2. Let $G$ be a connected $n$-vertex graph with largest vertex degree $\Delta$, with adjacency matrix $A$ having eigenvalues $\mu_{1}>\mu_{2} \geq \cdots \geq \mu_{n}$, and with Laplacian $L=D-A$ having eigenvalues $0=\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{n}$.
a. Take $G=C_{n}$ the $n$-cycle, which we may think of as the union of a directed $n$-cycle and its opposite. We may thus decompose $A=C+C^{\mathrm{T}}$, where $C$ is the $n$-cycle permutation matrix, and $C^{\mathrm{T}}$ is its transpose. ${ }^{1}$ A vector $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$ is an eigenvector with $C \vec{a}=\lambda \vec{a}$ whenever $a_{i}=\lambda_{i} a_{1}$ for $i=$ $2, \ldots, n$, and $a_{1}=\lambda^{n} a_{1}$. Thus, the eigenvectors are $\vec{a}=\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{n-1}\right)$ for any $n^{\text {th }}$ root of unity $\lambda=\zeta^{j}$ for $\zeta=e^{2 \pi i / n}$. These are also eigenvectors for $C^{-1}=C^{\mathrm{T}}$, but with eigenvalue $\zeta^{-j}$. Hence the eigenvalues of $A$ are: $\mu_{1}=2 \cos (0)=2$;

$$
\mu_{2 j}=\mu_{2 j+1}=\zeta^{j}+\zeta^{-j}=2 \cos \left(\frac{2 \pi j}{n}\right) \text { for } j=1, \ldots,\left\lceil\frac{n}{2}\right\rceil-1
$$

and also $\mu_{n}=2 \cos \left(\frac{2 \pi(n / 2)}{n}\right)=-2$ if $n$ is even. Note that $\mu_{1}=2$, as expected for a 2-regular graph, and $\mu_{j}=-\mu_{n+1-j}$ exactly when $n$ is even and $G$ is bipartite. Finally, since $G$ is 2-regular, we have $\lambda_{j}=2-\mu_{j}$.
b. Take $G=K_{n_{1}, n_{2}}$ a complete bipartite graph with vertices $V=V_{1} \sqcup V_{2}$. We may immediately give eigenvectors, expressed as functions $f: V \rightarrow \mathbb{C}$. The function:

$$
f_{1}(v)= \begin{cases}\sqrt{n_{2}} & \text { for } v \in V_{1} \\ \sqrt{n_{1}} & \text { for for } v \in V_{2}\end{cases}
$$

has $A f_{1}=\sqrt{n_{1} n_{2}} f_{1}$. Similarly:

$$
f_{n}(v)=\left\{\begin{aligned}
\sqrt{n_{2}} & \text { for } v \in V_{1} \\
-\sqrt{n_{1}} & \text { for for } v \in V_{2}
\end{aligned}\right.
$$

has $A f_{n}=-\sqrt{n_{1} n_{2}} f_{n}$. Finally, we have the $n-2$ dimensional null-space of $A$, consisting of functions with $\sum_{v \in V_{1}} f(v)=\sum_{v \in V_{2}} f(v)=0$. Thus the eigenvalues of $A$ are: $\pm \sqrt{n_{1} n_{2}}$ with multiplicty 1 , and 0 with multiplcity $n-2$. Note that $G$ is regular whenever $n_{1}=n_{2}=\sqrt{n_{1} n 2}$.

The Laplacian spectrum can be given similarly, but it can also be done using a trick. The complement of a regular bipartite graph is a disjoint union of complete graphs: $\bar{K}_{n_{1}, n_{2}}=K_{n_{1}} \sqcup K_{n_{2}}$.

[^0]Claim: Let $G$ be an $n$-vertex graph. If $\vec{a}$ is a non-null eigenvector of the Laplacian with $L_{G}(\vec{a})=\lambda \vec{a} \neq 0$, then $\vec{a}$ is also an eigenvector of the complementary Laplacian, and $L_{\bar{G}}(\vec{a})=(n-\lambda) \vec{a}$.
Proof: Let $J$ be $n \times n$ matrix with every entry equal to 1 , and $I$ the identity matrix. The vector $\vec{j}=(1, \ldots, 1)$ is always a nullvector of $L_{G}$, and is also an eigenvector with $J \vec{j}=n \vec{j}$. Let $\vec{a}$ be any eigenvector with $L_{G} \vec{a}=\lambda \vec{a} \neq 0$. Then $\langle\vec{a}, \vec{j}\rangle=0$, and $J \vec{a}=0$. Now, $L_{G}+L_{\bar{G}}=L_{K_{n}}=n I-J$, so:

$$
L_{\bar{G}}(\vec{a})=\left(n I-J-L_{G}\right)(\vec{a})=(n-0-\lambda) \vec{a} .
$$

