
Math 881 Homework 6 Solutions Mar 2018

1a. Prop: The Turan graph numbers satisfy trpnq ě p1´
1
r q
`

n
2

˘

for all r, n.
Proof: The Turan graph Trpnq is the complete r-partite graph on n vertices
with smallest part of order tnr u, and largest part of order rnr s. We construct
Trpn`1q by adding a vertex to the smallest part, with new edges to all other
parts, so the number of edges is trpn`1q “ trpnq ` n´ tnr u.

We prove the Proposition by induction on n, with n “ 1 being trivial.
Assuming the Proposition for n vertices, trpnq ě p1´

1
r q
`

n
2

˘

, gives:

trpn`1q “ trpnq ` n´ tnr u

ě p1´1
r q
`

n
2

˘

` n´ n
r

“ p1´1
r qp

`

n
2

˘

` nq “ p1´1
r q
`

n`1
2

˘

.

Thus, the Proposition is true for n`1 vertices.

1b. Prop: trpnq “
1
2

`

1´1
r

˘

n2 ` opn2q, where r is fixed and nÑ8.
Proof: Let the parts of Trpnq have n1, . . . , nr vertices, where n1` ¨ ¨ ¨ `nr “ n.
The number of edges is half the sum of vertex degrees, and each vertex neighbors
all vertices outside its own part, so:

trpnq “
1
2

r
ř

i“1
nipn´niq “

1
2pn

ř

i ni ´
ř

i n
2
i q “

1
2pn

2 ´
ř

i n
2
i q.

Now, the function fpx1, . . . , xnq “
1
2pn

2´
ř

i x
2
i q, constrained to the hyperplane

gpx1, . . . , xnq “ x1` ¨ ¨ ¨`xr “ n, is concave-down with a unique maximum
point given by the Lagrange multiplier equation ∇f “ λ∇g, i.e. xi “ λ “ n

r for
all i. Thus:

trpnq ď fpnr , . . . ,
n
r q “

1
2pn

2 ´ rpnr q
2q “ 1

2p1´
1
r qn

2.

Part (a) implies:

trpnq ě p1´1
r q
`

n
2

˘

“ 1
2p1´

1
r qn

2 ´ 1
2p1´

1
r qn.

These upper and lower bounds clearly imply the asymptotic error bound:

ˇ

ˇtrpnq ´
1
2p1´

1
r qn

2
ˇ

ˇ

n2
Ñ 0 as nÑ8,

which is the meaning of the Proposition.



3. Theorem: (Erdös-Simonovits) A graph F with chromatic number χpF q “ r
has extremal edge number expF, nq “ 1

2p1´
1

r´1qn
2 ` opn2q as nÑ8.

Proof: We define expF, nq as the smallest number satisfying, for all n-vertex
graphs Gn:

expF, nq ă epGnq ñ F Ă Gn,

or contrapositively:
F Ć Gn ñ expF, nq ě epGnq.

Since F is not pr´1q-colorable, we know F Ć Tr´1pnq, so expF, nq ě epTr´1pnqq,
and by Prob 1a, epTr´1pnqq “ tr´1pnq ě

1
2p1´

1
r´1qn

2 ´ cn for a constant c.
On the other hand, F is r-colorable, so F Ă Krpsq for sufficiently large s.

By the Erdös-Stone Theorem, for any ε ą 0, sufficiently large n, and any Gn,

1
2p1`

1
r´1`εqn

2 ă epGnq ñ Krpsnq Ă Gn ñ F Ă Gn,

taking n large enough that sn ě s. Since 1
2p1`

1
r´1`εqn

2 satisfies the first form

of the definition, we get expF, nq ď 1
2p1`

1
r´1`εqn

2.
Restating these bounds, we have, for any ε ą 0 and sufficiently large n,

1
2p1`

1
r´1qn

2 ´ cn ď expF, nq ď 1
2p1`

1
r´1qn

2 ` εn2.

This clearly implies the conclusion.

4. A minimal presentation for the 8-element group of unit quaternions is:

Q “ xi, j | i4 “ 1, iji “ j, jij “ iy.

