Math 881 Heawood's Theorem Spring 2018

Let G be a graph embedded on a closed surface S (a compact boundaryless 2-manifold). We will derive some constraints on G involving the topology of S.

Suppose G has n vertices and m edges. We can add some edges to G to get a graph \hat{G} which is maximal on S. In fact, \hat{G} defines a triangulation of S with n vertices, $\hat{m} \ge m$ edges, and \hat{l} trianglular faces, so that $3\hat{l} = 2\hat{m}$. Then we have the Euler characteristic:

$$ch = ch(S) := n - \hat{m} + \hat{l} = n - \frac{1}{3}\hat{m},$$

and

$$m \leq \hat{m} = 3n - 3ch$$

Recall that ch = 2 - 2g, where g is the genus, the number of holes or handles of the surface S.

Now let us consider the chromatic number $\chi(G)$. The following easy upper bound for $\chi(G)$ was proved by Heawood in 1890.

Theorem Let S be a surface with Euler characteristic ch ≤ 0 , i.e. genus $g \geq 1$. If a graph G is embeddable on S, then its chromatic number is at most:

$$\chi(G) \le \frac{7 + \sqrt{49 - 24 \operatorname{ch}}}{2}$$

In particular, if S is the orientable surface of genus $g \ge 1$, then

$$\chi(G) \le \frac{7 + \sqrt{1 + 48g}}{2} \,.$$

Proof. Let $h = \chi(G)$. Recall that by the greedy algorithm, we can find in G a subgraph H, with n' vertices and m' edges, such that:

$$h \le 1 + \delta(H) \le n'.$$

Since $ch \leq 0$, we have

$$-\frac{\mathrm{ch}}{n'} \le -\frac{\mathrm{ch}}{h}$$

Thus:

$$\begin{array}{rcl} h & \leq & 1 + \delta(H) & \leq & 1 + d(H) & = & 1 + \frac{2m'}{n'} \\ & \leq & 1 + \frac{2\left(3\,n' - 3\,\mathrm{ch}\right)}{n'} & = & 7 - 6\,\frac{\mathrm{ch}}{n'} & \leq & 7 - 6\,\frac{\mathrm{ch}}{h} \end{array}$$

Hence:

$$h^2 - 7h + 6\operatorname{ch} \le 0\,,$$

which yields the first inequality of the theorem. The second inequality results from substituting ch = 2 - 2g. QED

A graph can be embedded in a sphere (genus g = 0) if and only if it is planar. Thus, the Four Color Theorem for planar graphs is equivalent to the second inequality for g = 0. It indicates the delicacy of coloring problems that this case is vastly more difficult to prove than $g \ge 1$.

Now, consider the complete graph $G = K_n$, and let g(G) be the minimal genus in which G can be embedded. For example $g(K_4) = 0$ since K_4 is planar. Then we get $n = \chi(K_n) \leq \frac{1}{2}(7 + \sqrt{1 + 48g(K_n)})$, or

$$g(K_n) \ge \frac{1}{12}n^2 - \frac{7}{12}n + 1.$$

Furthermore, any G with m edges can be embedded in genus m - n, so $g(G) \leq m - n$. (Proof: A spanning tree $T \subset K_n$ with n - 1 edges is planar, and so is T + e; and we can embed the remaining m - n edges by adding a handle for each one.) Hence:

$$g(K_n) \le \binom{n}{2} - n = \frac{1}{2}n^2 - \frac{3}{2}n$$