explanation for the prod-
uct phenomenon from the Borel-Weil perspective. The sum of Demazure
modules

⊕
`≥0 Vλ(`Λ0), with λ a fixed translation in the affine Weyl group,

forms the projective coordinate ring of a (finite-dimensional) Schubert vari-
ety Ĝrλ in the (infinite-dimensional) affine Grassmannian Ĝr . Here Ĝr :=
G[t, t−1]/G[t] is the quotient of the loop group G[t, t−1] by its parabolic
subgroup G[t] .

The product formula V−(λ+µ)(`Λ0) ∼= V−λ(`Λ0) ⊗ V−µ(`Λ0) would obvi-
ously follow if the affine Schubert variety Ĝr−(λ+µ) were isomorphic to the
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product variety Ĝr−λ × Ĝr−µ , but this is not true. However, Beilinson-
Drinfeld have defined an algebraic family with special fiber Ĝr−(λ+µ) and
general fiber Ĝr−λ × Ĝr−µ , meaning that the large Schubert variety can
be deformed into the product (see [FBZ]). By examining Gaitsgory’s [G]
construction of the Beilinson-Drinfeld Grassmannian, we have proved that
the family is flat, which implies the product formula for Demazure modules.

Furthermore, over the complex numbers Ĝr is homeomorphic to ΩK,
the group of based loops in the maximal compact subgroup K ⊂ G ; and
the Schubert variety Ĝr−(λ+µ) is homeomorphic to a correponding subspace
ΩK−(λ+µ) ⊂ ΩK.

We prove a topological version of the product phenomenon: Suppose
ΩK−µ is a K-space. Then ΩK−(λ+µ) has a Bott-Samelson resolution ΩK(−λ ,−µ)

which is homeomorphic to the product space:

ΩK−λ × ΩK−µ
∼= ΩK(−λ ,−µ)

birat−→ ΩK−(λ+µ) .

Therefore, the Beilinson-Drinfeld deformation can be lifted to family of com-
plex structures on a fixed topological space.

7. Schubert varieties of a loop group

In other current work, joint with Mark Shimozono, we examine the ho-
mology ring H∗(ΩK), where multiplication is induced by pointwise product
of loops. Bott [B] gave an explicit presentation of this Pontryagin ring as a
quotient of a polynomial ring, and showed that it has a linear basis of Schu-
bert cycles ΩKλ . We have succeeded in giving an explicit divided-difference
formula for the affine homology Schubert polynomials Sλ , the representive
of ΩKλ in this presentation, for any semi-simple K . Thanks to the fac-
torization phenomenon above, it is sufficient to determine Sλ for a finite
number of “prime” classes.

We are presently trying to prove Shimozono’s conjecture that for type A ,
our homology Schubert polynomials coincide with the dual k-Schur polyno-
mials of Lapointe-Lascoux-Morse [LLM].

References

[B] Raoul Bott, The space of loops on a Lie group. Michigan Math. J. 5 (1958), 35–61.
[BF] Anders Buch and William Fulton, Chern class formulas for quiver varieties. Invent.

Math. 135 (1999), 665–687.
[FBZ] Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves. (2nd

ed.), Mathematical Surveys and Monographs, 88. American Mathematical Society,
Providence, RI, 2004.

[FL] Ghislain Fourier and Peter Littelmann, Tensor product structure of affine De-
mazure modules and limit constructions. http://arxiv.org/math.RT/0412432

[G] Denis Gaitsgory, Construction of central elements in the affine Hecke algebra via
nearby cycles. Invent. Math. 144 (2001), 253–280.

[KMS] Allen Knutson, Ezra Miller and Mark Shimozono, Four positive formulae for type
A quiver polynomials. http://arxiv.org/math.AG/0308142 (75pp.)

[LLM] L. Lapointe, A. Lascoux and J. Morse, Tableau atoms and a new Macdonald
positivity conjecture. Duke Math. J. 116 (2003), 103–146.



6

[RS] Victor Reiner and Mark Shimozono, Percentage-avoiding, northwest shapes and
peelable tableaux. J. Combin. Theory Ser. A 82 (1998), 1–73.


