1. The octahedron is the Platonic solid with 8 triangular faces, made from two four-sided pyramids stuck together along their square bases. Let G be its edge-graph, with vertices $V=\left\{v_{1}, \ldots, v_{6}\right\}$, all with 4 edges $(d(v)=4)$, and 12 edges.
a. Show that G could not contain any subdivision of the complete graph K_{5} or the complete bipartite graph $K_{3,3}$: thus, Kuratowski's Theorem guarantees that G is a planar graph. (Recall that in a subdivision of a graph, each edge may be subdivided into a path.) Sketch a planar drawing of G (with no edge crossings).
Solution: (Emmet Harrington) Clearly G has no K_{5} subgraph. The 6 -vertex subdivision of K_{5} has 11 edges and one vertex of degree 2 , but deleting 1 of the 12 edges of G gives mimimum degree 3 , so we can't produce the subdivision as a subgraph. Similarly, $K_{3,3}$ has 9 edges, but removing any 3 of the 12 edges of G leaves at least $8-2(3)=2$ triangle K_{3} 's in G, so we can't produce the bipartite $K_{3,3}$ as a subgraph.
c. Determine the connectivity $\kappa(G)=k$ by exhibiting a k-element cutset $S \subset V$ (with $G-S$ disconnected), and show that there is no smaller cutset.
Solution: Removing any 3 vertices leaves 3 vertices forming a path or a triangle, both connected. Removing two non-adjacent vertices leaves a 4-cycle, and removing two adjacent vertices leaves a 4 -cycle with a chord, both connected. Removing a single vertex leaves a connected 5 -vertex wheel graph. Thus $\kappa(G)>3$, and we can remove a 4 -cycle along the equator of the octahedron to disconnect the top and bottom vertices.
d. Find a 6 -element group Γ with generators $a, b, c \in \Gamma$, such that G is the Cayley graph (ignoring orientation and labeling of edges). Recall that the Cayley graph has vertices $V=\Gamma$, and edges of the form $g \rightarrow g a, g \rightarrow g b, g \rightarrow g c$.
Solution 1: $\Gamma=S_{3}$ with generators $a=(123), b=(12), c=(13)$, obeying $a^{3}=b^{2}=c^{2}=a b c=1$. The 3 generators produce a regular directed graph with in-degree and out-degree 3 , but the two generators of order 2 each produce a single undirected edge at each vertex, so ignoring orientation gives the 4-regular graph G.
Solution 2: (Mohit Bansil) Take $G=C_{6}=\mathbb{Z} / 6 \mathbb{Z}$ with generators $a=1, b=2$, making a 4 -regular graph with 6 vertices (see $\# 2$ below). This can only be the octahedron graph, though it is not obvious the octahedron has a 6-cycle.
2. For arbitrary $k<n$, does there always exist some connected k-regular graph G with n vertices? If not, classify the (k, n) for which there do exist such graphs. Hint: Experiment with small examples of (k,n). To show your condition on (k, n) is necessary, use a simple result we proved in class; to show it is sufficient, construct a graph for each allowed value (k, n).
Solution: We know $k n=\sum d(v)=2 m$ must be even. To show existence, take the Cayley graph of $\Gamma=C_{n}$ with generators $\left\{1,2, \ldots,\left\lfloor\frac{k}{2}\right\rfloor\right\}$, and in case of odd k, also the generator $\frac{n}{2}$.
3. (Bollobás Ex I.1) Prove that either a graph G or its complement \bar{G} is connected, possibly both. (By definition, \bar{G} has the same vertices as G, and $x y \in E(\bar{G})$ whenever $x y \notin E(G)$.)
Solution: If G is not connected, consider any vertices x, y. If x, y are in different connected components of G, then they are neighbors in \bar{G}. Otherwise, take v in another connected component of (disconneced) G, so that v is not a neighbor of x or y in G; then $x v y$ is a path in \bar{G}. Either way, x, y are connected in \bar{G}, and \bar{G} is connected.
4. (Bollobás Ex I.5) Show the following conditions are equivalent for a graph G with at least 3 vertices:
(i) $\kappa(G) \geqslant 2$, meaning G is connected with no cutvertex
(ii) any two vertices lie on a cycle
(iii) any two edges lie on a cycle, and there are no isolated vertices $(d(v)>0)$
(iv) for any vertices x, y, z, there is a path from x to y to z.

