Math 881

1a. PROP: The Turan graph numbers satisfy $t_r(n) \ge (1-\frac{1}{r})\binom{n}{2}$ for all r, n. *Proof:* The Turan graph $T_r(n)$ is the complete r-partite graph on n vertices with smallest part of order $\lfloor \frac{n}{r} \rfloor$, and largest part of order $\lceil \frac{n}{r} \rceil$. We construct $T_r(n+1)$ by adding a vertex to the smallest part, with new edges to all other parts, so the number of edges is $t_r(n+1) = t_r(n) + n - \lfloor \frac{n}{r} \rfloor$.

We prove the Proposition by induction on n, with n = 1 being trivial. Assuming the Proposition for n vertices, $t_r(n) \ge (1 - \frac{1}{r}) \binom{n}{2}$, gives:

$$\begin{aligned} t_r(n+1) &= t_r(n) + n - \left\lfloor \frac{n}{r} \right\rfloor \\ &\geqslant (1 - \frac{1}{r}) \binom{n}{2} + n - \frac{n}{r} \\ &= (1 - \frac{1}{r}) (\binom{n}{2} + n) = (1 - \frac{1}{r}) \binom{n+1}{2}. \end{aligned}$$

Thus, the Proposition is true for n+1 vertices.

1b. PROP: $t_r(n) = \frac{1}{2}(1-\frac{1}{r})n^2 + o(n^2)$, where r is fixed and $n \to \infty$. *Proof:* Let the parts of $T_r(n)$ have n_1, \ldots, n_r vertices, where $n_1 + \cdots + n_r = n$. The number of edges is half the sum of vertex degrees, and each vertex neighbors all vertices outside its own part, so:

$$t_r(n) = \frac{1}{2} \sum_{i=1}^r n_i(n-n_i) = \frac{1}{2} (n \sum_i n_i - \sum_i n_i^2) = \frac{1}{2} (n^2 - \sum_i n_i^2).$$

Now, the function $f(x_1, \ldots, x_n) = \frac{1}{2}(n^2 - \sum_i x_i^2)$, constrained to the hyperplane $g(x_1, \ldots, x_n) = x_1 + \cdots + x_r = n$, is concave-down with a unique maximum point given by the Lagrange multiplier equation $\nabla f = \lambda \nabla g$, i.e. $x_i = \lambda = \frac{n}{r}$ for all *i*. Thus:

$$t_r(n) \leq f(\frac{n}{r}, \dots, \frac{n}{r}) = \frac{1}{2}(n^2 - r(\frac{n}{r})^2) = \frac{1}{2}(1 - \frac{1}{r})n^2.$$

Part (a) implies:

$$t_r(n) \ge (1-\frac{1}{r})\binom{n}{2} = \frac{1}{2}(1-\frac{1}{r})n^2 - \frac{1}{2}(1-\frac{1}{r})n.$$

These upper and lower bounds clearly imply the asymptotic error bound:

$$\frac{\left|t_r(n) - \frac{1}{2}(1 - \frac{1}{r})n^2\right|}{n^2} \to 0 \text{ as } n \to \infty,$$

which is the meaning of the Proposition.

3. THEOREM: (Erdös-Simonovits) A graph F with chromatic number $\chi(F) = r$ has extremal edge number $\exp(F, n) = \frac{1}{2}(1 - \frac{1}{r-1})n^2 + o(n^2)$ as $n \to \infty$. *Proof:* We define $\exp(F, n)$ as the smallest number satisfying, for all *n*-vertex

Proof: We define ex(F, n) as the smallest number satisfying, for all *n*-vertex graphs G_n :

$$ex(F,n) < e(G_n) \Rightarrow F \subset G_n$$

or contrapositively:

$$F \not\subset G_n \Rightarrow \exp(F, n) \ge e(G_n).$$

Since F is not (r-1)-colorable, we know $F \notin T_{r-1}(n)$, so $\exp(F, n) \ge e(T_{r-1}(n))$, and by Prob 1a, $e(T_{r-1}(n)) = t_{r-1}(n) \ge \frac{1}{2}(1-\frac{1}{r-1})n^2 - cn$ for a constant c.

On the other hand, F is r-colorable, so $F \subset K_r(s)$ for sufficiently large s. By the Erdös-Stone Theorem, for any $\epsilon > 0$, sufficiently large n, and any G_n ,

$$\frac{1}{2}(1+\frac{1}{r-1}+\epsilon)n^2 < e(G_n) \Rightarrow K_r(s_n) \subset G_n \Rightarrow F \subset G_n,$$

taking *n* large enough that $s_n \ge s$. Since $\frac{1}{2}(1+\frac{1}{r-1}+\epsilon)n^2$ satisfies the first form of the definition, we get $ex(F,n) \le \frac{1}{2}(1+\frac{1}{r-1}+\epsilon)n^2$.

Restating these bounds, we have, for any $\epsilon > 0$ and sufficiently large n,

$$\frac{1}{2}(1+\frac{1}{r-1})n^2 - cn \leq \exp(F,n) \leq \frac{1}{2}(1+\frac{1}{r-1})n^2 + \epsilon n^2$$

This clearly implies the conclusion.

