Math 880

We consider combinatorial classes \mathcal{F} of functions f with domain $[k] = \{1, 2, \dots, k\}$ and codomain $[n] = \{1, 2, \dots, n\}$, subject to restrictions on f (injective or surjective). We may picture f as a way of distributing k balls into n baskets.

We say [k] is indistinguishable if we consider mappings up to symmetry by S_k ; and similarly for [n] indistinguishable. By convention there is a unique surjection $f : \{\} \to \{\}$, and a unique injection $f : \{\} \to [n]$ for all n.

Each function $f: [k] \to [n]$ has size |f| = k and weight ||f|| = n, and contributes the term $\frac{x^k}{k!}t^n$; and we have bigraded counting sequence $F_{k,n}$. We give a combinatorial construction for $\tilde{\mathcal{F}}$ (if [k] is distinguishable) or \mathcal{F} (if [k] is indistinguishable), identifying a function f with its sequence of pre-image sets (S_1, \ldots, S_n) , where $S_i = f^{-1}(i)$. The elements of the sets are built from the basic class $[1] = \{1\}$ with |1| = 1 and ||1|| = 0; while each set is marked by t^1 using a factor $\{\emptyset\}$ with $|\emptyset| = 0$ and $||\emptyset|| = 1$. We give the corresponding bivariate exponential generating function $\tilde{F}(x,t) = \sum_{k,n\geq 0} \tilde{F}_{k,n} \frac{x^k}{k!}t^n$, or the bivariate ordinary generating function $F(x,t) = \sum_{k,n\geq 0} F_{k,n} x^n u^n$. We also give the univariate function $F_n(x) = [t^n]F(x,t)$.

f : [k]	$\rightarrow [n]$	ALL FUNCTIONS	INJECTIONS	SURJECTIONS
DIST	DIST	n^{k} $\operatorname{Seq}(\emptyset_{t} \times \operatorname{Set}\left[\widetilde{1}\right]_{x})$ $\tilde{F}(x,t) = \frac{1}{1 - ue^{x}}$ $\tilde{F}_{n}(x) = e^{kx}$	$n^{\underline{k}}$ $\operatorname{Seq}(\emptyset_t \times \operatorname{Set}_{\leq 1} \widetilde{[1]_x})$ $\tilde{F}(x,t) = \frac{1}{1 - t(1+x)}$ $\tilde{F}_n(x) = (1+x)^n$	$n! {n \atop k} $ Seq $(\emptyset_t \times \text{Set}_{\geq 1} \widetilde{[1]_x})$ $\tilde{F}(x,t) = \frac{1}{1 - t(e^x - 1)}$ $\tilde{F}_n(x) = (e^x - 1)^n$
IND	DIST	$\binom{\binom{k}{n}}{\operatorname{Seq}(\emptyset_t \times \operatorname{Seq}\left[1\right]_x)}$ $F(x,t) = \frac{1}{1 - \frac{t}{1-x}}$ $F_n(x) = \frac{1}{(1-x)^n}$	$\binom{k}{n} = \operatorname{comp}_{n}^{\leq 1}(k)$ $\operatorname{Seq}(\emptyset_{t} \times \operatorname{Seq}_{\leq 1} [1]_{x})$ $F(x,t) = \frac{1}{1 - t(1 + x)}$ $F_{n}(x) = (1 + x)^{n}$	$\binom{n}{k-n} = \binom{k-1}{n-1} = \operatorname{comp}_{n}^{\geq 1}(k)$ $\operatorname{Seq}(\emptyset_{t} \times \operatorname{Seq}_{\geq 1} [1]_{x})$ $F(x,t) = \frac{1}{1 - \frac{tx}{1-x}}$ $F_{n}(x) = \frac{x^{n}}{(1-x)^{n}}$
DIST	IND	$ \begin{cases} \binom{n}{1} + \dots + \binom{n}{k} \\ \operatorname{Set}(\emptyset_t \times \operatorname{Set}\left[1\right]_x) \\ \tilde{F}(x,t) = \sum_{\substack{n \ge \ell \ge 0 \\ n}} \frac{1}{\ell!} (e^x - 1)^\ell t^n \\ \tilde{F}_n(x) = \sum_{\ell=0}^n \frac{1}{\ell!} (e^x - 1)^\ell \end{cases} $	$\widetilde{F}_{n}(x) = \sum_{k=0}^{n \text{ if } k \le n} \widetilde{[1]_{x}}$ $\widetilde{F}(x,t) = \sum_{n \ge k \ge 0} \frac{1}{k!} x^{k} t^{n}$ $\widetilde{F}_{n}(x) = \sum_{k=0}^{n} \frac{1}{k!} x^{k}$	$\begin{cases} n \\ k \end{cases}$ Set $(\emptyset_t \times \text{Set}_{\geq 1} \ \widetilde{[1]}_x)$ $\tilde{F}(x,t) = e^{t(e^x - 1)}$ $\tilde{F}_n(x) = \frac{1}{n!}(e^x - 1)^n$
IND	IND	$p_{\leq n}(k)$ $\operatorname{MSet}(\emptyset_t \times \operatorname{Seq} [1]_x)$ $F(x,t) = \prod_{j \geq 0} \frac{1}{1 - tx^j}$ $F_n(x) = \prod_{j=1}^n \frac{1}{1 - x^j}$	$\begin{cases} 1 & \text{if } k \le n \\ 0 & \text{else} \end{cases}$ $\text{MSet}(\emptyset_t \times \text{Seq}_{\le 1} \ [1]_x)$ $F(x,t) = \frac{1}{(1-t)(1-tx)}$ $F_n(x) = \frac{1-x^{n+1}}{1-x}$	$p_n(k) = p_{\leq n}(k-n)$ MSet $(\emptyset_t \times \text{Seq}_{\geq 1} [1]_x)$ $F(x,t) = \prod_{j\geq 1} \frac{1}{1-tx^j}$ $F_n(x) = x^n \prod_{j=1}^n \frac{1}{1-x^j}$

