
Math 881 Homework 8 Solutions Spring 2018

2. Let G be a connected n-vertex graph with largest vertex degree ∆, with
adjacency matrix A having eigenvalues µ1 > µ2 ≥ · · · ≥ µn, and with
Laplacian L = D −A having eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λn.

a. TakeG = Cn the n-cycle, which we may think of as the union of a directed
n-cycle and its opposite. We may thus decompose A = C + CT, where
C is the n-cycle permutation matrix, and CT is its transpose.1 A vector
~a = (a1, . . . , an) is an eigenvector with C~a = λ~a whenever ai = λia1 for i =
2, . . . , n, and a1 = λna1. Thus, the eigenvectors are ~a = (1, λ, λ2, . . . , λn−1)
for any nth root of unity λ = ζj for ζ = e2πi/n. These are also eigenvectors
for C−1 = CT, but with eigenvalue ζ−j . Hence the eigenvalues of A are:
µ1 = 2 cos(0) = 2;

µ2j = µ2j+1 = ζj + ζ−j = 2 cos(2πj
n ) for j = 1, . . . , dn2 e−1;

and also µn = 2 cos(2π(n/2)
n ) = −2 if n is even. Note that µ1 = 2, as expected

for a 2-regular graph, and µj = −µn+1−j exactly when n is even and G is
bipartite. Finally, since G is 2-regular, we have λj = 2− µj .

b. Take G = Kn1,n2 a complete bipartite graph with vertices V = V1 t V2.
We may immediately give eigenvectors, expressed as functions f : V → C.
The function:

f1(v) =

{ √
n2 for v ∈ V1
√
n1 for for v ∈ V2

has Af1 =
√
n1n2f1. Similarly:

fn(v) =

{ √
n2 for v ∈ V1

−√n1 for for v ∈ V2

has Afn = −√n1n2fn. Finally, we have the n−2 dimensional null-space of
A, consisting of functions with

∑
v∈V1 f(v) =

∑
v∈V2 f(v) = 0. Thus the

eigenvalues of A are: ±√n1n2 with multiplicty 1, and 0 with multiplcity
n−2. Note that G is regular whenever n1 = n2 =

√
n1n2.

The Laplacian spectrum can be given similarly, but it can also be done
using a trick. The complement of a regular bipartite graph is a disjoint
union of complete graphs: Kn1,n2 = Kn1 tKn2 .

1The directed n-cycle is the Cayley graph of the cyclic group Γ = 〈σ | σn = 1〉, and
the adjacency matrix C acts on the space of functions f : Γ → C via right translation by
the sum of the generators, that is (Cf)(vi) = f(viσ) = f(vi+1).



Claim: Let G be an n-vertex graph. If ~a is a non-null eigenvector of the
Laplacian with LG(~a) = λ~a 6= 0, then ~a is also an eigenvector of the com-
plementary Laplacian, and LG(~a) = (n−λ)~a.

Proof: Let J be n×n matrix with every entry equal to 1, and I the identity
matrix. The vector ~j = (1, . . . , 1) is always a nullvector of LG, and is also
an eigenvector with J~j = n~j. Let ~a be any eigenvector with LG~a = λ~a 6= 0.
Then 〈~a,~j〉 = 0, and J~a = 0. Now, LG + LG = LKn = nI − J , so:

LG(~a) = (nI−J−LG)(~a) = (n−0−λ)~a.

This proves the Claim.
Now, recall that the eigenvalues of Kn1 are 0 (once) and n1 (n1−1 times).

Thus G = Kn1,n2 has eigenvalues n1+n2−n1 = n2 with multiplicity n1;
and similarly n1 with multiplicity n2. Finally, since G is connected, it has
only one nullvector, so LG must have one more non-zero eigenvalue λ with
eigenvector ~a; this must be one of the remaining eigenvectors of LG, namely
a nullvector, and n1+n2−λ = 0, so that λ = n1+n2.

That is, the eigenvalues of LG are: 0 with multiplicity 1; n1 with multi-
plicity n2; and n1+n2 with multiplcity 1.

3. Consider a connected graph G = (V,E) with |V | = n vertices and maxi-
mum vertex degree ∆. Define the vertex expansion constant:

g(G) = min
{
|Γ(U)−U |
|U | for U⊂V, |U |≤n

2

}
,

where Γ(U)−U denotes the neighbors of U which do not lie in U . Let
A be the adjacency matrix, D the diagonal matrix of vertex degrees, and
L = D−A the Laplacian, having eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λn ≤ 2∆.