4. A minimal presentation for the 8-element group of unit quaternions is:

$$Q = \langle i, j \mid i^4 = 1, iji = j, jij = i \rangle.$$

To see this, draw a Cayley diagram starting with the *j*-edge $1 \xrightarrow{j} j$. Using the relation $i^4 = 1$, draw two 4-cycles of *i*-edges. Using iji = j, follow the path $i^3 \xrightarrow{i} 1 \xrightarrow{j} j \xrightarrow{i} ji$ to draw the arrow $i^3 \xrightarrow{j} ji$. Repeat this to draw two more *j*-arrows. Finally, using jij = i, or $iji^{-1} = j^{-1}$, follow the path $i^3 \xrightarrow{i} 1 \xrightarrow{j} j \xrightarrow{i} ji^3$ to draw the arrow $i^3 \xleftarrow{j} ji^3$. Repeat this to draw the final three *j*-arrows. The result has 8 *i*-arrows (black, thin) and 8 *j*-arrows (red, thick):

Neglecting orientation and coloring, this is the edge-graph of a cube with 4 extra edges connecting opposite corners. As for minimality, the non-cyclic group Q requires at least two generators, and all three relations are clearly necessary. (Can we rule out a presentation with only two relations??)

5a. For a finite group A with generators $P = \{a, b, \ldots\}$ and a subgroup $B \subset A$, recall the Schreier graph G(A, B) whose vertices are the left cosets Bg for $g \in A$, and whose edges $Bg \xrightarrow{p} Bgp$ are directed and colored by generators $p \in P$.

PROP: The subgroup B is normal in A if and only if there is an an automorphism of colored graphs $\phi_q : G(A, B) \to G(A, B)$ with $\phi_q(B) = Bq$, for each generator $q \in P$. Informally, the colored graph looks the same from each vertex Bq as from the base point B.

Proof: If B is normal, meaning gB = Bg for all $g \in A$, then define $\phi_q(Bg) = qBg = Bqg$. If $Bg \xrightarrow{p} Bgp$ is an edge, then $\phi_q(Bg) = Bqg \xrightarrow{p} Bqgp = \phi_q(Bgp)$ is also an edge, so ϕ_q is indeed an automorphism of colored graphs.

Conversely, if there exist such automorphisms ϕ_q for $q \in P$, write any $b \in B$ as a product of generators: $b = p_1 \cdots p_\ell$ for p_i or $p_{i-1}^{-1} \in P$, where we allow a backward step along $Bgp \xleftarrow{p} Bg$, equivalent to $Bgp \xrightarrow{p} Bg$. Then the cycle

$$B \xrightarrow{p_1} Bp_1 \xrightarrow{p_2} \cdots \xrightarrow{p_\ell} Bb = B$$

is taken by ϕ_q to a cycle

$$Bq \xrightarrow{p_1} Bqp_1 \xrightarrow{p_2} \cdots \xrightarrow{p_\ell} Bqb = Bq$$

That is, $qb \in Bq$ for all $b \in B$, so that $qB \subset Bq$. This implies qB = Bq for all generators q, and hence gB = Bg for all $g \in A$, and B is normal.

Notes: If A is not finite, but we assume further automorphisms $\phi_{q^{-1}}$ with $\phi_{q^{-1}}(B) = Bq^{-1}$, then we have $qB \subset Bq$ and $q^{-1}B \subset Bq^{-1}$, so that qB = Bq; but I am not sure the extra automorphisms are really needed.

Some further equivalent conditions:

- B is normal in A
- G(A, B) = G(A/B), the Cayley graph of the quotient group
- For each $q \in P$, there is a colored graph automorphism with $\phi_q(B) = Bq$
- For each $g \in A$, there is a colored graph automorphism with $\phi_g(B) = Bg$
- Each cycle $B \xrightarrow{p_1} \cdots \xrightarrow{p_\ell} B$ corresponds to a cycle $Bq \xrightarrow{p_1} \cdots \xrightarrow{p_\ell} Bq, \forall q \in P$
- Each cycle $B \xrightarrow{p_1} \cdots \xrightarrow{p_\ell} B$ corresponds to a cycle $Bg \xrightarrow{p_1} \cdots \xrightarrow{p_\ell} Bg, \forall g \in A$.

Finally, note that a colored graph automorphism ϕ is uniquely determined by $\phi(B) = Bg$, since if $h = p_1 \cdots p_\ell$, then $\phi(Bh)$ is obtained by following the path $Bg \xrightarrow{p_1} \cdots \xrightarrow{p_\ell} Bgh$. The automorphism exists if this procedure is well-defined, independent of the chosen representative Bh = Bbh. For any Cayley graph, the mapping $G(A) \to \operatorname{Aut} G(A), g \mapsto \phi_g$, is an injective group homomorphism.

5b. The Cayley graph of any group C can be obtained as $G(C) = G(C \times B, B)$ for any group B, where we have the normal subgroup $B \cong 1 \times B \lhd C \times B$. The subgroup B is central in $C \times B$ if and only if B is abelian. Thus, any Cayley graph can be obtained as a Schreier graph both of a central and a non-central subgroup, and no criterion on the graph can distinguish these cases.