1a. Prop: The Turan graph numbers satisfy $t_{r}(n) \geqslant\left(1-\frac{1}{r}\right)\binom{n}{2}$ for all r, n.
Proof: The Turan graph $T_{r}(n)$ is the complete r-partite graph on n vertices with smallest part of order $\left\lfloor\frac{n}{r}\right\rfloor$, and largest part of order $\left\lceil\frac{n}{r}\right\rceil$. We construct $T_{r}(n+1)$ by adding a vertex to the smallest part, with new edges to all other parts, so the number of edges is $t_{r}(n+1)=t_{r}(n)+n-\left\lfloor\frac{n}{r}\right\rfloor$.

We prove the Proposition by induction on n, with $n=1$ being trivial. Assuming the Proposition for n vertices, $t_{r}(n) \geqslant\left(1-\frac{1}{r}\right)\binom{n}{2}$, gives:

$$
\begin{aligned}
t_{r}(n+1) & =t_{r}(n)+n-\left\lfloor\frac{n}{r}\right\rfloor \\
& \geqslant\left(1-\frac{1}{r}\right)\binom{n}{2}+n-\frac{n}{r} \\
& =\left(1-\frac{1}{r}\right)\left(\binom{n}{2}+n\right)=\left(1-\frac{1}{r}\right)\binom{n+1}{2} .
\end{aligned}
$$

Thus, the Proposition is true for $n+1$ vertices.
1b. Prop: $t_{r}(n)=\frac{1}{2}\left(1-\frac{1}{r}\right) n^{2}+\mathrm{o}\left(n^{2}\right)$, where r is fixed and $n \rightarrow \infty$.
Proof: Let the parts of $T_{r}(n)$ have n_{1}, \ldots, n_{r} vertices, where $n_{1}+\cdots+n_{r}=n$. The number of edges is half the sum of vertex degrees, and each vertex neighbors all vertices outside its own part, so:

$$
t_{r}(n)=\frac{1}{2} \sum_{i=1}^{r} n_{i}\left(n-n_{i}\right)=\frac{1}{2}\left(n \sum_{i} n_{i}-\sum_{i} n_{i}^{2}\right)=\frac{1}{2}\left(n^{2}-\sum_{i} n_{i}^{2}\right) .
$$

Now, the function $f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{2}\left(n^{2}-\sum_{i} x_{i}^{2}\right)$, constrained to the hyperplane $g\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{r}=n$, is concave-down with a unique maximum point given by the Lagrange multiplier equation $\nabla f=\lambda \nabla g$, i.e. $x_{i}=\lambda=\frac{n}{r}$ for all i. Thus:

$$
t_{r}(n) \leqslant f\left(\frac{n}{r}, \ldots, \frac{n}{r}\right)=\frac{1}{2}\left(n^{2}-r\left(\frac{n}{r}\right)^{2}\right)=\frac{1}{2}\left(1-\frac{1}{r}\right) n^{2} .
$$

Part (a) implies:

$$
t_{r}(n) \geqslant\left(1-\frac{1}{r}\right)\binom{n}{2}=\frac{1}{2}\left(1-\frac{1}{r}\right) n^{2}-\frac{1}{2}\left(1-\frac{1}{r}\right) n .
$$

These upper and lower bounds clearly imply the asymptotic error bound:

$$
\frac{\left|t_{r}(n)-\frac{1}{2}\left(1-\frac{1}{r}\right) n^{2}\right|}{n^{2}} \rightarrow 0 \text { as } n \rightarrow \infty,
$$

which is the meaning of the Proposition.
3. Theorem: (Erdös-Simonovits) A graph F with chromatic number $\chi(F)=r$ has extremal edge number $\operatorname{ex}(F, n)=\frac{1}{2}\left(1-\frac{1}{r-1}\right) n^{2}+\mathrm{o}\left(n^{2}\right)$ as $n \rightarrow \infty$.
Proof: We define $\operatorname{ex}(F, n)$ as the smallest number satisfying, for all n-vertex graphs G_{n} :

$$
\operatorname{ex}(F, n)<e\left(G_{n}\right) \Rightarrow F \subset G_{n}
$$

or contrapositively:

$$
F \not \subset G_{n} \Rightarrow \operatorname{ex}(F, n) \geqslant e\left(G_{n}\right)
$$

Since F is not $(r-1)$-colorable, we know $F \notin T_{r-1}(n)$, so $\operatorname{ex}(F, n) \geqslant e\left(T_{r-1}(n)\right)$, and by Prob 1a, $e\left(T_{r-1}(n)\right)=t_{r-1}(n) \geqslant \frac{1}{2}\left(1-\frac{1}{r-1}\right) n^{2}-c n$ for a constant c.

On the other hand, F is r-colorable, so $F \subset K_{r}(s)$ for sufficiently large s. By the Erdös-Stone Theorem, for any $\epsilon>0$, sufficiently large n, and any G_{n},

$$
\frac{1}{2}\left(1+\frac{1}{r-1}+\epsilon\right) n^{2}<e\left(G_{n}\right) \Rightarrow K_{r}\left(s_{n}\right) \subset G_{n} \Rightarrow F \subset G_{n}
$$

taking n large enough that $s_{n} \geqslant s$. Since $\frac{1}{2}\left(1+\frac{1}{r-1}+\epsilon\right) n^{2}$ satisfies the first form of the definition, we get $\operatorname{ex}(F, n) \leqslant \frac{1}{2}\left(1+\frac{1}{r-1}+\epsilon\right) n^{2}$.