This proves the Claim.
Now, recall that the eigenvalues of $K_{n_{1}}$ are 0 (once) and $n_{1}$ ( $n_{1}-1$ times). Thus $G=K_{n_{1}, n_{2}}$ has eigenvalues $n_{1}+n_{2}-n_{1}=n_{2}$ with multiplicity $n_{1}$; and similarly $n_{1}$ with multiplicity $n_{2}$. Finally, since $G$ is connected, it has only one nullvector, so $L_{G}$ must have one more non-zero eigenvalue $\lambda$ with eigenvector $\vec{a}$; this must be one of the remaining eigenvectors of $L_{\bar{G}}$, namely a nullvector, and $n_{1}+n_{2}-\lambda=0$, so that $\lambda=n_{1}+n_{2}$.

That is, the eigenvalues of $L_{G}$ are: 0 with multiplicity $1 ; n_{1}$ with multiplicity $n_{2}$; and $n_{1}+n_{2}$ with multiplcity 1 .
3. Consider a connected graph $G=(V, E)$ with $|V|=n$ vertices and maximum vertex degree $\Delta$. Define the vertex expansion constant:

$$
g(G)=\min \left\{\frac{|\Gamma(U)-U|}{|U|} \text { for } U \subset V,|U| \leq \frac{n}{2}\right\},
$$

where $\Gamma(U)-U$ denotes the neighbors of $U$ which do not lie in $U$. Let $A$ be the adjacency matrix, $D$ the diagonal matrix of vertex degrees, and $L=D-A$ the Laplacian, having eigenvalues $0=\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{n} \leq 2 \Delta$.
PROPOSItion: $g(G) \geq \frac{2 \lambda_{2}}{\Delta+2 \lambda_{2}}$.
Proof: Let $g=g(G)$. The inequality is trivial if $g \geq 1$, so we assume $g<1$. Solving the inequality for $\lambda_{2}$ under the condition $1-g>0$, we see the Proposition is equivalent to:

$$
\lambda_{2} \stackrel{?}{\leq} \frac{g \Delta}{2(1-g)} .
$$

Now, the zero-eigenvector of $L$ is the constant function $f_{1}(x)=1$, so the variational definition of eigenvalues implies:

$$
\lambda_{2}=\min \left\{\frac{\langle L f, f\rangle}{\langle f, f\rangle} \text { for } f \neq 0 \text { with }\left\langle f, f_{1}\right\rangle=0\right\} .
$$

However, $L=B B^{\mathrm{T}}$ for the edge-vertex incidence matrix $B$, giving $\langle L f, f\rangle=$ $|B f|^{2}=\sum_{x y \in E}(f(x)-f(y))^{2}$ for any function $f: V \rightarrow \mathbb{R}$. Therefore:

$$
\lambda_{2} \leq \frac{\sum_{x y \in E}(f(x)-f(y))^{2}}{\sum_{x \in V} f(x)^{2}}
$$

for any $f \neq 0$ with $\sum_{x} f(x)=0$.
Next consider a set $U$ of $u \leq \frac{n}{2}$ vertices which realizes the expansion constant, so that the separating set $S=\Gamma(U)-U$ has $g u$ vertices, and the complement $W=V-U-S$ has $w=n-u-g u$ vertices. Define a step function:

$$
\tilde{f}(x)=\left\{\begin{array}{cl}
w & \text { if } x \in U \\
\frac{1}{2}(w-u) & \text { if } x \in S \\
-u & \text { if } x \in W
\end{array}\right.
$$

where the function drops by $\frac{1}{2}(w+u)$ at each step. The mean is $\mu=$ $\frac{1}{n} \sum_{x} \tilde{f}(x)=\frac{g u(w-u)}{2 n}$, and the shifted function $f=\tilde{f}-\mu$ has $\sum_{x} f(x)=0$. The square norm may be estimated as:

$$
\sum_{x \in V} f(x)^{2} \geq \sum_{x \in U \cup W} f(x)^{2}=u(w-\mu)^{2}+w(u+\mu)^{2} \geq u w^{2}+w u^{2}=u w(w+u),
$$

