Math 881 Homework 6 Solutions Mar 2018

la. Prop: The Turan graph numbers satisfy ¢,(n) > (1-1)(}) for all r,n.
Proof: The Turan graph T,.(n) is the complete r-partite graph on n vertices

with smallest part of order ||, and largest part of order [%]. We construct
T,(n+1) by adding a vertex to the smallest part, with new edges to all other
parts, so the number of edges is ¢, (n+1) = t,.(n) + n — | Z].

o
We prove the Proposition by induction on n, with n = 1 being trivial.

Assuming the Proposition for n vertices, t,(n) > (1-1)(3), gives:

tr(n+1) tr(n) +n— |2
(-2 +n -2

1-H((3) +n) = a=H("3).

Thus, the Proposition is true for n+1 vertices.
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1b. PrOP: t,(n) = 3(1—21)n? + o(n?), where r is fixed and n — 0.
Proof: Let the parts of T,.(n) have ni,...,n, vertices, where ny + -+ +n, = n.
The number of edges is half the sum of vertex degrees, and each vertex neighbors

all vertices outside its own part, so:

b(m) = 3 X mlnen) = b X - L) = bn? - Nind)

Now, the function f(z1,...,z,) = %(n2 — > 22), constrained to the hyperplane
g(x1,...,oy) = x14+ -+, = n, is concave-down with a unique maximum

point given by the Lagrange multiplier equation Vf = AVg, i.e. z; = A = 7 for
all 7. Thus:

Part (a) implies:
b > (=D - J0-but—40-bn

These upper and lower bounds clearly imply the asymptotic error bound:

— 0 as n — o0,

which is the meaning of the Proposition.



3. THEOREM: (Erdés-Simonovits) A graph F' with chromatic number x(F) = r
has extremal edge number ex(F,n) = 1(1——25)n* + o(n?) as n — 0.
Proof: We define ex(F,n) as the smallest number satisfying, for all n-vertex
graphs G,:

ex(F,n) <e(G,) = F c Gy,

or contrapositively:
F & G, = ex(F,n) = e(Gy).

Since F'is not (r—1)-colorable, we know F' ¢ T,_1(n), soex(F,n) = e(T,—1(n)),
and by Prob 1a, e(T,—1(n)) = t,—1(n) > (1——25)n* — cn for a constant c.
On the other hand, F' is r-colorable, so F' < K, (s) for sufficiently large s.
By the Erdos-Stone Theorem, for any € > 0, sufficiently large n, and any G,
(1+ 2 +en® < e(Gy) = Ki(sp) € G = F < Gy,
taking n large enough that s, > s. Since %(1+$+6)n2 satisfies the first form
of the definition, we get ex(F,n) < $(1+-1;+e)n’.
Restating these bounds, we have, for any € > 0 and sufficiently large n,

T(1+2)n% —en < ex(Fon) < 3(1+-15)n® + en®.

This clearly implies the conclusion.
4. A minimal presentation for the 8-element group of unit quaternions is:

Q = G, j it =1,iji = j,jij = i).
To see this, draw a Cayley diagram starting with the j-edge 1i>j . Using the
relation i* = 1, draw two 4-cycles of i-edges. Using iji = j, follow the path
i3512555i to draw the arrow i3 ji. Repeat this to draw two more j-arrows.
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Finally, using jij = i, or iji—* = j~1, follow the path 3515 j<-i3 to draw

the arrow z'3<ijz'3. Repeat this to draw the final three j-arrows. The result has
8 i-arrows (black, thin) and 8 j-arrows (red, thick):

> 1

/

Neglecting orientation and coloring, this is the edge-graph of a cube with 4 ex-
tra edges connecting opposite corners. As for minimality, the non-cyclic group
@ requires at least two generators, and all three relations are clearly necessary.
(Can we rule out a presentation with only two relations??)



5a. For a finite group A with generators P = {a,b, ...} and a subgroup B c A,
recall the Schreier graph G(A, B) whose vertices are the left cosets By for g € A,
and whose edges Bg > Bgp are directed and colored by generators p € P.

Prop: The subgroup B is normal in A if and only if there is an an automor-
phism of colored graphs ¢, : G(A, B) — G(A, B) with ¢4(B) = By, for each
generator ¢ € P. Informally, the colored graph looks the same from each vertex
Bgq as from the base point B.
Proof: If B is normal, meaning gB = By for all g € A, then define ¢4(Bg) =
qBg = Bqg. If Bg > Bgp is an edge, then ¢4(Bg) = Bqg > Bqgp = ¢q(Bgp)
is also an edge, so ¢, is indeed an automorphism of colored graphs.
Conversely, if there exist such automorphisms ¢, for ¢ € P, write any b€ B

as a product of generators: b = py---py for p; or p.__l1 € P, where we allow a

backward step along Bgp £ By, equivalent to Bgp — Bg. Then the cycle
BB Bp B ... %5 By=B
is taken by ¢, to a cycle
Bq % Begpy BB -+ & Bgb = By.

That is, gb € Bq for all b € B, so that ¢B < Bgq. This implies ¢B = Bgq for all
generators ¢, and hence gB = Bg for all g € A, and B is normal.

Notes: If A is not finite, but we assume further automorphisms ¢, with
¢g1(B) = Bq™ ', then we have ¢B — Bq and ¢~'B < Bq™!, so that ¢B = Bg;
but I am not sure the extra automorphisms are really needed.

Some further equivalent conditions:

e B isnormal in A

G(A, B) = G(A/B), the Cayley graph of the quotient group

For each ¢q € P, there is a colored graph automorphism with ¢,(B) = Bgq

For each g € A, there is a colored graph automorphism with ¢4(B) = Bg

Each cycle B B...XpB corresponds to a cycle Bgq L Bgq, YqeP

FEach cycle B Py ... 2% B corresponds to a cycle Bg LENU Bg, VgeA.

Finally, note that a colored graph automorphism ¢ is uniquely determined by
¢(B) = Bg, since if h = p; - - - py, then ¢(Bh) is obtained by following the path
Byg LEGNI Bgh. The automorphism exists if this procedure is well-defined,
independent of the chosen representative Bh = Bbh. For any Cayley graph,
the mapping G(A) — Aut G(A), g — ¢g, is an injective group homomorphism.

5b. The Cayley graph of any group C' can be obtained as G(C) = G(C'x B, B)
for any group B, where we have the normal subgroup B ~ 1xB <« CU'xB. The
subgroup B is central in C'x B if and only if B is abelian. Thus, any Cayley
graph can be obtained as a Schreier graph both of a central and a non-central
subgroup, and no criterion on the graph can distinguish these cases.



