
Math 881 Homework 4 Solutions Wed Feb 7

1. proposition: The following are equivalent for a planar graph G with n ě 3 vertices.

(a) G has the maximum number of edges, m “ 3n´ 6.

(b) G is edge-maximal: that is, G`xy is not planar for any edge xy R EpGq.

(c) Every face of G, including the infinite face, is trianglular (bounded by a 3-cycle).

Proof. (a) ñ (b): Any planar G with n ě 3 vertices has: m edges each on the bound-
ary of at most 2 faces; ` faces each with at least 3 boundary edges; and k connected
components. Then Euler’s formula n ´m ` ` “ k ` 1 and the edge-region inequality
2m ě

ř

degpF q ě 3` imply m ď 3n ´ 3pk`1q ď 3n ´ 6. Now, if G has the maximum
number of edges m “ 3n´ 6, adding one more edge makes G`xy non-planar.

(b) ñ (c): Suppose G is planar but any G`xy is non-planar. If a face F had non-
adjacent vertices x, y in its boundary, then we could connect these with an edge across
the interior of F , and get a planar embedding of G`xy. Thus, the boundary of F must
be a complete graph, but it cannot contain K4, which is impossible to draw with one
region touching all four vertices. Thus the boundary of F is a 3-cycle.

(c) ñ (a): Suppose every face of G is bounded by a 3-cycle. If G were disconnected,
then the boundary of the infinite face would also be disconnected, not a 3-cycle; thus G
must be connected. Now, each edge is contained in the 3-cycle boundary of a face, and
in the boundary of another face outside the first 3-cycle. Counting pairs pe, F q, where e
is in the boundary of F , gives 2m “ 3`, so that Euler’s formula reduces to m “ 3n´ 6.

2. proposition: If K is a graph with all degpvq ď 3, then any general minor of K
contains a topological minor: TK Ă IK.

First proof: We transform K into IK by repeated inflation: replacing a vertex v with
an edge xy, and replacing each incident edge va with one or two edges xa and/or ya.

We induct on the number of inflation operations, based on the trivial case of no
inflations. Suppose by induction that TK Ă IK, and inflate v P IK into xy Ă IK 1. If
v R TK, then TK Ă IK 1.

Otherwise v P TK, and by hypothesis v has at most three neighbors a, b, c P TK.
Up to relabeling, all but one of these must be neighbors of x, say xa, xb Ă IK 1. If the
last neighbor of v is also a neighbor of x, say xc Ă IK 1, we may define the K-topological
minor TK 1 Ă IK 1 by relabeling v P TK as x P TK 1. If instead yc Ă IK 1, we may
transform TK Ă IK into TK 1 Ă IK 1 by replacing vertex v with x; edges va, vb with
xa, xb; and the edge vc with the path xyc.

Second proof: We transform K into IK by inflating each vertex vi P K to a connected
subgraph Hi Ă IK, and for each edge vivj Ă K, adding at least one edge from Hi to
Hj in IK; let us specify one such edge xijxji Ă IK with xij P Hi, xji P Hj . Inside Hi,
we will choose a center vertex yi and independent paths Pij from yi to each xij . All the
Pij together with the edges xijxji will clearly form a TK Ă IK.

If vi has at most two neighbors, we choose yi “ xij for some j, Pij “ xij the one-point
path, and Pik any path from xij to the other xik, if any. If vi has three neighbors, we
have xij , xik, xi` P Hi, not necessarily distinct. Consider paths xijPxi`, xikQxi` Ă Hi.
Let yi be the vertex of P X Q which is closest to xij , so that P “ xijP

1yiP
2xi` and

Q “ xikQ
1yiQ

2xi` with P 1 X Q “ yi. Then we set Pij “ P 1, Pik “ Q1, Pi` “ Q2, all
independent paths.