since the quadratic function $\phi(\mu)=u(w-\mu)^{2}+w(u+\mu)^{2}$ has its minimum at $\mu=0$. Lastly, we estimate the quadratic form $\langle L f, f\rangle$ as:

$$
\sum_{x y \in E}(f(x)-f(y))^{2}=E(S, \bar{S})\left(\frac{w+u}{2}\right)^{2} \leq \Delta g u \frac{(w+u)^{2}}{4}
$$

since each of the $g u$ vertices of $S$ has at most $\Delta$ edges to $\bar{S}$.
Now we apply the variational inequality to $f$ :

$$
\begin{aligned}
\lambda_{2} & \leq \frac{\sum_{x y \in E}(f(x)-f(y))^{2}}{\sum_{x \in V} f(x)^{2}} \\
& \leq \frac{\Delta g u(w+u)^{2}}{4 u w(w+u)}=\frac{\Delta g(w+u)}{4 w}=\frac{\Delta g(n-g u)}{4(n-u-g u)} \\
& \leq \frac{\Delta g n}{4(n-u-g u)}=\frac{\Delta g}{4\left(1-\frac{u}{n}(1+g)\right)} \\
& \leq \frac{\Delta g}{4\left(1-\frac{1}{2}(1+g)\right)}=\frac{\Delta g}{2(1-g)}
\end{aligned}
$$

where the last inequality follows from $\frac{u}{n} \leq \frac{1}{2}$. This concludes the proof.

## Notes

- The above function $f(x)$ gives such a good upper bound on $\lambda_{2}$ because it breaks up the step $w+u$, with its bond energy $(w+u)^{2}$, into two equal steps, minimizing the total bond energy $2\left(\frac{w+u}{2}\right)^{2}=\frac{1}{2}(w+u)^{2}$.
- Other step functions give generally weaker bounds. Again assuming $U$ with $u$ vertices realizes the expansion constant $g$, the function:

$$
f(x)= \begin{cases}n-u & \text { if } x \in U \\ -u & \text { if } x \in \bar{U}\end{cases}
$$

leads to $\lambda_{2} \leq 2 \Delta g$, which is smaller than $\frac{\Delta g}{2(1-g)}$ when $\frac{3}{4}<g<1$.

- It might be possible to balance our step function more subtly, choosing the step locations to minimize boundary edges. Again taking the vertex boundary $S=\Gamma(U)-U$ with $g u$ vertices, suppose we could find $S^{\prime} \subset S$ so that the partition $V=U^{\prime} \sqcup W^{\prime}$, with $U^{\prime}=U \cup S^{\prime}$ and $W^{\prime}=\overline{U^{\prime}}$, satisfies $\left|\Gamma(x) \cap U^{\prime}\right| \geq\left|\Gamma(x) \cap W^{\prime}\right|$ for $x \in U^{\prime}$, and $\left|\Gamma(x) \cap W^{\prime}\right| \geq\left|\Gamma(x) \cap U^{\prime}\right|$ for $x \in W^{\prime}$. Then the edge boundary has size $\left|E\left(U^{\prime}, W^{\prime}\right)\right| \leq \frac{\Delta}{2}|S|=\frac{1}{2} \Delta g u$. Defining:

$$
f(x)=\left\{\begin{aligned}
w^{\prime} & \text { if } x \in U^{\prime} \\
-u^{\prime} & \text { if } x \in \bar{U}
\end{aligned}\right.
$$

for $u^{\prime}=\left|U^{\prime}\right|$ and $w^{\prime}=\left|W^{\prime}\right|$, we obtain $\lambda_{2} \leq \frac{\Delta g}{1-g^{2}}$. Unfortunantely, this is larger than $\frac{\Delta g}{2(1-g)}$ for all $g$, so it is not really worth trying to find $V=U^{\prime} \sqcup W^{\prime}$, though it is an intriguing problem in itself.


[^0]:    ${ }^{1}$ The directed $n$-cycle is the Cayley graph of the cyclic group $\Gamma=\left\langle\sigma \mid \sigma^{n}=1\right\rangle$, and the adjacency matrix $C$ acts on the space of functions $f: \Gamma \rightarrow \mathbb{C}$ via right translation by the sum of the generators, that is $(C f)\left(v_{i}\right)=f\left(v_{i} \sigma\right)=f\left(v_{i+1}\right)$.

