Let G be a graph embedded on a closed surface S (a compact boundaryless 2-manifold). We will derive some constraints on G involving the topology of S. Suppose G has n vertices and m edges. We can add some edges to G to get a graph \hat{G} which is maximal on S. In fact, \hat{G} defines a triangulation of S with n vertices, $\hat{m} \geq m$ edges, and \hat{l} trianglular faces, so that $3 \hat{l}=2 \hat{m}$. Then we have the Euler characteristic:

$$
\operatorname{ch}=\operatorname{ch}(S):=n-\hat{m}+\hat{l}=n-\frac{1}{3} \hat{m}
$$

and

$$
m \leq \hat{m}=3 n-3 \mathrm{ch} .
$$

Recall that ch $=2-2 g$, where g is the genus, the number of holes or handles of the surface S.

Now let us consider the chromatic number $\chi(G)$. The following easy upper bound for $\chi(G)$ was proved by Heawood in 1890.

Theorem Let S be a surface with Euler characteristic ch ≤ 0, i.e. genus $g \geq 1$. If a graph G is embeddable on S, then its chromatic number is at most:

$$
\chi(G) \leq \frac{7+\sqrt{49-24 \mathrm{ch}}}{2}
$$

In particular, if S is the orientable surface of genus $g \geq 1$, then

$$
\chi(G) \leq \frac{7+\sqrt{1+48 g}}{2}
$$

Proof. Let $h=\chi(G)$. Recall that by the greedy algorithm, we can find in G a subgraph H, with n^{\prime} vertices and m^{\prime} edges, such that:

$$
h \leq 1+\delta(H) \leq n^{\prime}
$$

Since ch ≤ 0, we have

$$
-\frac{\mathrm{ch}}{n^{\prime}} \leq-\frac{\mathrm{ch}}{h}
$$

Thus:

$$
\begin{aligned}
h & \leq 1+\delta(H) \leq 1+d(H)=1+\frac{2 m^{\prime}}{n^{\prime}} \\
& \leq 1+\frac{2\left(3 n^{\prime}-3 \mathrm{ch}\right)}{n^{\prime}}=7-6 \frac{\mathrm{ch}}{n^{\prime}} \leq 7-6 \frac{\mathrm{ch}}{h}
\end{aligned}
$$

Hence:

$$
h^{2}-7 h+6 \mathrm{ch} \leq 0
$$

which yields the first inequality of the theorem. The second inequality results from substituting ch $=2-2 g$. QED

A graph can be embedded in a sphere (genus $g=0$) if and only if it is planar. Thus, the Four Color Theorem for planar graphs is equivalent to the second inequality for $g=0$. It indicates the delicacy of coloring problems that this case is vastly more difficult to prove than $g \geq 1$.

Now, consider the complete graph $G=K_{n}$, and let $g(G)$ be the minimal genus in which G can be embedded. For example $g\left(K_{4}\right)=0$ since K_{4} is planar. Then we get $n=\chi\left(K_{n}\right) \leq \frac{1}{2}\left(7+\sqrt{1+48 g\left(K_{n}\right)}\right)$, or

$$
g\left(K_{n}\right) \geq \frac{1}{12} n^{2}-\frac{7}{12} n+1
$$

Furthermore, any G with m edges can be embedded in genus $m-n$, so $g(G) \leq$ $m-n$. (Proof: A spanning tree $T \subset K_{n}$ with $n-1$ edges is planar, and so is $T+e$; and we can embed the remaining $m-n$ edges by adding a handle for each one.) Hence:

$$
g\left(K_{n}\right) \leq\binom{ n}{2}-n=\frac{1}{2} n^{2}-\frac{3}{2} n .
$$

