We consider combinatorial classes \mathcal{F} of functions f with domain $[k]=\{1,2, \ldots, k\}$ and codomain $[n]=\{1,2, \ldots, n\}$, subject to restrictions on f (injective or surjective). We may picture f as a way of distributing k balls into n baskets.

We say $[k]$ is indistinguishable if we consider mappings up to symmetry by S_{k}; and similarly for $[n]$ indistinguishable. By convention there is a unique surjection $f:\{ \} \rightarrow\{ \}$, and a unique injection $f:\{ \} \rightarrow[n]$ for all n.

Each function $f:[k] \rightarrow[n]$ has size $|f|=k$ and weight $\|f\|=n$, and contributes the term $\frac{x^{k}}{k!} t^{n}$; and we have bigraded counting sequence $F_{k, n}$. We give a combinatorial construction for $\tilde{\mathcal{F}}$ (if $[k]$ is distinguishable) or \mathcal{F} (if $[k]$ is indistinguishable), identifying a function f with its sequence of pre-image sets $\left(S_{1}, \ldots, S_{n}\right)$, where $S_{i}=f^{-1}(i)$. The elements of the sets are built from the basic class $[1]=\{1\}$ with $|1|=1$ and $\|1\|=0$; while each set is marked by t^{1} using a factor $\{\emptyset\}$ with $|\emptyset|=0$ and $\|\emptyset\|=1$. We give the corresponding bivariate exponential generating function $\tilde{F}(x, t)=\sum_{k, n \geq 0} \tilde{F}_{k, n} \frac{x^{k}}{k!} t^{n}$, or the bivariate ordinary generating function $F(x, t)=\sum_{k, n \geq 0} F_{k, n} x^{n} u^{n}$. We also give the univariate function $F_{n}(x)=\left[t^{n}\right] F(x, t)$.

$f:[k] \rightarrow[n]$	ALL FUNCTIONS	INJECTIONS	SURJECTIONS
DIST DIST	$\begin{gathered} n^{k} \\ \operatorname{Seq}\left(\emptyset_{t} \times \operatorname{Set} \widetilde{[1]_{x}}\right) \\ \tilde{F}(x, t)=\frac{1}{1-u e^{x}} \\ \tilde{F}_{n}(x)=e^{k x} \end{gathered}$	$\begin{gathered} n^{\underline{k}} \\ \operatorname{Seq}\left(\emptyset_{t} \times \operatorname{Set}_{\leq 1} \widetilde{[1]_{x}}\right) \\ \tilde{F}(x, t)=\frac{1}{1-t(1+x)} \\ \tilde{F}_{n}(x)=(1+x)^{n} \end{gathered}$	$\begin{gathered} n!\left\{\begin{array}{l} n \\ k \end{array}\right\} \\ \operatorname{Seq}\left(\emptyset_{t} \times \operatorname{Set}_{\geq 1} \widetilde{[1]_{x}}\right) \\ \tilde{F}(x, t)=\frac{1}{1-t\left(e^{x}-1\right)} \\ \tilde{F}_{n}(x)=\left(e^{x}-1\right)^{n} \end{gathered}$
IND DIST	$\begin{aligned} & \left(\binom{k}{n}\right)=\operatorname{comp}_{n}^{\geq 0}(k) \\ & \operatorname{Seq}\left(\emptyset_{t} \times \operatorname{Seq}[1]_{x}\right) \\ & F(x, t)=\frac{1}{1-\frac{t}{1-x}} \\ & F_{n}(x)=\frac{1}{(1-x)^{n}} \end{aligned}$	$\begin{gathered} \binom{k}{n}=\operatorname{comp}_{n}^{\leq}(k) \\ \operatorname{Seq}\left(\emptyset_{t} \times \operatorname{Seq}_{\leq 1}[1]_{x}\right) \\ F(x, t)=\frac{1}{1-t(1+x)} \\ F_{n}(x)=(1+x)^{n} \end{gathered}$	$\begin{gathered} \left(\binom{n}{k-n}\right)=\binom{k-1}{n-1}=\operatorname{comp}_{n}^{\geq 1}(k) \\ \operatorname{Seq}\left(\emptyset_{t} \times \operatorname{Seq}_{\geq 1}[1]_{x}\right) \\ F(x, t)=\frac{1}{1-\frac{t x}{1-x}} \\ F_{n}(x)=\frac{x^{n}}{(1-x)^{n}} \end{gathered}$
DIST IND	$\begin{gathered} \left\{\begin{array}{l} n \\ 1 \end{array}\right\}+\cdots+\left\{\begin{array}{l} n \\ k \end{array}\right\} \\ \operatorname{Set}\left(\emptyset_{t} \times \operatorname{Set} \widetilde{[1]_{x}}\right) \\ \tilde{F}(x, t)=\sum_{n \geq \ell \geq 0} \frac{1}{\ell!}\left(e^{x}-1\right)^{\ell} t^{n} \\ \tilde{F}_{n}(x)=\sum_{\ell=0}^{n} \frac{1}{\ell!}\left(e^{x}-1\right)^{\ell} \end{gathered}$	$\begin{gathered} \begin{cases}1 & \text { if } k \leq n \\ 0 & \text { else }\end{cases} \\ \operatorname{Set}\left(\emptyset_{t} \times \operatorname{Set}_{\leq 1} \widetilde{[1]_{x}}\right) \end{gathered} \tilde{F}^{2}(x, t)=\sum_{n \geq k \geq 0} \frac{1}{k!} x^{k} t^{n} .$	$\begin{gathered} \left\{\begin{array}{l} n \\ k \end{array}\right\} \\ \operatorname{Set}\left(\emptyset_{t} \times \operatorname{Set}_{\geq 1} \widetilde{[1]_{x}}\right) \\ \tilde{F}(x, t)=e^{t\left(e^{x}-1\right)} \\ \tilde{F}_{n}(x)=\frac{1}{n!}\left(e^{x}-1\right)^{n} \end{gathered}$
IND IND	$\begin{gathered} p_{\leq n}(k) \\ \operatorname{MSet}\left(\emptyset_{t} \times \operatorname{Seq}[1]_{x}\right) \\ F(x, t)=\prod_{j \geq 0} \frac{1}{1-t x^{j}} \\ F_{n}(x)=\prod_{j=1}^{n} \frac{1}{1-x^{j}} \end{gathered}$	$\begin{gathered} \begin{cases}1 & \text { if } k \leq n \\ 0 & \text { else }\end{cases} \\ \operatorname{MSet}\left(\emptyset_{t} \times \operatorname{Seq}_{\leq 1}[1]_{x}\right) \\ F(x, t)=\frac{1}{(1-t)(1-t x)} \\ F_{n}(x)=\frac{1-x^{n+1}}{1-x} \end{gathered}$	$\begin{gathered} p_{n}(k)=p_{\leq n}(k-n) \\ \operatorname{MSet}\left(\emptyset_{t} \times \operatorname{Seq}_{\geq 1}[1]_{x}\right) \\ F(x, t)=\prod_{j \geq 1} \frac{1}{1-t x^{j}} \\ F_{n}(x)=x^{n} \prod_{j=1}^{n} \frac{1}{1-x^{j}} \end{gathered}$

