In a graph G, we let $a \mathcal{P} b$ denote a path \mathcal{P} with end vertices a and b. An $a b$ separator of size k is a set S of k vertices (not containing a or b) such that $G-S$ contains no $a b$-path. An $a b$-connector of size k is a union of $a b$-paths $\mathcal{P}_{1} \cup \cdots \cup \mathcal{P}_{k}$ which share no internal vertices, so that that $\mathcal{P}_{i} \cap \mathcal{P}_{j}=\{a, b\}$.
THEOREM 1: The minimum size of an $a b$-separator is equal to the maximum size of an $a b$-connector: that is, if no $k-1$ vertices can separate a from b, then there exist k internally disjoint paths which connect a to b.

It is convenient to prove an alternate form of the theorem. For sets of vertices $A, B \subset G$, an $A B$-path is an $a^{\prime} \mathcal{P} b^{\prime}$ with $a^{\prime} \in A$ and $b^{\prime} \in B$. An $A B$-separator of size k is a set S of k vertices (which may intersect A and B) such that $G-S$ contains no $A B$-path. An $A B$-connector of size k is a disjoint union of $A B$ paths $\mathcal{P}_{1} \sqcup \cdots \sqcup \mathcal{P}_{k}$, sharing no vertices at all.
THEOREM 2: The minimum size of an $A B$-separator is equal to the maximum size of an $A B$-connector.

The two statements are equivalent: for $a, b \in G$ in the first theorem, apply the second theorem to $G-\{a, b\}$ with $A=\Gamma(a), B=\Gamma(b)$, the neighboring vertices of a, b. Then an $a b$-separator is the same thing as an $A B$-separator, and removing the end vertices in an $a b$-connector gives an $A B$-connector.
Proof of Theorem 2: (F. Göring ${ }^{1}$) Induction on the number of edges in G. For G with no edges, we have $S=A \cap B$, itself an $A B$-connector with 1-vertex paths.

For G having an edge $e=x y$, and minimal $A B$-separator of size k, we may assume by induction that the Theorem holds for $G-e$. If $G-e$ has a minimal $A B$-separator of size k, then there is an $A B$-connector of size k in $G-e$, and hence in G.

Otherwise, let $S=\left\{v_{1}, \ldots, v_{k-1}\right\}$ be a minimal $A B$-separator of $G-e$, so that every $A B$-path in G contains a vertex of S or the edge $e=x y$. (There cannot be a smaller S, since $S \cup\{x\}$ is an $A B$-separator of G.) Now, let $S^{\prime}=S \cup\{x\}$, and consider an $A S^{\prime}$-separator T in $G-e$. This means there is no $A S^{\prime}$-path in $G-e-T$, so there is no $A B$-path in $G-T$: that is, T is an $A B$-separator of G, and hence has size at least k. By induction, $G-e$ contains an $A S^{\prime}$-connector of size k :

$$
a_{1} \mathcal{P}_{1}^{\prime} v_{1} \sqcup \cdots \sqcup a_{k-1} \mathcal{P}_{1}^{\prime} v_{k-1} \sqcup a_{k} \mathcal{P}_{k}^{\prime} x
$$

Similarly, letting $S^{\prime \prime}=S \cup\{y\}$, an $S^{\prime \prime} B$-separator has minimal size k, and there is an $S^{\prime \prime} B$-connector of size k :

$$
v_{1} \mathcal{P}_{1}^{\prime \prime} b_{1} \sqcup \cdots \sqcup v_{k-1} \mathcal{P}_{1}^{\prime \prime} b_{k-1} \sqcup y \mathcal{P}_{k}^{\prime \prime} b_{k}
$$

Furthermore, since S disconnects $G-e$, every \mathcal{P}_{i}^{\prime} is internally disjoint from every $\mathcal{P}_{j}^{\prime \prime}$, and we can define an $A B$-connector of size k in G by concatenating paths: $\mathcal{P}_{i}=a_{i} \mathcal{P}_{i}^{\prime} v_{i} \mathcal{P}_{i}^{\prime \prime} b_{i}$ for $i=1, \ldots, k-1$, and $\mathcal{P}_{k}=a_{k} \mathcal{P}_{k}^{\prime} x y \mathcal{P}_{k}^{\prime \prime} b_{k}$.

Note: Everything above works without change for a directed multi-graph G, provided we take path to mean directed path.

[^0]
[^0]: ${ }^{1}$ F. Göring, Short Proof of Menger's Theorem, Discrete Mathematics 219 (2000) 295-296.

