Math 881

Homework 7

1. Given $p \in [0, 1]$, recall the probability distribution $\mathcal{G}(n, p)$, the set of all graphs G on the vertices $V = \{v_1, \ldots, v_n\}$, endowed with probability measure $\mathbb{P}(G) := p^m q^{N-m}$, where q = 1-p, m = #E(G), and $N = \binom{n}{2}$. Prove the following key properties. **a.** A fixed edge $e = v_i v_j$ has probability p of being present: $\mathbb{P}(e \in G) = p$. Here we mean $\mathbb{P}(e \in G) = \sum_G \mathbb{P}(G)$, summing over G with $e \in G$.

b. The presence of distinct edges e, e' are independent events:

$$\mathbb{P}(e, e' \in G) = \mathbb{P}(e \in G) \mathbb{P}(e' \in G) = p^2.$$

2. We proved Erdös' Theorem that for any r, there exists a graph H with chromatic number $\chi(H) > r$ and shortest cycle girth(H) > r. In this problem, consider r = 3.

Briefly justify each of the following statements about $G \in \mathcal{G}(n, p)$, where n is arbitrary, $0 , and <math>s = \lfloor \frac{n}{2r} \rfloor = \lfloor \frac{n}{6} \rfloor$.

a. Let $\alpha(G)$ be the size of the largest set of independent vertices of G. Then:

$$\mathbb{P}(\alpha(G) \ge s) \le \binom{n}{s} (1-p)^{\binom{s}{2}}$$

b. Let tri(G) be the number of 3-cycles in G. Then:

$$\mathbb{P}(\operatorname{tri}(G) \ge \frac{n}{2}) \leqslant \frac{\mathbb{E}(\operatorname{tri})}{n/2} \leqslant \frac{1}{3}(n-1)(n-2)p^3.$$

c. If G has $\alpha(G) < s$, tri $(G) < \frac{n}{2}$, then one can construct a subgraph $H \subset G$ with $\lfloor \frac{n}{2} \rfloor$ vertices such that $\chi(H) > 3$ and girth(H) > 3.

d. We have: $\mathbb{P}(\alpha(G) < s \text{ and } \operatorname{tri}(G) < \frac{n}{2}) \ge 1 - \binom{n}{s}(1-p)^{\binom{s}{2}} - \frac{1}{3}(n-1)(n-2)p^3 \stackrel{\text{def}}{=} P(n,p)$. Do computer experiments to find n as small as you can such that P(n,p) > 0 for some p. As in part (c), what is the smallest H thus produced? Hint: Guess n, and maximize the lower bound over p. Adapt Stirling's asymptotic formula $n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$ to approximate the binomial coefficient $\binom{n}{an}$ for a constant 0 < a < 1 and $n \to \infty$.

e. Extra Credit: Give an explicit graph H of the type guaranteed in (c).

3. Recall that for fixed $0 and <math>n \to \infty$, a graph $G \in \mathcal{G}(n, p)$ is almost certainly connected. In fact, with probability approaching 1, G is connected by 2-edge paths: for every pair of vertices a, b, there is some c such that $ac, bc \in E(G)$. As always, we prove this by bounding the probability of the negation, and showing it approaches zero.

a. Show that for fixed $0 and <math>n \to \infty$, a graph $G \in \mathcal{G}(n, p)$ is almost certainly *k*-connected. In fact, for any vertices $S = \{v_1, \ldots, v_k\}$, we have G-S connected by 2-edge paths.

b. Strengthen the result in (a) by finding a function p = p(n) such that $G \in \mathcal{G}(n, p(n))$ is almost certainly k-connected, but $p(n) \to 0$ as $n \to \infty$, making G somewhat sparse. Hint: Find the smallest p(n) which works with your estimate in part (a).