Solution: We will prove (i) \Leftrightarrow (ii) \Leftarrow (iii) \Leftarrow (iv) \Leftarrow (i).
(i) \Rightarrow (ii). (Jihye Hwang) Let G be a graph with no cut-vertex, and fix a vertex x. We will prove that for any vertex y, there is a cycle containing x, y, by induction on $\operatorname{dist}(x, y)$.

Suppose $\operatorname{dist}(x, y)=1$. Since y is not a cut-vertex, x has another neighbor z. Since x is not a cut-vertex, there is some path $z P y$ not containing x, and $x z P y x$ is a cycle containing x, y.

Suppose $\operatorname{dist}(x, y)>1$. Letting $x \cdots p y$ be a minimal path, by induction there is a cycle $x P p P^{\prime} x$. If $y \in P P^{\prime}$, we have our desired cycle, so suppose $y \notin P P^{\prime}$. Since p is not a cut-vertex, there is a path $x Q y$ not containing p. Now, let q be the vertex of $Q \cap P P^{\prime}$ which is closest to y along Q (possibly $q=x$), so that $x Q y=x Q_{1} q Q_{2} y$. Since P, P^{\prime} have symmetric roles, we may assume that $q \in P$, and $x P z=x P_{1} q P_{2} z$.

Now we have the cycle $x P_{1} q Q_{2} y p P^{\prime} x$. Indeed, $x P_{1} q \cap y p P^{\prime} x=\{x\}$ since $x P p P^{\prime} x$ is a cycle and $y \notin P P^{\prime}$; and $q Q_{2} y \cap y p P^{\prime} x=\{y\}$ by the definition of $q \in Q$. Again x, y lie on a cycle, so the induction proceeds, and ultimately every x, y lie on a cycle.
(iii) \Rightarrow (ii) \Rightarrow (i) are easy.
(iv) \Rightarrow (iii). Suppose G has a path between any three vertices, and let $x y, p q$ be disjoint edges of G. Take paths $x P p P^{\prime} y$ and $y Q q Q^{\prime} p$, and let r be the vertex of $Q \cap P P^{\prime}$ which is closest to y along Q. Since P, P^{\prime} have symmetric roles, we may assume that $y \in Q$, and $y Q q=y Q_{1} r Q_{2} q$.

Now we have the cycle $x \operatorname{Pr} Q_{2} q p P^{\prime} y x$. Indeed, $x \operatorname{Pr} \cap p P^{\prime} y x=\{x\}$ since $x P p P^{\prime} x$ is a path; and $r Q_{2} q p \cap p P^{\prime} y x=\{p\}$ by the definition of $r \in Q$, and since $p \notin Q$. Thus the edges $x y, p q$ lie on a cycle.

Also, for a pair of incident edges $x y, y p$, we can take a path $p P x P^{\prime} y$, so that $x y p P x$ is again a cycle containing these edges.
(i) \Rightarrow (iv). Take vertices $x, y, z \in G$, a graph with no cut-vertex. Produce a larger graph G^{\prime} by adding a vertex v with edges $v x, v z$. Now, removing a vertex of G^{\prime} cannot separate v from both x and z, nor x and z from the other vertices of G, so G^{\prime} has no cutvertex. From our proof of (i) \Rightarrow (ii), we know v, y lie on a cycle $v x P y P^{\prime} z v$ in G^{\prime}, which includes the path $x P y P^{\prime} z$ in G.