To see this, draw a Cayley diagram starting with the j-edge 1
j
Ñj. Using the

relation i4 “ 1, draw two 4-cycles of i-edges. Using iji “ j, follow the path

i3
i
Ñ1

j
Ñj

i
Ñji to draw the arrow i3

j
Ñji. Repeat this to draw two more j-arrows.

Finally, using jij “ i, or iji´1 “ j´1, follow the path i3
i
Ñ1

j
Ñj

i
Ðji3 to draw

the arrow i3
j
Ðji3. Repeat this to draw the final three j-arrows. The result has

8 i-arrows (black, thin) and 8 j-arrows (red, thick):

Neglecting orientation and coloring, this is the edge-graph of a cube with 4 ex-
tra edges connecting opposite corners. As for minimality, the non-cyclic group
Q requires at least two generators, and all three relations are clearly necessary.
(Can we rule out a presentation with only two relations??)



5a. For a finite group A with generators P “ ta, b, . . .u and a subgroup B Ă A,
recall the Schreier graph GpA,Bq whose vertices are the left cosets Bg for g P A,

and whose edges Bg
p
Ñ Bgp are directed and colored by generators p P P .

Prop: The subgroup B is normal in A if and only if there is an an automor-
phism of colored graphs φq : GpA,Bq Ñ GpA,Bq with φqpBq “ Bq, for each
generator q P P . Informally, the colored graph looks the same from each vertex
Bq as from the base point B.

Proof: If B is normal, meaning gB “ Bg for all g P A, then define φqpBgq “
qBg “ Bqg. If Bg

p
Ñ Bgp is an edge, then φqpBgq “ Bqg

p
Ñ Bqgp “ φqpBgpq

is also an edge, so φq is indeed an automorphism of colored graphs.
Conversely, if there exist such automorphisms φq for q P P , write any b P B

as a product of generators: b “ p1 ¨ ¨ ¨ p` for pi or p´1
i P P , where we allow a

backward step along Bgp
p
Ð Bg, equivalent to Bgp

p´1

Ñ Bg. Then the cycle

B
p1
Ñ Bp1

p2
Ñ ¨ ¨ ¨

p`
Ñ Bb “ B

is taken by φq to a cycle

Bq
p1
Ñ Bqp1

p2
Ñ ¨ ¨ ¨

p`
Ñ Bqb “ Bq.

That is, qb P Bq for all b P B, so that qB Ă Bq. This implies qB “ Bq for all
generators q, and hence gB “ Bg for all g P A, and B is normal.

Notes: If A is not finite, but we assume further automorphisms φq´1 with
φq´1pBq “ Bq´1, then we have qB Ă Bq and q´1B Ă Bq´1, so that qB “ Bq;
but I am not sure the extra automorphisms are really needed.

Some further equivalent conditions:

• B is normal in A

• GpA,Bq “ GpA{Bq, the Cayley graph of the quotient group

• For each q P P , there is a colored graph automorphism with φqpBq “ Bq

• For each g P A, there is a colored graph automorphism with φgpBq “ Bg

• Each cycle B
p1
Ñ ¨ ¨ ¨

p`
Ñ B corresponds to a cycle Bq

p1
Ñ ¨ ¨ ¨

p`
Ñ Bq, @q PP

• Each cycle B
p1
Ñ ¨ ¨ ¨

p`
Ñ B corresponds to a cycle Bg

p1
Ñ ¨ ¨ ¨

p`
Ñ Bg, @g PA.

Finally, note that a colored graph automorphism φ is uniquely determined by
φpBq “ Bg, since if h “ p1 ¨ ¨ ¨ p`, then φpBhq is obtained by following the path

Bg
p1
Ñ ¨ ¨ ¨

p`
Ñ Bgh. The automorphism exists if this procedure is well-defined,

independent of the chosen representative Bh “ Bbh. For any Cayley graph,
the mapping GpAq Ñ AutGpAq, g ÞÑ φg, is an injective group homomorphism.

5b. The Cayley graph of any group C can be obtained as GpCq “ GpCˆB,Bq
for any group B, where we have the normal subgroup B – 1ˆB Ÿ CˆB. The
subgroup B is central in CˆB if and only if B is abelian. Thus, any Cayley
graph can be obtained as a Schreier graph both of a central and a non-central
subgroup, and no criterion on the graph can distinguish these cases.


