1. Given $p \in[0,1]$, recall the probability distribution $\mathcal{G}(n, p)$, the set of all graphs G on the vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$, endowed with probability measure $\mathbb{P}(G):=p^{m} q^{N-m}$, where $q=1-p, m=\# E(G)$, and $N=\binom{n}{2}$. Prove the following key properties.
a. A fixed edge $e=v_{i} v_{j}$ has probability p of being present: $\mathbb{P}(e \in G)=p$.

Here we mean $\mathbb{P}(e \in G)=\sum_{G} \mathbb{P}(G)$, summing over G with $e \in G$.
b. The presence of distinct edges e, e^{\prime} are independent events:

$$
\mathbb{P}\left(e, e^{\prime} \in G\right)=\mathbb{P}(e \in G) \mathbb{P}\left(e^{\prime} \in G\right)=p^{2}
$$

2. We proved Erdös' Theorem that for any r, there exists a graph H with chromatic number $\chi(H)>r$ and shortest cycle girth $(H)>r$. In this problem, consider $r=3$.

Briefly justify each of the following statements about $G \in \mathcal{G}(n, p)$, where n is arbitary, $0<p<1, r=3$, and $s=\left\lceil\frac{n}{2 r}\right\rceil=\left\lceil\frac{n}{6}\right\rceil$.
a. Let $\alpha(G)$ be the size of the largest set of independent vertices of G. Then:

$$
\mathbb{P}(\alpha(G) \geqslant s) \leqslant\binom{ n}{s}(1-p)^{\binom{s}{2}}
$$

b. Let $\operatorname{tri}(G)$ be the number of 3 -cycles in G. Then:

$$
\mathbb{P}\left(\operatorname{tri}(G) \geqslant \frac{n}{2}\right) \leqslant \frac{\mathbb{E}(\text { tri })}{n / 2} \leqslant \frac{1}{3}(n-1)(n-2) p^{3} .
$$

c. If G has $\alpha(G)<s$, $\operatorname{tri}(G)<\frac{n}{2}$, then one can construct a subgraph $H \subset G$ with $\left\lceil\frac{n}{2}\right\rceil$ vertices such that $\chi(H)>3$ and $\operatorname{girth}(H)>3$.
d. We have: $\mathbb{P}\left(\alpha(G)<s\right.$ and $\left.\operatorname{tri}(G)<\frac{n}{2}\right) \geqslant 1-\binom{n}{s}(1-p)\left(\begin{array}{c}\binom{s}{2}\end{array} \frac{1}{3}(n-1)(n-2) p^{3} \stackrel{\text { def }}{=} P(n, p)\right.$. Do computer experiments to find n as small as you can such that $P(n, p)>0$ for some p. As in part (c), what is the smallest H thus produced? Hint: Guess n, and maximize the lower bound over p. Adapt Stirling's asymptotic formula $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$ to approximate the binomial coefficient $\binom{n}{a n}$ for a constant $0<a<1$ and $n \rightarrow \infty$.
e. Extra Credit: Give an explicit graph H of the type guaranteed in (c).
3. Recall that for fixed $0<p<1$ and $n \rightarrow \infty$, a graph $G \in \mathcal{G}(n, p)$ is almost certainly connected. In fact, with probability approaching $1, G$ is connected by 2 -edge paths: for every pair of vertices a, b, there is some c such that $a c, b c \in E(G)$. As always, we prove this by bounding the probability of the negation, and showing it approaches zero.
a. Show that for fixed $0<p<1$ and $n \rightarrow \infty$, a graph $G \in \mathcal{G}(n, p)$ is almost certainly k-connected. In fact, for any vertices $S=\left\{v_{1}, \ldots, v_{k}\right\}$, we have $G-S$ connected by 2-edge paths.
b. Strengthen the result in (a) by finding a function $p=p(n)$ such that $G \in \mathcal{G}(n, p(n))$ is almost certainly k-connected, but $p(n) \rightarrow 0$ as $n \rightarrow \infty$, making G somewhat sparse. Hint: Find the smallest $p(n)$ which works with your estimate in part (a).

