
Math 881 Homework 1 Due Wed Jan 17

1. The octahedron is the Platonic solid with 8 triangular faces, made from
two four-sided pyramids stuck together along their square bases. Let G be its
edge-graph, with vertices V “ tv1, . . . , v6u, all with 4 edges (dpvq “ 4), and 12
edges.

a. Show that G could not contain any subdivision of the complete graph K5

or the complete bipartite graph K3,3: thus, Kuratowski’s Theorem guarantees
that G is a planar graph. (Recall that in a subdivision of a graph, each edge
may be subdivided into a path.) Sketch a planar drawing of G (with no edge
crossings).

Solution: (Emmet Harrington) Clearly G has no K5 subgraph. The 6-vertex
subdivision of K5 has 11 edges and one vertex of degree 2, but deleting 1 of the
12 edges of G gives mimimum degree 3, so we can’t produce the subdivision as
a subgraph. Similarly, K3,3 has 9 edges, but removing any 3 of the 12 edges
of G leaves at least 8 ´ 2p3q “ 2 triangle K3’s in G, so we can’t produce the
bipartite K3,3 as a subgraph.

c. Determine the connectivity κpGq “ k by exhibiting a k-element cutset S Ă V
(with G´S disconnected), and show that there is no smaller cutset.

Solution: Removing any 3 vertices leaves 3 vertices forming a path or a triangle,
both connected. Removing two non-adjacent vertices leaves a 4-cycle, and re-
moving two adjacent vertices leaves a 4-cycle with a chord, both connected. Re-
moving a single vertex leaves a connected 5-vertex wheel graph. Thus κpGq ą 3,
and we can remove a 4-cycle along the equator of the octahedron to disconnect
the top and bottom vertices.

d. Find a 6-element group Γ with generators a, b, c P Γ, such that G is the Cay-
ley graph (ignoring orientation and labeling of edges). Recall that the Cayley
graph has vertices V “ Γ, and edges of the form g Ñ ga, g Ñ gb, g Ñ gc.

Solution 1: Γ “ S3 with generators a “ p123q, b “ p12q, c “ p13q, obeying
a3 “ b2 “ c2 “ abc “ 1. The 3 generators produce a regular directed graph
with in-degree and out-degree 3, but the two generators of order 2 each pro-
duce a single undirected edge at each vertex, so ignoring orientation gives the
4-regular graph G.

Solution 2: (Mohit Bansil) Take G “ C6 “ Z{6Z with generators a “ 1, b “ 2,
making a 4-regular graph with 6 vertices (see #2 below). This can only be the
octahedron graph, though it is not obvious the octahedron has a 6-cycle.

2. For arbitrary k ă n , does there always exist some connected k-regular
graph G with n vertices? If not, classify the pk, nq for which there do exist
such graphs. Hint: Experiment with small examples of (k,n). To show your
condition on pk, nq is necessary, use a simple result we proved in class; to show
it is sufficient, construct a graph for each allowed value pk, nq.

Solution: We know kn “
ř

dpvq “ 2m must be even. To show existence, take
the Cayley graph of Γ “ Cn with generators t1, 2, . . . , tk2 uu, and in case of odd
k, also the generator n

2 .



3. (Bollobás Ex I.1) Prove that either a graph G or its complement Ḡ is
connected, possibly both. (By definition, Ḡ has the same vertices as G, and
xy P EpḠq whenever xy R EpGq.)

Solution: If G is not connected, consider any vertices x, y. If x, y are in different
connected components of G, then they are neighbors in Ḡ. Otherwise, take v in
another connected component of (disconneced) G, so that v is not a neighbor
of x or y in G; then xvy is a path in Ḡ. Either way, x, y are connected in Ḡ,
and Ḡ is connected.

4. (Bollobás Ex I.5) Show the following conditions are equivalent for a graph
G with at least 3 vertices:

(i) κpGq ě 2, meaning G is connected with no cutvertex
(ii) any two vertices lie on a cycle
(iii) any two edges lie on a cycle, and there are no isolated vertices (dpvq ą 0)
(iv) for any vertices x, y, z, there is a path from x to y to z.

Solution: We will prove (i) ô (ii) ð (iii) ð (iv) ð (i).

(i) ñ (ii). (Jihye Hwang) Let G be a graph with no cut-vertex, and fix a ver-
tex x. We will prove that for any vertex y, there is a cycle containing x, y, by
induction on distpx, yq.

Suppose distpx, yq “ 1. Since y is not a cut-vertex, x has another neighbor
z. Since x is not a cut-vertex, there is some path zPy not containing x, and
xzPyx is a cycle containing x, y.

Suppose distpx, yq ą 1. Letting x ¨ ¨ ¨ py be a minimal path, by induction
there is a cycle xPpP 1x. If y P PP 1, we have our desired cycle, so suppose
y R PP 1. Since p is not a cut-vertex, there is a path xQy not containing p.
Now, let q be the vertex of Q X PP 1 which is closest to y along Q (possibly
q “ x), so that xQy “ xQ1qQ2y. Since P, P 1 have symmetric roles, we may
assume that q P P , and xPz “ xP1qP2z.

Now we have the cycle xP1qQ2ypP
1x. Indeed, xP1q X ypP 1x “ txu since

xPpP 1x is a cycle and y R PP 1; and qQ2y X ypP 1x “ tyu by the definition of
q P Q. Again x, y lie on a cycle, so the induction proceeds, and ultimately every
x, y lie on a cycle.

(iii) ñ (ii) ñ (i) are easy.

(iv) ñ (iii). Suppose G has a path between any three vertices, and let xy, pq be
disjoint edges of G. Take paths xPpP 1y and yQqQ1p, and let r be the vertex
of QX PP 1 which is closest to y along Q. Since P, P 1 have symmetric roles, we
may assume that y P Q, and yQq “ yQ1rQ2q.

Now we have the cycle xPrQ2qpP
1yx. Indeed, xPr X pP 1yx “ txu since

xPpP 1x is a path; and rQ2qp X pP 1yx “ tpu by the definition of r P Q, and
since p R Q. Thus the edges xy, pq lie on a cycle.

Also, for a pair of incident edges xy, yp, we can take a path pPxP 1y, so that
xypPx is again a cycle containing these edges.

(i) ñ (iv). Take vertices x, y, z P G, a graph with no cut-vertex. Produce a
larger graph G1 by adding a vertex v with edges vx, vz. Now, removing a vertex
of G1 cannot separate v from both x and z, nor x and z from the other vertices
of G, so G1 has no cutvertex. From our proof of (i) ñ (ii), we know v, y lie on
a cycle vxPyP 1zv in G1, which includes the path xPyP 1z in G.


