2e. Mycielski gave an iterative construction of a triangle-free graph of arbitrarily high chromatic number. Given a triangle-free G with n vertices and $\chi(G)=k$, we define a new triangle-free graph M with $2 n+1$ vertices and $\chi(M)=k+1$.

Let M contain a copy of G with vertices $\left\{v_{1}, \ldots, v_{n}\right\}$, as well as a star graph $K_{1, n}$ with vertices $\left\{u_{0}, u_{1}, \ldots, u_{n}\right\}$ and edges $u_{0} u_{i}$. Keep each edge $v_{i} v_{j}$ in G, and add two edges $v_{i} u_{j}, v_{j} u_{i}$ in M.

The only possible triangle in M is of the form $v_{i} v_{j} u_{k}$, but this would occur only if $v_{i} v_{j} v_{k}$ were a triangle in G.

To see that the construction increases the chromatic number $\chi(G)=k$, consider a proper k-coloring of $M-\left\{u_{0}\right\}$; that is, a mapping $c:\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{n}\right\} \rightarrow$ $\{1,2, \ldots, k\}$ with $c(x) \neq c(y)$ for adjacent vertices x, y. If we had $c\left(u_{i}\right) \subset\{1,2, \ldots, k-1\}$ for all i, then we could define a proper ($k-1$)-coloring of G by $c^{\prime}\left(v_{i}\right)=c\left(u_{i}\right)$ when $c\left(v_{i}\right)=k$, and $c^{\prime}\left(v_{i}\right)=c\left(v_{i}\right)$ otherwise. But this is impossible for $\chi(G)=k$, so c must use all k colors for $\left\{u_{1}, \ldots, u_{n}\right\}$, and any proper coloring of the last vertex u_{0} must use an extra color. That is, $\chi(M)=k+1$.
3. Proposition: For fixed k and $p(n)=\frac{\log (n)}{\sqrt{n}}$, a graph $G \in \mathcal{G}(n, p(n))$ is almost certainly k-connected (in fact, connected by 2 -edge paths).
Proof: To show $\mathbb{P}(G \in \mathcal{G}(n, p(n))$ is k-connected $) \rightarrow 1$ as $n \rightarrow \infty$, we will bound the probability that G fails to be k-connected. Writing $G=(V, E)$ with $|V|=n$ vertices, we ask if there is a k-element vertex set $S \subset V$ for which $G-S$ is not connected by 2-edge paths, so that there are $a, b \in V-S$ such that no path $a c b$ lies in G, for $c \in V-S-\{a, b\}$:

$$
\begin{aligned}
\mathbb{P}(\mathrm{FAIL}) & \leq \mathbb{P}(\exists S \exists a, b \forall c: a c \notin E \text { or } b c \notin E) \\
& \leq \sum_{S} \sum_{a, b} \mathbb{P}(\forall c: \operatorname{NOT}(a c, b c \in E)) .
\end{aligned}
$$

Now, for $c \neq c^{\prime}$, the edges $a c, b c, a c^{\prime}, b c^{\prime}$ are distinct, so the events $a c, b c \in G$ and $a c^{\prime}, b c^{\prime} \in G$ are independent. Hence:

$$
\begin{aligned}
\mathbb{P}(\mathrm{FAIL}) & \leq \sum_{S} \sum_{a, b} \prod_{c}(1-\mathbb{P}(a c, b c \in G)) \\
& =\binom{n}{k}\binom{n-k}{2}\left(1-p^{2}\right)^{n-k-2} \\
& \leq A n^{k+2}\left(1-p^{2}\right)^{n}=A n^{k+2}\left(1-\frac{\log ^{2}(n)}{n}\right)^{n}
\end{aligned}
$$

where $A=A(k)$ is a constant. We must show this upper bound tends to zero as $n \rightarrow \infty$.
Taking the logarithm and using $\log (1-x) \leq-x$ gives:

$$
\log (A)+(k+2) \log (n)+n \log \left(1-\frac{\log ^{2}(n)}{n}\right) \leq \log (A)+(k+2) \log (n)-n\left(\frac{\log ^{2}(n)}{n}\right) .
$$

Since $\log ^{2}(n) \gg(k+2) \log (n)$, it is clear that $\lim _{n \rightarrow \infty} \log \left(A n^{k+2}\left(1-p^{2}\right)^{n}\right)=-\infty$, and:

$$
\mathbb{P}(\text { FAIL }) \leq A n^{k+2}\left(1-p^{2}\right)^{n} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Hence, the complementary probability that G is k-connected tends to 1 .
Note that this argument works for any $p(n)=\frac{\sqrt{\log (n)}}{\sqrt{n}} f(n)$ with $f(n) \rightarrow \infty$.

