Recall that for a graph $G=(V, E)$, the edge-chromatic number $\chi^{\prime}(G)$ is the minimum k such that there exists an edge-coloring $c: E \rightarrow[k]$ which is proper: $c(x y) \neq c(x z)$ whenever $x y, x z \in E$. The maximum degree $\Delta(G)$ is the largest number of neighbors $|\Gamma(v)|$ for $v \in V$.

Theorem: $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
Proof (cf Diestel Thm 5.3.2). The first inequality is obvious. We prove the second by induction on the number of edges of G. A few edges is OK.

Now, for a graph G with edge $x y$, assume by induction that $H=G-x y$ (removing the edge, but not the end vertices) has a proper edge-coloring c with $\Delta(H)+1 \leq \Delta(G)+1$ available colors. We define a new proper coloring c^{\prime} of G, including $c^{\prime}(x y)$, by changing some of the colors of c, while leaving $c^{\prime}(u v)=c(u v)$ unless otherwise specified.

Clearly c must have at least one color missing at each vertex v, and we let $\hat{c}(v)$ denote an arbitrary choice of such a color, with $\hat{c}(x)=a$. If $\hat{c}(y)=a$, we may let $c^{\prime}(x y)=a$. Otherwise, we take a maximal sequence of distinct edges $x y=x y_{0}, x y_{1}, \ldots, x y_{k}$ such that $c\left(x y_{i}\right)=\hat{c}\left(y_{i-1}\right)$ for $i=1, \ldots, k$, and $\hat{c}\left(y_{k}\right)=b \neq c(x w)$ for $w \in \Gamma_{G}(x)-\left\{y_{0}, \ldots, y_{k}\right\}$.

We shift the colors $c\left(x y_{i}\right)$ backwards: $c^{\prime}\left(x y_{i-1}\right)=c\left(x y_{i}\right)$ for $i=1, \ldots, k$. To define $c^{\prime}\left(x y_{k}\right)$, we consider a maximal path $y_{k} z_{1} \cdots z_{\ell} \subset G, \ell \geq 0$, such that:

$$
c\left(y_{k} z_{1}\right)=a, c\left(z_{1} z_{2}\right)=b, c\left(z_{2} z_{3}\right)=a, \ldots
$$

Lastly, we shift the colors on this path backwards:

$$
c^{\prime}\left(x y_{k}\right)=a, c^{\prime}\left(y_{k} z_{1}\right)=b, c^{\prime}\left(z_{1} z_{2}\right)=a, c^{\prime}\left(z_{2} z_{3}\right)=b, \ldots
$$

We easily see that c^{\prime} is a proper edge-coloring of G except in two special cases.
In the first special case, the $a b$-path ends at $z_{\ell-1} z_{\ell}=y_{j} x$ with $c\left(z_{\ell-1} z_{\ell}\right)=b$; then we specify $c^{\prime}\left(z_{\ell-1} z_{\ell}\right)=c^{\prime}\left(y_{j} x\right)=c\left(x y_{j+1}\right)$, not a.

In the second special case, the $a b$-path ends at $z_{\ell}=y_{j}$ with $c\left(z_{\ell-1} z_{\ell}\right)=$ $c\left(z_{\ell-1} y_{j-1}\right)=a$, and we have $c\left(x y_{j+1}\right)=b$. We shift the colors $c\left(x y_{i}\right)$ backwards only up to $c\left(x y_{j-1}\right)$: that is, $c^{\prime}\left(x y_{i-1}\right)=c\left(x y_{i}\right)$ for $i=1, \ldots, j$. Also:

$$
c^{\prime}\left(x y_{k}\right)=a, c^{\prime}\left(y_{k} z_{1}\right)=b, c^{\prime}\left(z_{1} z_{2}\right)=a, \ldots, c^{\prime}\left(z_{\ell-1} z_{\ell}\right)=b, c^{\prime}\left(z_{\ell} x\right)=c^{\prime}\left(y_{j} x\right)=a
$$