Some remarks on the entries of the table.

- In the first two columns, the functions F(x, t) do not specialize to formal power series at t = 1, because there are infinitely many objects of size k = 0, namely the injections f : {} → [n] for n ≥ 0.
- Row IND DIST: Here $\operatorname{comp}_n^S(k)$ counts the *n*-compositions of k by elements of a set $S \subset \mathbb{Z}_{\geq 0}$, i.e. lists (k_1, \ldots, k_n) with $k_1 + \cdots + k_n = k$ and $k_i \in S$.
- Row DIST IND: For the first two columns, the exponential formula does not hold for the outer Set operation, because we are applying Set to a class containing elements of size zero (i.e. \emptyset_t). The objects counted are of the form $\{S_1, \ldots, S_\ell, \{\}, \cdots, \{\}\}$ with $n-\ell$ empty sets, and ℓ non-empty sets $S_1 \coprod \cdots \coprod S_\ell = [k]$. Now the symmetric group S_n does not act freely on these n-tuples because of the $n-\ell$ identical empty sets. Rather, we must fix ℓ and mod out by S_ℓ , resulting in the formulas given.
- Row IND IND: The usual multiset formulas do not take account of the weight n, so we must analyze the cases directly using the product principle. Choosing a partition means determining the number of 0's, the number of 1's, etc.; and choosing ℓ with multiplicity m corresponds to the monomial $(tx^{\ell})^m$.

To determine the partial generating functions $F_n(x)$, we use the transpose bijection: a partition $k = \lambda_1 + \cdots + \lambda_n$ with exactly n parts $\lambda_i \ge 0$ corresponds to a partition $k = \mu_1 + \mu_2 + \cdots$ with any number of parts μ_j restricted by $1 \le \mu_j \le n$.