Proposition: g(G) ≥ 2λ2

∆ + 2λ2
.

Proof: Let g = g(G). The inequality is trivial if g ≥ 1, so we assume
g < 1. Solving the inequality for λ2 under the condition 1−g > 0, we see
the Proposition is equivalent to:

λ2

?
≤ g∆

2(1−g)
.

Now, the zero-eigenvector of L is the constant function f1(x) = 1, so the
variational definition of eigenvalues implies:

λ2 = min
{
〈Lf,f〉
〈f,f〉 for f 6= 0 with 〈f, f1〉 = 0

}
.



However, L = BBT for the edge-vertex incidence matrix B, giving 〈Lf, f〉 =
|Bf |2 =

∑
xy∈E(f(x)−f(y))2 for any function f : V → R. Therefore:

λ2 ≤
∑

xy∈E(f(x)−f(y))2∑
x∈V f(x)2

for any f 6= 0 with
∑

x f(x) = 0.
Next consider a set U of u ≤ n

2 vertices which realizes the expansion
constant, so that the separating set S = Γ(U)−U has gu vertices, and
the complement W = V−U−S has w = n−u−gu vertices. Define a step
function:

f̃(x) =


w if x ∈ U

1
2(w−u) if x ∈ S
−u if x ∈W ,

where the function drops by 1
2(w+u) at each step. The mean is µ =

1
n

∑
x f̃(x) = gu(w−u)

2n , and the shifted function f = f̃ − µ has
∑

x f(x) = 0.
The square norm may be estimated as:∑
x∈V

f(x)2 ≥
∑

x∈U∪W
f(x)2 = u(w−µ)2+w(u+µ)2 ≥ uw2+wu2 = uw(w+u),

since the quadratic function φ(µ) = u(w−µ)2 + w(u+µ)2 has its minimum
at µ = 0. Lastly, we estimate the quadratic form 〈Lf, f〉 as:

∑
xy∈E

(f(x)−f(y))2 = E(S, S)

(
w+u

2

)2

≤ ∆gu
(w+u)2

4
,

since each of the gu vertices of S has at most ∆ edges to S.
Now we apply the variational inequality to f :

λ2 ≤
∑

xy∈E(f(x)−f(y))2∑
x∈V f(x)2

≤ ∆gu(w+u)2

4uw(w+u)
=

∆g(w+u)

4w
=

∆g(n−gu)

4(n−u−gu)

≤ ∆gn

4(n−u−gu)
=

∆g

4(1−u
n(1+g))

≤ ∆g

4(1−1
2(1+g))

=
∆g

2(1−g)
,

where the last inequality follows from u
n ≤

1
2 . This concludes the proof.



Notes

• The above function f(x) gives such a good upper bound on λ2 because
it breaks up the step w+u, with its bond energy (w+u)2, into two equal
steps, minimizing the total bond energy 2(w+u

2 )2 = 1
2(w+u)2.

• Other step functions give generally weaker bounds. Again assuming
U with u vertices realizes the expansion constant g, the function:

f(x) =

{
n−u if x ∈ U
−u if x ∈ U ,

leads to λ2 ≤ 2∆g, which is smaller than ∆g
2(1−g) when 3

4 < g < 1.

• It might be possible to balance our step function more subtly, choos-
ing the step locations to minimize boundary edges. Again taking the
vertex boundary S = Γ(U)−U with gu vertices, suppose we could
find S′ ⊂ S so that the partition V = U ′ t W ′, with U ′ = U ∪ S′
and W ′ = U ′, satisfies |Γ(x) ∩ U ′| ≥ |Γ(x) ∩ W ′| for x ∈ U ′, and
|Γ(x) ∩W ′| ≥ |Γ(x) ∩ U ′| for x ∈ W ′. Then the edge boundary has
size |E(U ′,W ′)| ≤ ∆

2 |S| =
1
2∆gu. Defining:

f(x) =

{
w′ if x ∈ U ′
−u′ if x ∈ U ,

for u′ = |U ′| and w′ = |W ′|, we obtain λ2 ≤ ∆g
1−g2 . Unfortunantely,

this is larger than ∆g
2(1−g) for all g, so it is not really worth trying to

find V = U ′ tW ′, though it is an intriguing problem in itself.