Restating these bounds, we have, for any $\epsilon>0$ and sufficiently large n,

$$
\frac{1}{2}\left(1+\frac{1}{r-1}\right) n^{2}-c n \leqslant \operatorname{ex}(F, n) \leqslant \frac{1}{2}\left(1+\frac{1}{r-1}\right) n^{2}+\epsilon n^{2}
$$

This clearly implies the conclusion.
4. A minimal presentation for the 8-element group of unit quaternions is:

$$
Q=\left\langle i, j \mid i^{4}=1, i j i=j, j i j=i\right\rangle
$$

To see this, draw a Cayley diagram starting with the j-edge $1 \xrightarrow{j} j$. Using the relation $i^{4}=1$, draw two 4-cycles of i-edges. Using $i j i=j$, follow the path $i^{3} \xrightarrow{i} 1 \xrightarrow{j} j \xrightarrow{i} j i$ to draw the arrow $i^{3} \xrightarrow{j} j i$. Repeat this to draw two more j-arrows. Finally, using $j i j=i$, or $i j i^{-1}=j^{-1}$, follow the path $i^{3} \xrightarrow{i} 1 \xrightarrow{j} j \stackrel{i}{\leftarrow} j i^{3}$ to draw the arrow $i^{3}{ }_{\leftarrow}^{j} j i^{3}$. Repeat this to draw the final three j-arrows. The result has $8 i$-arrows (black, thin) and $8 j$-arrows (red, thick):

Neglecting orientation and coloring, this is the edge-graph of a cube with 4 extra edges connecting opposite corners. As for minimality, the non-cyclic group Q requires at least two generators, and all three relations are clearly necessary. (Can we rule out a presentation with only two relations??)

5a. For a finite group A with generators $P=\{a, b, \ldots\}$ and a subgroup $B \subset A$, recall the Schreier graph $G(A, B)$ whose vertices are the left cosets $B g$ for $g \in A$, and whose edges $B g \xrightarrow{p} B g p$ are directed and colored by generators $p \in P$.
Prop: The subgroup B is normal in A if and only if there is an an automorphism of colored graphs $\phi_{q}: G(A, B) \rightarrow G(A, B)$ with $\phi_{q}(B)=B q$, for each generator $q \in P$. Informally, the colored graph looks the same from each vertex $B q$ as from the base point B.
Proof: If B is normal, meaning $g B=B g$ for all $g \in A$, then define $\phi_{q}(B g)=$ $q B g=B q g$. If $B g \xrightarrow{p} B g p$ is an edge, then $\phi_{q}(B g)=B q g \xrightarrow{p} B q g p=\phi_{q}(B g p)$ is also an edge, so ϕ_{q} is indeed an automorphism of colored graphs.

Conversely, if there exist such automorphisms ϕ_{q} for $q \in P$, write any $b \in B$ as a product of generators: $b=p_{1} \cdots p_{\ell}$ for p_{i} or $p_{i-1}^{-1} \in P$, where we allow a backward step along $B g p \stackrel{p}{\leftarrow} B g$, equivalent to $B g p \xrightarrow{p+1} B g$. Then the cycle

$$
B \xrightarrow{p_{1}} B p_{1} \xrightarrow{p_{2}} \cdots \xrightarrow{p_{\ell}} B b=B
$$

is taken by ϕ_{q} to a cycle

$$
B q \xrightarrow{p_{1}} B q p_{1} \xrightarrow{p_{2}} \cdots \xrightarrow{p_{\ell}} B q b=B q .
$$

That is, $q b \in B q$ for all $b \in B$, so that $q B \subset B q$. This implies $q B=B q$ for all generators q, and hence $g B=B g$ for all $g \in A$, and B is normal.

Notes: If A is not finite, but we assume further automorphisms $\phi_{q^{-1}}$ with $\phi_{q^{-1}}(B)=B q^{-1}$, then we have $q B \subset B q$ and $q^{-1} B \subset B q^{-1}$, so that $q B=B q$; but I am not sure the extra automorphisms are really needed.

Some further equivalent conditions:

- B is normal in A
- $G(A, B)=G(A / B)$, the Cayley graph of the quotient group
- For each $q \in P$, there is a colored graph automorphism with $\phi_{q}(B)=B q$
- For each $g \in A$, there is a colored graph automorphism with $\phi_{g}(B)=B g$
- Each cycle $B \xrightarrow{p_{1}} \ldots \xrightarrow{p_{\ell}} B$ corresponds to a cycle $B q \xrightarrow{p_{1}} \ldots \xrightarrow{p_{\ell}} B q, \forall q \in P$
- Each cycle $B \xrightarrow{p_{1}} \cdots \xrightarrow{p_{e}} B$ corresponds to a cycle $B g \xrightarrow{p_{1}} \cdots \xrightarrow{p_{e}} B g, \forall g \in A$.

Finally, note that a colored graph automorphism ϕ is uniquely determined by $\phi(B)=B g$, since if $h=p_{1} \cdots p_{\ell}$, then $\phi(B h)$ is obtained by following the path $B g \xrightarrow{p_{1}} \cdots \xrightarrow{p_{\ell}} B g h$. The automorphism exists if this procedure is well-defined, independent of the chosen representative $B h=B b h$. For any Cayley graph, the mapping $G(A) \rightarrow$ Aut $G(A), g \mapsto \phi_{g}$, is an injective group homomorphism.

5b. The Cayley graph of any group C can be obtained as $G(C)=G(C \times B, B)$ for any group B, where we have the normal subgroup $B \cong 1 \times B \triangleleft C \times B$. The subgroup B is central in $C \times B$ if and only if B is abelian. Thus, any Cayley graph can be obtained as a Schreier graph both of a central and a non-central subgroup, and no criterion on the graph can distinguish these cases.

