You are encouraged to discuss homework problems with other students, but you must write out solutions in your own words. LaTeX is encouraged, but not required. If you get significant help from a reference or person, give explicit credit.

1. Recall that a planar graph is one which can be drawn in the plane without edge crossings: that is, the topological realization $\Delta(G)$ can be embedded in the plane \mathbb{R}^{2}. Prove that the following conditions are equivalent for a planar graph G.
(a) G has n vertices and $m=3 n-6$ edges
(b) G is maximal planar: $G+x y$ is not planar for any edge $x y \notin E(G)$
(c) G has only triangular faces, including the infinite face: $\operatorname{deg}(F)=3$ for all F.

In your arguments, you may use results proved in class and intuitive, obvious topological facts.
2. For a graph K, recall that a topological minor $T K$ is obtained by replacing edges of K by independent paths in $T K$; and for a general minor $I K$, we may reduce to K by repeatedly contracting an edge $e=x y \in E(G)$ to a vertex $v_{x y}$.
PROBLEM: Show that if $\operatorname{deg}(v) \leqslant 3$ for all $v \in V(K)$, and $I K \subset G$, then $T K \subset G$. (The case $K=K_{3,3}$ was a lemma for Kuratowski's Theorem.)
3. Consider the Petersen Graph G :

The Petersen Graph.
a. Show that if G were planar, it would violate the Edge-Region Inequality, so it must be non-planar.

Also: Find some graph which would satisfy the Edge-Region Inequality, but which is nevertheless non-planar.
b. Draw G as an $I K_{5}$: circle some edges which produce K_{5} when contracted. As we dicussed in lecture, use this $I K_{5}$ structure to find a $T K_{5}$ or $T K_{3,3} \subset G$.
c. In lecture, we gave a planar drawing (with straight-line edges) of the graph $K_{5}-e$. Starting with this drawing, perform the Kuratowski algorithm to draw the two graphs G_{1}, G_{2} below, in each case obtaining a straight-line planar drawing or an obstructing $T K_{5}$ or $T K_{3,3}$.

G_{2}

