Math 881

Let G = (V, E) be a connected graph with n vertices $V = \{v_1, \ldots, v_n\}$ and m edges. The $n \times n$ adjacency matrix $A = (a_{ij})$ has $a_{ij} = 1$ if $v_i v_j \in E$, and $a_{ij} = 0$ otherwise. Since A is a real symmetric matrix, \mathbb{R}^n has an orthogonal basis of eigenvectors, with real eigenvalues $\mu_1 \geq \cdots \geq \mu_n$. The matrix acts on $f \in \mathbb{R}^n$, written in the functional notation $f: V \to \mathbb{R}$, by summing over neighboring values: $Af(v) = \sum_{w \in \Gamma(v)} f(w)$.

We always have $\mu_1 \leq \Delta$, the maximal vertex degree, with equality if and only if G is Δ -regular. Indeed, if $Af_1 = \mu_1 f_1$, normalized so that $f_1(v) = 1$ for a certain v and $f_1(w) \leq 1$ for all $w \in V$, then $\mu_1 = \sum_{w \in \Gamma(v)} f_1(w) \leq \Delta$, with equality if and only if $f_1(w) = 1$ for all neighbors and $\mu_1 = \deg(v) = \Delta$. Iterating this, we find $\deg(w) = \Delta$ and $f_1(w) = 1$ for all $w \in V$, so that G is Δ -regular with a unique μ_1 -eigenvector. Similarly, $\mu_n = -\Delta$ if and only if G is bipartite and Δ -regular. The spectrum gives bounds for the chromatic number: $1 + |\frac{\mu_1}{\mu_n}| \leq \chi(G) \leq 1 + \mu_1$.

The Laplacian is L = D - A for $D = \text{diag}(\text{deg}(v_1), \dots, \text{deg}(v_n))$, a diagonal matrix. It has eigenvalues $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_n$, with 0-eigenvector again given by the constant function $f_1(v) = 1$, even if G is not regular. We have $L = B^T B$, where the $m \times n$ coboundary matrix $B = (b_{ij})$ is defined by arbitrarily choosing an orientation for each edge and setting $b_{ij} = 1$ if v_j is the start of e_i ; $b_{ij} = -1$ if v_j is the end of e_i ; and $b_{ij} = 0$ otherwise. This guarantees that L is a positive semi-definite symmetric matrix.

We define the numerical range:

$$W(A) = \{ \langle Af, f \rangle \text{ for } f \in \mathbb{R}^n, |f| = 1 \} = \left\{ \frac{\langle Af, f \rangle}{\langle f, f \rangle} \text{ for } f \in \mathbb{R}^n - 0 \right\}.$$

In fact, W(A) is the real interval $[\mu_n, \mu_1]$. To work with the numerical range W(L), we may use: $\langle Lf, f \rangle = \langle Bf, Bf \rangle = \sum_{vw \in E} (f(v) - f(w))^2$.

The Laplacian spectrum gives bounds for the connectivity, $\kappa(G) \geq \lambda_2$, and for the edge expansion, $h(G) \geq \frac{1}{2}\lambda_2$. These are shown using the variational characterization of the second-smallest eigenvalue,

$$\lambda_2 = \min\left\{\frac{\langle Lf, f \rangle}{\langle f, f \rangle} \text{ for } f \in \mathbb{R}^n - 0 \text{ with } \langle f, f_1 \rangle = 0\right\},$$

and computing $\frac{\langle Lf,f \rangle}{\langle f,f \rangle} = \frac{\langle Bf,Bf \rangle}{\langle f,f \rangle}$ for an appropriate almost-constant f. **1.** Show that $\lambda_n \leq 2\Delta$, with equality if and only if G is bipartite and Δ -regular.

2. Determine the spectra $\{\mu_i\}$ and $\{\lambda_i\}$ for the following graphs:

a. The *n*-cycle C_n **b.** The complete bipartite graph K_{n_1,n_2}

Explain how the A and L spectra are related. Also verify that the spectra satisfy all the conditions and inequalities mentioned above.

3. The vertex expansion constant (or vertex Cheeger constant) is:

$$g(G) = \min\left\{\frac{|\Gamma(U)-U|}{|U|} \text{ for } U \subset V, |U| \le \frac{n}{2}\right\}.$$

Here $\Gamma(U) - U$ means the neighbors of U which do not lie in U.

Show the following spectral lower bound for the vertex expansion:

$$g(G) \ge \frac{2\lambda_2}{\Delta + 2\lambda_2}$$

Hints:

- If you cannot show the full inequality, at least show it for restricted values of g(G) or n, or give a weaker equality in general.
- Model your proof on Bollobas Ch VIII.2 Thm 12 & 13 (p. 269), finding an upper bound for λ_2 using the variational characterization.
- If you get an upper bound for λ_2 containing n = |V| or $\ell = |U|$, substitute the values of n, ℓ which maximize the expression.
- OOPS: Seems false! (Thanks to Theo) Prove and use the following fact: If U realizes the expansion constant, so that $g(G) = \frac{|\Gamma(U) U|}{|U|}$ with $|U| \leq \frac{n}{2}$, then any vertex $v \in \Gamma(U) U$ has at least as many neighbors in V U as in U.