Let $G=(V, E)$ be a connected graph with n vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and m edges. The $n \times n$ adjacency matrix $A=\left(a_{i j}\right)$ has $a_{i j}=1$ if $v_{i} v_{j} \in E$, and $a_{i j}=0$ otherwise. Since A is a real symmetric matrix, \mathbb{R}^{n} has an orthogonal basis of eigenvectors, with real eigenvalues $\mu_{1} \geq \cdots \geq \mu_{n}$. The matrix acts on $f \in \mathbb{R}^{n}$, written in the functional notation $f: V \rightarrow \mathbb{R}$, by summing over neighboring values: $A f(v)=\sum_{w \in \Gamma(v)} f(w)$.

We always have $\mu_{1} \leq \Delta$, the maximal vertex degree, with equality if and only if G is Δ-regular. Indeed, if $A f_{1}=\mu_{1} f_{1}$, normalized so that $f_{1}(v)=1$ for a certain v and $f_{1}(w) \leq 1$ for all $w \in V$, then $\mu_{1}=\sum_{w \in \Gamma(v)} f_{1}(w) \leq \Delta$, with equality if and only if $f_{1}(w)=1$ for all neighbors and $\mu_{1}=\operatorname{deg}(v)=\Delta$. Iterating this, we find $\operatorname{deg}(w)=\Delta$ and $f_{1}(w)=1$ for all $w \in V$, so that G is Δ-regular with a unique μ_{1}-eigenvector. Similarly, $\mu_{n}=-\Delta$ if and only if G is bipartite and Δ-regular. The spectrum gives bounds for the chromatic number: $1+\left|\frac{\mu_{1}}{\mu_{n}}\right| \leq \chi(G) \leq 1+\mu_{1}$.

The Laplacian is $L=D-A$ for $D=\operatorname{diag}\left(\operatorname{deg}\left(v_{1}\right), \ldots, \operatorname{deg}\left(v_{n}\right)\right)$, a diagonal matrix. It has eigenvalues $0=\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{n}$, with 0 eigenvector again given by the constant function $f_{1}(v)=1$, even if G is not regular. We have $L=B^{T} B$, where the $m \times n$ coboundary matrix $B=\left(b_{i j}\right)$ is defined by arbitrarily choosing an orientation for each edge and setting $b_{i j}=1$ if v_{j} is the start of $e_{i} ; b_{i j}=-1$ if v_{j} is the end of e_{i}; and $b_{i j}=0$ otherwise. This guarantees that L is a positive semi-definite symmetric matrix.

We define the numerical range:

$$
W(A)=\left\{\langle A f, f\rangle \text { for } f \in \mathbb{R}^{n},|f|=1\right\}=\left\{\frac{\langle A f, f\rangle}{\langle f, f\rangle} \text { for } f \in \mathbb{R}^{n}-0\right\}
$$

In fact, $W(A)$ is the real interval $\left[\mu_{n}, \mu_{1}\right]$. To work with the numerical range $W(L)$, we may use: $\langle L f, f\rangle=\langle B f, B f\rangle=\sum_{v w \in E}(f(v)-f(w))^{2}$.

The Laplacian spectrum gives bounds for the connectivity, $\kappa(G) \geq \lambda_{2}$, and for the edge expansion, $h(G) \geq \frac{1}{2} \lambda_{2}$. These are shown using the variational characterization of the second-smallest eigenvalue,

$$
\lambda_{2}=\min \left\{\frac{\langle L f, f\rangle}{\langle f, f\rangle} \text { for } f \in \mathbb{R}^{n}-0 \text { with }\left\langle f, f_{1}\right\rangle=0\right\}
$$

and computing $\frac{\langle L f, f\rangle}{\langle f, f\rangle}=\frac{\langle B f, B f\rangle}{\langle f, f\rangle}$ for an appropriate almost-constant f.

1. Show that $\lambda_{n} \leq 2 \Delta$, with equality if and only if G is bipartite and Δ regular.
2. Determine the spectra $\left\{\mu_{i}\right\}$ and $\left\{\lambda_{i}\right\}$ for the following graphs:
a. The n-cycle $C_{n} \quad$ b. The complete bipartite graph $K_{n_{1}, n_{2}}$

Explain how the A and L spectra are related. Also verify that the spectra satisfy all the conditions and inequalities mentioned above.
3. The vertex expansion constant (or vertex Cheeger constant) is:

$$
g(G)=\min \left\{\frac{|\Gamma(U)-U|}{|U|} \text { for } U \subset V,|U| \leq \frac{n}{2}\right\}
$$

Here $\Gamma(U)-U$ means the neighbors of U which do not lie in U.
Show the following spectral lower bound for the vertex expansion:

$$
g(G) \geq \frac{2 \lambda_{2}}{\Delta+2 \lambda_{2}}
$$

Hints:

- If you cannot show the full inequality, at least show it for restricted values of $g(G)$ or n, or give a weaker equality in general.
- Model your proof on Bollobas Ch VIII. 2 Thm $12 \& 13$ (p. 269), finding an upper bound for λ_{2} using the variational characterization.
- If you get an upper bound for λ_{2} containing $n=|V|$ or $\ell=|U|$, substitute the values of n, ℓ which maximize the expression.
- OOPS: Seems false! (Thanks to Theo) Prove and use the following fact: If U realizes the expansion constant, so that $g(G)=\frac{|\Gamma(U)-U|}{|U|}$ with $|U| \leq \frac{n}{2}$, then any vertex $v \subset \Gamma(U) \quad U$ has at least as many neighbors in $V U$ as in U.

