1. PROPOSITION: The following are equivalent for a planar graph G with $n \geqslant 3$ vertices.
(a) G has the maximum number of edges, $m=3 n-6$.
(b) G is edge-maximal: that is, $G+x y$ is not planar for any edge $x y \notin E(G)$.
(c) Every face of G, including the infinite face, is trianglular (bounded by a 3 -cycle).

Proof. (a) \Rightarrow (b): Any planar G with $n \geqslant 3$ vertices has: m edges each on the boundary of at most 2 faces; ℓ faces each with at least 3 boundary edges; and k connected components. Then Euler's formula $n-m+\ell=k+1$ and the edge-region inequality $2 m \geqslant \sum \operatorname{deg}(F) \geqslant 3 \ell$ imply $m \leqslant 3 n-3(k+1) \leqslant 3 n-6$. Now, if G has the maximum number of edges $m=3 n-6$, adding one more edge makes $G+x y$ non-planar.
(b) $\Rightarrow(\mathrm{c})$: Suppose G is planar but any $G+x y$ is non-planar. If a face F had nonadjacent vertices x, y in its boundary, then we could connect these with an edge across the interior of F, and get a planar embedding of $G+x y$. Thus, the boundary of F must be a complete graph, but it cannot contain K_{4}, which is impossible to draw with one region touching all four vertices. Thus the boundary of F is a 3 -cycle.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$: Suppose every face of G is bounded by a 3 -cycle. If G were disconnected, then the boundary of the infinite face would also be disconnected, not a 3-cycle; thus G must be connected. Now, each edge is contained in the 3-cycle boundary of a face, and in the boundary of another face outside the first 3 -cycle. Counting pairs (e, F), where e is in the boundary of F, gives $2 m=3 \ell$, so that Euler's formula reduces to $m=3 n-6$.
2. PROPOSITION: If K is a graph with all $\operatorname{deg}(v) \leqslant 3$, then any general minor of K contains a topological minor: $T K \subset I K$.

First proof: We transform K into $I K$ by repeated inflation: replacing a vertex v with an edge $x y$, and replacing each incident edge $v a$ with one or two edges $x a$ and/or $y a$.

We induct on the number of inflation operations, based on the trivial case of no inflations. Suppose by induction that $T K \subset I K$, and inflate $v \in I K$ into $x y \subset I K^{\prime}$. If $v \notin T K$, then $T K \subset I K^{\prime}$.

Otherwise $v \in T K$, and by hypothesis v has at most three neighbors $a, b, c \in T K$. Up to relabeling, all but one of these must be neighbors of x, say $x a, x b \subset I K^{\prime}$. If the last neighbor of v is also a neighbor of x, say $x c \subset I K^{\prime}$, we may define the K-topological minor $T K^{\prime} \subset I K^{\prime}$ by relabeling $v \in T K$ as $x \in T K^{\prime}$. If instead $y c \subset I K^{\prime}$, we may transform $T K \subset I K$ into $T K^{\prime} \subset I K^{\prime}$ by replacing vertex v with x; edges $v a, v b$ with $x a, x b$; and the edge $v c$ with the path $x y c$.
Second proof: We transform K into $I K$ by inflating each vertex $v_{i} \in K$ to a connected subgraph $H_{i} \subset I K$, and for each edge $v_{i} v_{j} \subset K$, adding at least one edge from H_{i} to H_{j} in $I K$; let us specify one such edge $x_{i j} x_{j i} \subset I K$ with $x_{i j} \in H_{i}, x_{j i} \in H_{j}$. Inside H_{i}, we will choose a center vertex y_{i} and independent paths $P_{i j}$ from y_{i} to each $x_{i j}$. All the $P_{i j}$ together with the edges $x_{i j} x_{j i}$ will clearly form a $T K \subset I K$.

If v_{i} has at most two neighbors, we choose $y_{i}=x_{i j}$ for some $j, P_{i j}=x_{i j}$ the one-point path, and $P_{i k}$ any path from $x_{i j}$ to the other $x_{i k}$, if any. If v_{i} has three neighbors, we have $x_{i j}, x_{i k}, x_{i \ell} \in H_{i}$, not necessarily distinct. Consider paths $x_{i j} P x_{i \ell}, x_{i k} Q x_{i \ell} \subset H_{i}$. Let y_{i} be the vertex of $P \cap Q$ which is closest to $x_{i j}$, so that $P=x_{i j} P^{\prime} y_{i} P^{\prime \prime} x_{i \ell}$ and $Q=x_{i k} Q^{\prime} y_{i} Q^{\prime \prime} x_{i \ell}$ with $P^{\prime} \cap Q=y_{i}$. Then we set $P_{i j}=P^{\prime}, P_{i k}=Q^{\prime}, P_{i \ell}=Q^{\prime \prime}$, all independent paths.