Some remarks on the entries of the table.

- In the first two columns, the functions $F(x, t)$ do not specialize to formal power series at $t=1$, because there are infinitely many objects of size $k=0$, namely the injections $f:\{ \} \rightarrow[n]$ for $n \geq 0$.
- Row ind dist: Here $\operatorname{comp}_{n}^{S}(k)$ counts the n-compositions of k by elements of a set $S \subset \mathbb{Z}_{\geq 0}$, i.e. lists $\left(k_{1}, \ldots, k_{n}\right)$ with $k_{1}+\cdots+k_{n}=k$ and $k_{i} \in S$.
- Row dist ind: For the first two columns, the exponential formula does not hold for the outer Set operation, because we are applying Set to a class containing elements of size zero (i.e. \emptyset_{t}). The objects counted are of the form $\left\{S_{1}, \ldots, S_{\ell},\{ \}, \cdots,\{ \}\right\}$ with $n-\ell$ empty sets, and ℓ non-empty sets $S_{1} \amalg \cdots \amalg S_{\ell}=[k]$. Now the symmetric group S_{n} does not act freely on these n-tuples because of the $n-\ell$ identical empty sets. Rather, we must fix ℓ and mod out by S_{ℓ}, resulting in the formulas given.
- Row ind ind: The usual multiset formulas do not take account of the weight n, so we must analyze the cases directly using the product principle. Choosing a partition means determining the number of 0 's, the number of 1 's, etc.; and choosing ℓ with multiplicity m corresponds to the monomial $\left(t x^{\ell}\right)^{m}$.
To determine the partial generating functions $F_{n}(x)$, we use the transpose bijection: a partition $k=\lambda_{1}+\cdots+\lambda_{n}$ with exactly n parts $\lambda_{i} \geq 0$ corresponds to a partition $k=\mu_{1}+\mu_{2}+\cdots$ with any number of parts μ_{j} restricted by $1 \leq \mu_{j} \leq n$.

