Math 881 Homework 8 Solutions Spring 2018

2. Let G be a connected n-vertex graph with largest vertex degree A, with
adjacency matrix A having eigenvalues puq > po > -+ > up, and with
Laplacian L = D — A having eigenvalues 0 = A\; < Ay < --- < Ay

a. Take G = (), the n-cycle, which we may think of as the union of a directed
n-cycle and its opposite. We may thus decompose A = C + CT, where
C' is the n-cycle permutation matrix, and CT is its transpose.! A vector
a=(ay,...,ay) is an eigenvector with Cd = A\d@ whenever a; = \;a; for i =
2,...,n, and a; = A"a;. Thus, the eigenvectors are @ = (1, A\, \%,..., A" 1)
for any n'™ root of unity A = ¢7 for ¢ = 2™/, These are also eigenvectors
for C~! = C7T, but with eigenvalue (7. Hence the eigenvalues of A are:
p1 = 2cos(0) = 2;

poj = pojn = ¢ +(7 = 2cos(3) for j=1,...,[3]-1;

and also p, = 2 COS(M) = —2if nis even. Note that u; = 2, as expected
for a 2-regular graph, and p; = —p, 41— exactly when n is even and G is

bipartite. Finally, since G is 2-regular, we have \; = 2 — ;.

b. Take G = K,,, », a complete bipartite graph with vertices V' = V3 U V5.
We may immediately give eigenvectors, expressed as functions f : V — C.

The function:
/ng forveV;
fi(v) =
/ni for for v e V5

has Afi = \/ninsf1. Similarly:

o) = Jng forveV
mi%) = —y/n1  for for v € V5

has Af, = —\/ninaf,. Finally, we have the n—2 dimensional null-space of
A, consisting of functions with > i f(v) = > v, f(v) = 0. Thus the
eigenvalues of A are: 4,/ning with multiplicty 1, and 0 with multiplcity
n—2. Note that G is regular whenever n; = ny = /nin2.

The Laplacian spectrum can be given similarly, but it can also be done
using a trick. The complement of a regular bipartite graph is a disjoint

union of complete graphs: Ky, n, = K, U Kp,.

!The directed n-cycle is the Cayley graph of the cyclic group I' = (o | ¢™ = 1), and
the adjacency matrix C acts on the space of functions f : I' — C via right translation by
the sum of the generators, that is (Cf)(v;) = f(vio) = f(vit1).



CrLAM: Let G be an n-vertex graph. If @ is a non-null eigenvector of the
Laplacian with Lg(@) = MA@ # 0, then @ is also an eigenvector of the com-
plementary Laplacian, and Lz(@) = (n—\)d.

Proof: Let J be nxn matrix with every entry equal to 1, and I the identity
matrix. The vector j = (1,...,1) is always a nullvector of L, and is also
an eigenvector with Jj = nj. Let @ be any eigenvector with Lad@ = A@ # 0.
Then (@, j) = 0, and J@ = 0. Now, Lg + Lg = Lx, = nl — J, so:

Lg@) = (nI-J—Lg)(@) = (n—0-))a.

This proves the Claim.

Now, recall that the eigenvalues of K, are 0 (once) and n; (n1—1 times).
Thus G = K, n, has eigenvalues ni+ngs—n1 = no with multiplicity ni;
and similarly n; with multiplicity ny. Finally, since G is connected, it has
only one nullvector, so Lg must have one more non-zero eigenvalue A with
eigenvector @; this must be one of the remaining eigenvectors of L, namely
a nullvector, and ni+ns—X = 0, so that A = ni+ns.

That is, the eigenvalues of Lg are: 0 with multiplicity 1; ny with multi-
plicity no; and n1+ng with multiplcity 1.

3. Consider a connected graph G = (V, E) with |V| = n vertices and maxi-
mum vertex degree A. Define the vertex expansion constant:

9(G) = min{% for UCV, \U|§%},
where T'(U)—U denotes the neighbors of U which do not lie in U. Let

A be the adjacency matrix, D the diagonal matrix of vertex degrees, and

L = D — A the Laplacian, having eigenvalues 0 = A\; < Ag < --- < A, < 2A.
2o

PropoSITION: ¢(G) > Aoy

Proof: Let g = ¢g(G). The inequality is trivial if g > 1, so we assume

g < 1. Solving the inequality for Ao under the condition 1—g > 0, we see

the Proposition is equivalent to:

?
Ay <

Now, the zero-eigenvector of L is the constant function fi(x) = 1, so the
variational definition of eigenvalues implies:

Ay = min{%{}@ for f # 0 with (f, f1) = 0}-



However, L = BBT for the edge-vertex incidence matrix B, giving (Lf, f) =
|Bf|? = nyeE(f(m)—f(y))Q for any function f:V — R. Therefore:

S en(F@)—FW))?
e SIS {FE

for any f # 0 with > f(z) =
Next consider a set U of u < % vertices which realizes the expansion

constant, so that the separating set S = T'(U)—U has gu vertices, and
the complement W = V—-U—-S has w = n—u—gu vertices. Define a step
function:

) w iteelU
flz) = Hw—u) ifzxes
—u ife e W,
where the function drops by (w+u) at each step. The mean is p =

DI f(z) = g" . “) , and the shifted function f = f — y has 3 f(z) =
The square norm may be estimated as:

S F@)? 2 Y F@)? = u(w—ptwludn)? > wetwr® = aw(w-ta),

eV xcUUW

since the quadratic function ¢(u) = u(w—pu)? + w(u+w)? has its minimum
at = 0. Lastly, we estimate the quadratic form (Lf, f) as:

w u2 w U2
> (o)1) = B3 (“54) < a0

zyelE

since each of the gu vertices of S has at most A edges to S.
Now we apply the variational inequality to f:

Dayep(f(@)—f(y))?

A <

T S @)
< Agu(w+u)?  Aglwtu)  Ag(n—gu)
~ duww(wtu) 4w "~ 4(n—u—gu)
< Agn B Ag
= 4(n—u—gu) 4(1-2(1+g))
< Ag _ Ay

4(1-3(1+g))  2(1-g)’

where the last inequality follows from % < % This concludes the proof.



Notes

The above function f(x) gives such a good upper bound on A2 because
it breaks up the step w+u, with its bond energy (w+u)?, into two equal
steps, minimizing the total bond energy 2(“$%)? = I (w+u)?.

Other step functions give generally weaker bounds. Again assuming
U with u vertices realizes the expansion constant g, the function:

n—u ifzelU
—u ifxeU,

) = {

leads to Ao < 2Ag, which is smaller than Q(ffg) when 2 < g < 1.

It might be possible to balance our step function more subtly, choos-
ing the step locations to minimize boundary edges. Again taking the
vertex boundary S = I'(U)—U with gu vertices, suppose we could
find S’ C S so that the partition V = U' U W', with U' = U U S’
and W' = U’, satisfies [['(z) N U'| > |T'(x) N W'| for x € U’, and
T'(z) N W'| > [I'(z) N U’| for x € W'. Then the edge boundary has
size |[E(U',W')| < £|S| = $Agu. Defining:

flz) =

w  ifrelU
—'  ifzxel,

for v/ = |U’| and w' = |[W’|, we obtain Ay < 1%52. Unfortunantely,

this is larger than % for all g, so it is not really worth trying to
find V = U’ U W', though it is an intriguing problem in itself.



