Math 881

Homework 7

2e. Mycielski gave an iterative construction of a triangle-free graph of arbitrarily high chromatic number. Given a triangle-free G with n vertices and $\chi(G) = k$, we define a new triangle-free graph M with 2n+1 vertices and $\chi(M) = k+1$.

Let M contain a copy of G with vertices $\{v_1, \ldots, v_n\}$, as well as a star graph $K_{1,n}$ with vertices $\{u_0, u_1, \ldots, u_n\}$ and edges $u_0 u_i$. Keep each edge $v_i v_j$ in G, and add two edges $v_i u_j, v_j u_i$ in M.

The only possible triangle in M is of the form $v_i v_j u_k$, but this would occur only if $v_i v_j v_k$ were a triangle in G.

To see that the construction increases the chromatic number $\chi(G) = k$, consider a proper k-coloring of $M - \{u_0\}$; that is, a mapping $c : \{v_1, \ldots, v_n, u_1, \ldots, u_n\} \rightarrow \{1, 2, \ldots, k\}$ with $c(x) \neq c(y)$ for adjacent vertices x, y. If we had $c(u_i) \subset \{1, 2, \ldots, k-1\}$ for all i, then we could define a proper (k-1)-coloring of G by $c'(v_i) = c(u_i)$ when $c(v_i) = k$, and $c'(v_i) = c(v_i)$ otherwise. But this is impossible for $\chi(G) = k$, so c must use all k colors for $\{u_1, \ldots, u_n\}$, and any proper coloring of the last vertex u_0 must use an extra color. That is, $\chi(M) = k+1$.

3. PROPOSITION: For fixed k and $p(n) = \frac{\log(n)}{\sqrt{n}}$, a graph $G \in \mathcal{G}(n, p(n))$ is almost certainly k-connected (in fact, connected by 2-edge paths).

Proof: To show $\mathbb{P}(G \in \mathcal{G}(n, p(n)))$ is k-connected) $\to 1$ as $n \to \infty$, we will bound the probability that G fails to be k-connected. Writing G = (V, E) with |V| = n vertices, we ask if there is a k-element vertex set $S \subset V$ for which G-S is not connected by 2-edge paths, so that there are $a, b \in V-S$ such that no path *acb* lies in G, for $c \in V-S-\{a,b\}$:

$$\mathbb{P}(\text{FAIL}) \leq \mathbb{P}(\exists S \exists a, b \,\forall c : ac \notin E \text{ or } bc \notin E)$$
$$\leq \sum_{S} \sum_{a, b} \mathbb{P}(\forall c : \text{NOT}(ac, bc \in E)).$$

Now, for $c \neq c'$, the edges ac, bc, ac', bc' are distinct, so the events $ac, bc \in G$ and $ac', bc' \in G$ are independent. Hence:

$$\begin{aligned} \mathbb{P}(\text{FAIL}) &\leq \sum_{S} \sum_{a,b} \prod_{c} \left(1 - \mathbb{P}(ac, bc \in G) \right) \\ &= \binom{n}{k} \binom{n-k}{2} (1-p^2)^{n-k-2} \\ &\leq An^{k+2} (1-p^2)^n = An^{k+2} \left(1 - \frac{\log^2(n)}{n} \right)^n \end{aligned}$$

where A = A(k) is a constant. We must show this upper bound tends to zero as $n \to \infty$. Taking the logarithm and using $\log(1-x) \leq -x$ gives:

$$\log(A) + (k+2)\log(n) + n\log\left(1 - \frac{\log^2(n)}{n}\right) \leq \log(A) + (k+2)\log(n) - n\left(\frac{\log^2(n)}{n}\right).$$

Since $\log^2(n) \gg (k+2)\log(n)$, it is clear that $\lim_{n \to \infty} \log(An^{k+2}(1-p^2)^n) = -\infty$, and:

$$\mathbb{P}(\text{FAIL}) \leq An^{k+2}(1-p^2)^n \to 0 \text{ as } n \to \infty.$$

Hence, the complementary probability that G is k-connected tends to 1.

Note that this argument works for any $p(n) = \frac{\sqrt{\log(n)}}{\sqrt{n}} f(n)$ with $f(n) \to \infty$.